Research article

An efficient algorithm based on the multi-wavelet Galerkin method for telegraph equation

  • Received: 22 August 2020 Accepted: 29 September 2020 Published: 16 November 2020
  • MSC : 35L20, 65M60, 65T60

  • We employ the multi-wavelet Galerkin method for the numerical solution of the telegraph equation with initial and boundary conditions. The problem becomes a sparse system of linear equations and the GMRES method is used to solve this system. The advantages of this scheme are complexity reduction, simplicity, and less grid selection. The convergence analysis is investigated and numerical experiments guarantee it. To show the ability of the method, we compare it with other methods and it can be confirmed that our results are better than others.

    Citation: Haifa Bin Jebreen, Yurilev Chalco Cano, Ioannis Dassios. An efficient algorithm based on the multi-wavelet Galerkin method for telegraph equation[J]. AIMS Mathematics, 2021, 6(2): 1296-1308. doi: 10.3934/math.2021080

    Related Papers:

  • We employ the multi-wavelet Galerkin method for the numerical solution of the telegraph equation with initial and boundary conditions. The problem becomes a sparse system of linear equations and the GMRES method is used to solve this system. The advantages of this scheme are complexity reduction, simplicity, and less grid selection. The convergence analysis is investigated and numerical experiments guarantee it. To show the ability of the method, we compare it with other methods and it can be confirmed that our results are better than others.


    加载中


    [1] B. Alpert, G. Beylkin, D. Gines, L. Vozovoi, Adaptive solution of partial differential equations in multi-wavelet bases, J. Comput. Phys., 182 (2002), 149-190. doi: 10.1006/jcph.2002.7160
    [2] B. Alpert, G. Beylkin, R. R. Coifman, V. Rokhlin, Wavelet-like bases for the fast solution of second-kind integral equations, SIAM J. Sci. Statist. Comput., 14 (1993), 159-184. doi: 10.1137/0914010
    [3] A. Akgül, D. Grow, Existence of unique solutions to the Telegraph equation in binary reproducing kernel Hilbert spaces, Differ. Equ. Dyn. Syst., 28 (2020), 715-744. doi: 10.1007/s12591-019-00453-3
    [4] B. Boutarfa, I. Dassios, A stability result for a network of two triple junctions on the plane, Math. Method Appl. Sci., 40 (2017), 6076-6084. doi: 10.1002/mma.3767
    [5] I. Dassios, F. Font, Solution method for the time-fractional hyperbolic heat equation, Math. Method Appl. Sci., (2020).
    [6] I. Dassios, Stability of bounded dynamical networks with symmetry, Symmetry, 10 (2018), 121.
    [7] I. Dassios, Stability of basic steady states of networks in bounded domains, Comput. Math. Appl., 70 (2015), 2177-2196. doi: 10.1016/j.camwa.2015.08.011
    [8] M. Dehghan, A. Ghesmati, Solution of the second order one-dimentional hyperbolic telegraph equation by using the dual reciprocity boundary integral equation (DRBIE) method, Eng. Anal. Boundary Elem., 34 (2010), 51-59. doi: 10.1016/j.enganabound.2009.07.002
    [9] M. Dehghan, M. Lakestani, The use of Chebyshev cardinal functions for solution of the secondorder one-dimensional telegraph equation, Numer. Math. Part. DE., 25 (2009), 931-938. doi: 10.1002/num.20382
    [10] M. Dehghan, B. N. Saray, M. Lakestani, Mixed finite difference and Galerkin methods for solving Burgers equations using interpolating scaling functions, Math. Method Appl. Sci., 37 (2014), 894- 912. doi: 10.1002/mma.2847
    [11] M. Dehghan, A. Shokri, A Numerical method for solving the hyperbolic telegraph equation, Numer. Methods Partial Differ. Equ., 24 (2008), 1080-1093. doi: 10.1002/num.20306
    [12] M. Dosti, A. Nazemi, Quartic B-spline collocation method for solving one-dimensional hyperbolic telegraph equation, J. Inf. Comput. Sci., 7 (2012), 083-090.
    [13] M. S. El-Azab, M. El-Gamel, A numerical algorithm for the solution of telegraph equations, Appl. Math. Comput., 190 (2007), 757-764.
    [14] A. Guezane-Lakoud, J. Dabas, D. Bahuguna, Existence and uniqueness of generalized solutions to a Telegraph equation with an integral boundary condition via Galerkin's method, IJMMS., 2011 (2011), 1-14.
    [15] M. H. Heydari, M. R. Hooshmandasl, F. M. Maalek Ghaini, A new approach of the Chebyshev wavelets method for partial differential equations with boundary conditions of the telegraph type, Appl. Math. Model., 38 (2014), 1597-1606.
    [16] N. Hovhannisyan, S. Müller, R. Schäfer, Adaptive multiresolution discontinuous Galerkin schemes for conservation laws, Math. Comp., 83 (2014), 113-151.
    [17] R. Jiwari, Lagrange interpolation and modified cubic B-spline differential quadrature methods for solving hyperbolic partial differential equations with Dirichlet and Neumann boundary conditions, Comput. Phys. Common., 193 (2015), 55-65. doi: 10.1016/j.cpc.2015.03.021
    [18] R. Jiwari, S. Pandit, R. C. Mittal, A differential quadrature algorithm to solve the two dimensional linear hyperbolic telegraph equation with Dirichlet and Neumann boundary conditions, Appl. Math. Comput., 218 (2012), 7279-7294.
    [19] M. Lakestani, B. N. Saray, Numerical solution of telegraph equation using interpolating scaling functions, Comput. Math. Appl., 60 (2010), 1964-1972. doi: 10.1016/j.camwa.2010.07.030
    [20] R. C. Mittal, R. Bhatia, Numerical solution of second order one dimensional hyperbolic telegraph equation by cubic B-spline collocation method, Appl. Math. Comput., 220 (2013), 496-506.
    [21] W. Qu, A high accuracy method for long-time evolution of acoustic wave equation, Appl. Math. Lett., 98 (2019), 135-141. doi: 10.1016/j.aml.2019.06.010
    [22] B. N. Saray, An efficient algorithm for solving Volterra integro-differential equations based on Alpert's multi-wavelets Galerkin method, J. Comput. Appl, Math., 348 (2019), 453-465. doi: 10.1016/j.cam.2018.09.016
    [23] B. N. Saray, M. Lakestani, C. Cattani, Evaluation of mixed Crank-Nicolson scheme and Tau method for the solution of Klein-Gordon equation, Appl. Math. Comput., 331 (2018), 169-181.
    [24] B. N. Saray, M. Lakestani, M. Razzaghi, Sparse representation of system of Fredholm integrodifferential equations by using alpert multi-wavelets, Comp. Math. Math. Phys., 55 (2015), 1468- 1483. doi: 10.1134/S0965542515090031
    [25] F. Ureña, L. Gavete, J. J. Benito, A. Garcia, A. M. Vargas, Solving the telegraph equation in 2-D and 3-D using generalized finite difference method (GFDM), Eng. Anal. Bound. Elem., 112 (2020), 13-24. doi: 10.1016/j.enganabound.2019.11.010
    [26] Y. Zhou, W. Qu, Y. Gu, H. Gao, A hybrid meshless method for the solution of the second order hyperbolic telegraph equation in two space dimensions, Eng. Anal. Bound. Elem., 115 (2020), 21-27. doi: 10.1016/j.enganabound.2020.02.015
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3591) PDF downloads(154) Cited by(7)

Article outline

Figures and Tables

Figures(4)  /  Tables(5)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog