Citation: Dora Luz Castro-López, Macarena Trujillo, Enrique Berjano, Ricardo Romero-Mendez. Two-compartment mathematical modeling in RF tumor ablation: New insight when irreversible changes in electrical conductivity are considered[J]. Mathematical Biosciences and Engineering, 2020, 17(6): 7980-7993. doi: 10.3934/mbe.2020405
[1] | D. Haemmerich, S. T. Staelin, S. Tungjitkusolmun, F. T. Lee Jr, D. M. Mahvi, J. G. Webster, Hepatic bipolar radio-frequency ablation between separated multiprong electrodes, IEEE Trans. Biomed. Eng., 48 (2001), 1145-1152. doi: 10.1109/10.951517 |
[2] | D. Haemmerich, L. Chachati, A. S. Wright, D. M. Mahvi, F. T. Lee Jr, J. G. Webster, Hepatic radiofrequency ablation with internally cooled probes: Effect of coolant temperature on lesion size, IEEE Trans. Biomed. Eng., 50 (2003), 493-500. doi: 10.1109/TBME.2003.809488 |
[3] | I. A. Chang, U. D. Nguyen, Thermal modeling of lesion growth with radiofrequency ablation devices, Biomed. Eng. Online, 3 (2004), 27. |
[4] | Z. Liu, S. M. Lobo, S. Humphries, C. Horkan, S. A. Solazzo, A. U. Hines-Peralta, et al., Radiofrequency tumor ablation: insight into improved efficacy using computer modeling, AJR Am. J. Roentgenol., 184 (2005), 1347-1352. |
[5] | S. M. Lobo, Z. J. Liu, N. C. Yu, S. Humphries, M. Ahmed, E. R. Cosman, et al., RF tumour ablation: computer simulation and mathematical modelling of the effects of electrical and thermal conductivity, Int. J. Hyperth., 21 (2005), 199-213. |
[6] | T. W. Sheu, C. W. Chou, S. F. Tsai, P. C. Liang, Three-dimensional analysis for radio-frequency ablation of liver tumor with blood perfusion effect, Comput. Methods Biomech. Biomed. Eng., 8 (2005), 229-240. |
[7] | D. Haemmerich, B. J. Wood, Hepatic radiofrequency ablation at low frequencies preferentially heats tumour tissue, Int. J. Hyperth., 22 (2006), 563-574. doi: 10.1080/02656730601024727 |
[8] | M. Ahmed, Z. Liu, S. Humphries, S. N. Goldberg, Computer modeling of the combined effects of perfusion, electrical conductivity, and thermal conductivity on tissue heating patterns in radiofrequency tumor ablation, Int. J. Hyperth., 24 (2008), 577-588. |
[9] | D. Haemmerich, D. J. Schutt, RF ablation at low frequencies for targeted tumor heating: In vitro and computational modeling results, IEEE Trans. Biomed. Eng., 58 (2011), 404-410. doi: 10.1109/TBME.2010.2085081 |
[10] | G. Zorbas, T. Samaras, Parametric study of radiofrequency ablation in the clinical practice with the use of two-compartment numerical models, Electr. Biol. Med., 32 (2013), 236-243. doi: 10.3109/15368378.2013.776435 |
[11] | B. Zhang, M. A. Moser, E. M. Zhang, Y. Luo, H. Zhang, W. Zhang, Study of the relationship between the target tissue necrosis volume and the target tissue size in liver tumors using two-compartment finite element RFA modelling, Int. J. Hyperth., 30 (2014), 593-602. doi: 10.3109/02656736.2014.984000 |
[12] | M. Jamil, E. Y. Ng, Quantification of the effect of electrical and thermal parameters on radiofrequency ablation for concentric tumor model of different sizes, J. Therm. Biol., 51 (2015), 23-32. doi: 10.1016/j.jtherbio.2015.03.002 |
[13] | D. Haemmerich, S. T. Staelin, J. Z. Tsai, S. Tungjitkusolmun, D. M. Mahvi, J. G. Webster, In vivo electrical conductivity of hepatic tumours, Physiol. Meas., 24 (2003), 251-260. doi: 10.1088/0967-3334/24/2/302 |
[14] | S. Prakash, M. P. Karnes, E. K. Sequin, J. D. West, C. L. Hitchcock, S. D. Nichols, et al., Ex vivo electrical impedance measurements on excised hepatic tissue from human patients with metastatic colorectal cancer, Physiol. Meas., 36 (2015), 315-328. |
[15] | D. Haemmerich, D. J. Schutt, A. W. Wright, J. G. Webster, D. M. Mahvi, Electrical conductivity measurement of excised human metastatic liver tumors before and after thermal ablation, Physiol. Meas., 30 (2009), 459-466. doi: 10.1088/0967-3334/30/5/003 |
[16] | S. Laufer, A. Ivorra, V. E. Reuter, B. Rubinsky, S. B. Solomon, Electrical impedance characterization of normal and cancerous human hepatic tissue, Physiol. Meas., 31 (2010), 995-1009. doi: 10.1088/0967-3334/31/7/009 |
[17] | M. Pop, A. Molckovsky, L. Chin, M. C. Kolios, M. A. Jewett, M. D. Sherar, Changes in dielectric properties at 460 kHz of kidney and fat during heating: importance for radio-frequency thermal therapy, Phys. Med. Biol., 48 (2003), 2509-2525. doi: 10.1088/0031-9155/48/15/317 |
[18] | U. Zurbuchen, C. Holmer, K. S. Lehmann, T. Stein, A. Roggan, C. Seifarth, et al., Determination of the temperature-dependent electric conductivity of liver tissue ex vivo and in vivo: Importance for therapy planning for the radiofrequency ablation of liver tumours, Int. J. Hyperth., 26 (2010), 26-33. |
[19] | E. G. Macchi, M. Gallati, G. Braschi, E. Persi, Dielectric properties of RF heated ex vivo porcine liver tissue at 480 kHz: measurements and simulations, J. Phys. D Appl. Phys., 47 (2014), 485401. doi: 10.1088/0022-3727/47/48/485401 |
[20] | D. D. Yero, F. G. Gonzalez, D. Van Troyen, G. A. E. Vandenbosch, Dielectric properties of ex vivo porcine liver tissue characterized at frequencies between 5 and 500 kHz when heated at different rates, IEEE Trans. Biomed. Eng., 65 (2018), 2560-2568. doi: 10.1109/TBME.2018.2807981 |
[21] | E. Ewertowska, R. Quesada, A. Radosevic, A. Andaluz, X. Moll, F. G. Arnas, et al., A clinically oriented computer model for radiofrequency ablation of hepatic tissue with internally cooled wet electrode, Int. J. Hyperth., 35 (2019), 194-204. |
[22] | M. Trujillo, J. Bon, M. J. Rivera, F. Burdio, E. Berjano, Computer modelling of an impedance-controlled pulsing protocol for RF tumour ablation with a cooled electrode, Int. J. Hyperth., 32 (2016), 931-939. doi: 10.1080/02656736.2016.1190868 |
[23] | R. M. Irastorza, M. Trujillo, E. Berjano, How coagulation zone size is underestimated in computer modeling of RF ablation by ignoring the cooling phase just after RF power is switched off, Int. J. Numer. Method Biomed. Eng., 33 (2017), 10.1002/cnm.2869. |
[24] | B. Zhang, M. A. Moser, E. M. Zhang, Y. Luo, W. Zhang, Numerical analysis of the relationship between the area of target tissue necrosis and the size of target tissue in liver tumours with pulsed radiofrequency ablation, Int. J. Hyperth., 31 (2015), 715-725. doi: 10.3109/02656736.2015.1058429 |
[25] | M. Mohammadpour, B. Firoozabadi, Numerical study of the effect of vascular bed on heat transfer during high intensity focused ultrasound (HIFU) ablation of the liver tumor, J. Therm. Biol., 86 (2019), 102431. |
[26] | A. Andreozzi, M. Iasiello, P. A. Netti, A thermoporoelastic model for fluid transport in tumour tissues, J. R Soc. Interf., 16 (2019), 20190030. |
[27] | A. Andreozzi, M. Iasiello, P. A. Netti, Effects of pulsating heat source on interstitial fluid transport in tumour tissues, J. R Soc. Interf., 17 (2020), 20200612. |
[28] | M. Iasiello, A. Andreozzi, N. Bianco, K. Vafai, The porous media theory applied to radiofrequency catheter ablation, Int. J. Numer. Methods Heat Fluid Flow, 30 (2019), 2669-2681. doi: 10.1108/HFF-11-2018-0707 |
[29] | Y. Salazar, R. Bragos, O. Casas, J. Cinca, J. Rosell, Transmural versus nontransmural in situ electrical impedance spectrum for healthy, ischemic, and healed myocardium, IEEE Trans. Biomed. Eng., 51 (2004), 1421-1427. |
[30] | M. Qiu, A. Singh, D. Wang, J. Qu, M. Swihart, H. Zhang, P. N. Prasad, Biocompatible and biodegradable inorganic nanostructures for nanomedicine: Silicon and black phosphorus, Nano Today, 25 (2019), 135-155. doi: 10.1016/j.nantod.2019.02.012 |
[31] | Z. Xie, T. Fan, J. An, W. Choi, Y. Duo, Y. Ge, et al., Emerging combination strategies with phototherapy in cancer nanomedicine, Chem. Soc. Rev., 2020 Jun 22. |
[32] | M. Luo, T. Fan, Y. Zhou, H. Zhang, L. Mei, 2D black phosphorus-based biomedical applications, Adv. Funct. Mater., 29 (2019), 1808306. |
[33] | A. Andreozzi, L. Brunese, M. Iasielllo, C. Tucci, G. P. Vanoli, Modeling heat transfer in tumors: A review of thermal therapies, Ann. Biomed. Eng., 47 (2019), 676-693. doi: 10.1007/s10439-018-02177-x |