Global stability for an SEI model of infectious disease with age structure and immigration of infecteds

  • Received: 01 May 2015 Accepted: 29 June 2018 Published: 25 December 2015
  • MSC : Primary: 34K20, 92D30.

  • We study a model of disease transmission with continuous age-structure for latentlyinfected individuals and for infectious individuals and with immigration of new individualsinto the susceptible, latent and infectious classes. The model is very appropriate for tuberculosis.A Lyapunov functional is used to show that the unique endemic equilibrium is globally stablefor all parameter values.

    Citation: C. Connell McCluskey. Global stability for an SEI model of infectious disease with age structure and immigration of infecteds[J]. Mathematical Biosciences and Engineering, 2016, 13(2): 381-400. doi: 10.3934/mbe.2015008

    Related Papers:

    [1] Yicang Zhou, Zhien Ma . Global stability of a class of discrete age-structured SIS models with immigration. Mathematical Biosciences and Engineering, 2009, 6(2): 409-425. doi: 10.3934/mbe.2009.6.409
    [2] Suxia Zhang, Hongbin Guo, Robert Smith? . Dynamical analysis for a hepatitis B transmission model with immigration and infection age. Mathematical Biosciences and Engineering, 2018, 15(6): 1291-1313. doi: 10.3934/mbe.2018060
    [3] C. Connell McCluskey . Global stability for an SEI epidemiological model with continuous age-structure in the exposed and infectious classes. Mathematical Biosciences and Engineering, 2012, 9(4): 819-841. doi: 10.3934/mbe.2012.9.819
    [4] Andrey V. Melnik, Andrei Korobeinikov . Lyapunov functions and global stability for SIR and SEIR models withage-dependent susceptibility. Mathematical Biosciences and Engineering, 2013, 10(2): 369-378. doi: 10.3934/mbe.2013.10.369
    [5] Abdennasser Chekroun, Mohammed Nor Frioui, Toshikazu Kuniya, Tarik Mohammed Touaoula . Global stability of an age-structured epidemic model with general Lyapunov functional. Mathematical Biosciences and Engineering, 2019, 16(3): 1525-1553. doi: 10.3934/mbe.2019073
    [6] Lu Gao, Yuanshun Tan, Jin Yang, Changcheng Xiang . Dynamic analysis of an age structure model for oncolytic virus therapy. Mathematical Biosciences and Engineering, 2023, 20(2): 3301-3323. doi: 10.3934/mbe.2023155
    [7] Jinliang Wang, Ran Zhang, Toshikazu Kuniya . A note on dynamics of an age-of-infection cholera model. Mathematical Biosciences and Engineering, 2016, 13(1): 227-247. doi: 10.3934/mbe.2016.13.227
    [8] Gang Huang, Edoardo Beretta, Yasuhiro Takeuchi . Global stability for epidemic model with constant latency and infectious periods. Mathematical Biosciences and Engineering, 2012, 9(2): 297-312. doi: 10.3934/mbe.2012.9.297
    [9] Jianxin Yang, Zhipeng Qiu, Xue-Zhi Li . Global stability of an age-structured cholera model. Mathematical Biosciences and Engineering, 2014, 11(3): 641-665. doi: 10.3934/mbe.2014.11.641
    [10] Miller Cerón Gómez, Felipe Alves Rubio, Eduardo Ibarguen Mondragón . Qualitative analysis of generalized multistage epidemic model with immigration. Mathematical Biosciences and Engineering, 2023, 20(9): 15765-15780. doi: 10.3934/mbe.2023702
  • We study a model of disease transmission with continuous age-structure for latentlyinfected individuals and for infectious individuals and with immigration of new individualsinto the susceptible, latent and infectious classes. The model is very appropriate for tuberculosis.A Lyapunov functional is used to show that the unique endemic equilibrium is globally stablefor all parameter values.


    [1] Math. Biosci., 171 (2001), 143-154.
    [2] SIAM J. Appl. Math., 73 (2013), 572-593.
    [3] SIAM J. Appl. Math., 61 (2000), 803-833.
    [4] Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), 2413-2430.
    [5] Math. Biosci. Eng., 8 (2011), 695-709.
    [6] Elect. J. Diff. Eqns., 2015 (2015), 1-10.
    [7] Proc. R. Soc. London, Ser. A, 115 (1927), 700-721.
    [8] Math. Biosci. Eng., 1 (2004), 57-60.
    [9] SIAM J. Appl. Math., 73 (2013), 1058-1095.
    [10] Applicable Analysis, 89 (2010), 1109-1140.
    [11] Nonlinear Anal. RWA, 11 (2010), 55-59.
    [12] Math. Biosci. Eng., 9 (2012), 819-841.
    [13] J. Dynam. Differential Equations, 16 (2004), 139-166.
    [14] Math. Biosci. and Eng., 5 (2008), 389-402.
    [15] Math. Biosci. Eng., 11 (2014), 1175-1180.
    [16] Appl. Math. Comput., 243 (2014), 684-689.
    [17] Amer. Math. Soc., Providence, 2011.
    [18] SIAM J. Appl. Math., 53 (1993), 1447-1479.
    [19] J. Theoret. Biol., 300 (2012), 100-109.
    [20] Marcel Dekker, New York, 1985.
  • This article has been cited by:

    1. Yuexia Zhang, Ziyang Chen, SETQR Propagation Model for Social Networks, 2019, 7, 2169-3536, 127533, 10.1109/ACCESS.2019.2939150
    2. Soufiane Bentout, Yuming Chen, Salih Djilali, Global Dynamics of an SEIR Model with Two Age Structures and a Nonlinear Incidence, 2021, 171, 0167-8019, 10.1007/s10440-020-00369-z
    3. Liu Yeling, Wang Jing, 2020, SIR Infectious Disease Model Based on Age Structure and Constant Migration Rate and its Dynamics Properties, 978-1-7281-8571-2, 158, 10.1109/ICPHDS51617.2020.00039
    4. Gang Huang, Chenguang Nie, Yueping Dong, Global stability for an SEI model of infectious diseases with immigration and age structure in susceptibility, 2019, 12, 1793-5245, 1950042, 10.1142/S1793524519500426
    5. D. Seethalakshmi, S. Balamuralitharan, A. Govindarajan, 2019, 2112, 0094-243X, 020035, 10.1063/1.5112220
    6. Reem M. Almarashi, C. Connell McCluskey, The effect of immigration of infectives on disease-free equilibria, 2019, 79, 0303-6812, 1015, 10.1007/s00285-019-01387-8
    7. Suxia Zhang, Hongbin Guo, Global analysis of age-structured multi-stage epidemic models for infectious diseases, 2018, 337, 00963003, 214, 10.1016/j.amc.2018.05.020
    8. Lili Liu, Xiaomei Feng, A multigroup SEIR epidemic model with age-dependent latency and relapse, 2018, 41, 01704214, 6814, 10.1002/mma.5193
    9. Yuji Li, Rui Xu, Jiazhe Lin, The stability analysis of an epidemic model with saturating incidence and age-structure in the exposed and infectious classes, 2018, 2018, 1687-1847, 10.1186/s13662-018-1635-6
    10. Khalid Hattaf, Yu Yang, Global dynamics of an age-structured viral infection model with general incidence function and absorption, 2018, 11, 1793-5245, 1850065, 10.1142/S1793524518500651
    11. Qianqian Cui, Qinghui Du, Li Wang, Fotios Georgiades, Global Dynamics of a Generalized SIRS Epidemic Model with Constant Immigration, 2020, 2020, 1563-5147, 1, 10.1155/2020/7845390
    12. Lili Liu, Xinzhi Ren, Zhen Jin, Threshold dynamical analysis on a class of age-structured tuberculosis model with immigration of population, 2017, 2017, 1687-1847, 10.1186/s13662-017-1295-y
    13. Jiazhe Lin, Rui Xu, Xiaohong Tian, Global dynamics of an age-structured cholera model with both human-to-human and environment-to-human transmissions and saturation incidence, 2018, 63, 0307904X, 688, 10.1016/j.apm.2018.07.013
    14. Ran Zhang, Dan Li, Shengqiang Liu, GLOBAL ANALYSIS OF AN AGE-STRUCTURED SEIR MODEL WITH IMMIGRATION OF POPULATION AND NONLINEAR INCIDENCE RATE, 2019, 9, 2156-907X, 1470, 10.11948/2156-907X.20180281
    15. Connell McCluskey, Lyapunov functions for disease models with immigration of infected hosts, 2020, 0, 1553-524X, 0, 10.3934/dcdsb.2020296
    16. Chao Liu, Peng Chen, Qiyu Jia, Lora Cheung, Effects of Media Coverage on Global Stability Analysis and Optimal Control of an Age-Structured Epidemic Model with Multi-Staged Progression, 2022, 10, 2227-7390, 2712, 10.3390/math10152712
    17. Xin Jiang, Global Dynamics for an Age-Structured Cholera Infection Model with General Infection Rates, 2021, 9, 2227-7390, 2993, 10.3390/math9232993
    18. Suxia Zhang, Yanna Liu, Hui Cao, Bifurcation analysis of an age‐structured epidemic model with two staged‐progressions, 2021, 44, 0170-4214, 11482, 10.1002/mma.7508
    19. Lili Liu, Jian Zhang, Yazhi Li, Xinzhi Ren, An age-structured tuberculosis model with information and immigration: Stability and simulation study, 2023, 16, 1793-5245, 10.1142/S1793524522500760
    20. Wu Jing, Haiyan Kang, An effective ISDPR rumor propagation model on complex networks, 2022, 37, 0884-8173, 11188, 10.1002/int.23038
    21. Stéphane Yanick Tchoumi, Herieth Rwezaura, Mamadou Lamine Diagne, Gilberto González-Parra, Jean Tchuenche, Impact of Infective Immigrants on COVID-19 Dynamics, 2022, 27, 2297-8747, 11, 10.3390/mca27010011
    22. Xin Jiang, Ran Zhang, Global dynamics on a class of age-infection structured cholera model with immigration, 2023, 14173875, 1, 10.14232/ejqtde.2023.1.6
    23. Xiaogang Liu, Yuming Chen, Xiaomin Li, Jianquan Li, Global stability of latency-age/stage-structured epidemic models with differential infectivity, 2023, 86, 0303-6812, 10.1007/s00285-023-01918-4
    24. Fatima Zohra Hathout, Tarik Mohammed Touaoula, Salih Djilali, Efficiency of Protection in the Presence of Immigration Process for an Age-Structured Epidemiological Model, 2023, 185, 0167-8019, 10.1007/s10440-023-00572-8
    25. Jianquan Li, Yuming Chen, Xiaojian Xi, Nini Xue, An analytical approach to applying the Lyapunov direct method to an epidemic model with age and stage structures, 2025, 84, 14681218, 104312, 10.1016/j.nonrwa.2024.104312
  • Reader Comments
  • © 2016 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3527) PDF downloads(742) Cited by(25)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog