Research article

On the characterization of Pythagorean fuzzy subgroups

  • Pythagorean fuzzy environment is the modern tool for handling uncertainty in many decisions making problems. In this paper, we represent the notion of Pythagorean fuzzy subgroup (PFSG) as a generalization of intuitionistic fuzzy subgroup. We investigate various properties of our proposed fuzzy subgroup. Also, we introduce Pythagorean fuzzy coset and Pythagorean fuzzy normal subgroup (PFNSG) with their properties. Further, we define the notion of Pythagorean fuzzy level subgroup and establish related properties of it. Finally, we discuss the effect of group homomorphism on Pythagorean fuzzy subgroup.

    Citation: Supriya Bhunia, Ganesh Ghorai, Qin Xin. On the characterization of Pythagorean fuzzy subgroups[J]. AIMS Mathematics, 2021, 6(1): 962-978. doi: 10.3934/math.2021058

    Related Papers:

    [1] Mohammed Ahmed Alomair, Ali Muhib . On the oscillation of fourth-order canonical differential equation with several delays. AIMS Mathematics, 2024, 9(8): 19997-20013. doi: 10.3934/math.2024975
    [2] H. Salah, M. Anis, C. Cesarano, S. S. Askar, A. M. Alshamrani, E. M. Elabbasy . Fourth-order differential equations with neutral delay: Investigation of monotonic and oscillatory features. AIMS Mathematics, 2024, 9(12): 34224-34247. doi: 10.3934/math.20241630
    [3] Osama Moaaz, Wedad Albalawi . Differential equations of the neutral delay type: More efficient conditions for oscillation. AIMS Mathematics, 2023, 8(6): 12729-12750. doi: 10.3934/math.2023641
    [4] Abdelkader Moumen, Amin Benaissa Cherif, Fatima Zohra Ladrani, Keltoum Bouhali, Mohamed Bouye . Fourth-order neutral dynamic equations oscillate on timescales with different arguments. AIMS Mathematics, 2024, 9(9): 24576-24589. doi: 10.3934/math.20241197
    [5] Fahd Masood, Osama Moaaz, Shyam Sundar Santra, U. Fernandez-Gamiz, Hamdy A. El-Metwally . Oscillation theorems for fourth-order quasi-linear delay differential equations. AIMS Mathematics, 2023, 8(7): 16291-16307. doi: 10.3934/math.2023834
    [6] Clemente Cesarano, Osama Moaaz, Belgees Qaraad, Ali Muhib . Oscillatory and asymptotic properties of higher-order quasilinear neutral differential equations. AIMS Mathematics, 2021, 6(10): 11124-11138. doi: 10.3934/math.2021646
    [7] Maryam AlKandari . Nonlinear differential equations with neutral term: Asymptotic behavior of solutions. AIMS Mathematics, 2024, 9(12): 33649-33661. doi: 10.3934/math.20241606
    [8] Maged Alkilayh . Nonlinear neutral differential equations of second-order: Oscillatory properties. AIMS Mathematics, 2025, 10(1): 1589-1601. doi: 10.3934/math.2025073
    [9] Bouharket Bendouma, Fatima Zohra Ladrani, Keltoum Bouhali, Ahmed Hammoudi, Loay Alkhalifa . Solution-tube and existence results for fourth-order differential equations system. AIMS Mathematics, 2024, 9(11): 32831-32848. doi: 10.3934/math.20241571
    [10] Ali Muhib, Hammad Alotaibi, Omar Bazighifan, Kamsing Nonlaopon . Oscillation theorems of solution of second-order neutral differential equations. AIMS Mathematics, 2021, 6(11): 12771-12779. doi: 10.3934/math.2021737
  • Pythagorean fuzzy environment is the modern tool for handling uncertainty in many decisions making problems. In this paper, we represent the notion of Pythagorean fuzzy subgroup (PFSG) as a generalization of intuitionistic fuzzy subgroup. We investigate various properties of our proposed fuzzy subgroup. Also, we introduce Pythagorean fuzzy coset and Pythagorean fuzzy normal subgroup (PFNSG) with their properties. Further, we define the notion of Pythagorean fuzzy level subgroup and establish related properties of it. Finally, we discuss the effect of group homomorphism on Pythagorean fuzzy subgroup.


    In this article, we study the oscillatory behavior of the fourth-order neutral nonlinear differential equation of the form

    {(r(t)Φp1[w(t)])+q(t)Φp2(u(ϑ(t)))=0,r(t)>0, r(t)0, tt0>0, (1.1)

    where w(t):=u(t)+a(t)u(τ(t)) and the first term means the p-Laplace type operator (1<p<). The main results are obtained under the following conditions:

    L1: Φpi[s]=|s|pi2s, i=1,2,

    L2: rC[t0,) and under the condition

    t01r1/(p11)(s)ds=. (1.2)

    L3: a,qC[t0,), q(t)>0, 0a(t)<a0<, τ,ϑC[t0,), τ(t)t, limtτ(t)=limtϑ(t)=

    By a solution of (1.1) we mean a function u C3[tu,), tut0, which has the property r(t)(w(t))p11C1[tu,), and satisfies (1.1) on [tu,). We assume that (1.1) possesses such a solution. A solution of (1.1) is called oscillatory if it has arbitrarily large zeros on [tu,), and otherwise it is called to be nonoscillatory. (1.1) is said to be oscillatory if all its solutions are oscillatory.

    We point out that delay differential equations have applications in dynamical systems, optimization, and in the mathematical modeling of engineering problems, such as electrical power systems, control systems, networks, materials, see [1]. The p-Laplace equations have some significant applications in elasticity theory and continuum mechanics.

    During the past few years, there has been constant interest to study the asymptotic properties for oscillation of differential equations with p-Laplacian like operator in the canonical case and the noncanonical case, see [2,3,4,11] and the numerical solution of the neutral delay differential equations, see [5,6,7]. The oscillatory properties of differential equations are fairly well studied by authors in [16,17,18,19,20,21,22,23,24,25,26,27]. We collect some relevant facts and auxiliary results from the existing literature.

    Liu et al. [4] studied the oscillation of even-order half-linear functional differential equations with damping of the form

    {(r(t)Φ(y(n1)(t)))+a(t)Φ(y(n1)(t))+q(t)Φ(y(g(t)))=0,Φ=|s|p2s, tt0>0,

    where n is even. This time, the authors used comparison method with second order equations.

    The authors in [9,10] have established sufficient conditions for the oscillation of the solutions of

    {(r(t)|y(n1)(t)|p2y(n1)(t))+ji=1qi(t)g(y(ϑi(t)))=0,j1, tt0>0,

    where n is even and p>1 is a real number, in the case where ϑi(t)υ (with rC1((0,),R), qiC([0,),R), i=1,2,..,j).

    We point out that Li et al. [3] using the Riccati transformation together with integral averaging technique, focuses on the oscillation of equation

    {(r(t)|w(t)|p2w(t))+ji=1qi(t)|y(δi(t))|p2y(δi(t))=0,1<p<, , tt0>0.

    Park et al. [8] have obtained sufficient conditions for oscillation of solutions of

    {(r(t)|y(n1)(t)|p2y(n1)(t))+q(t)g(y(δ(t)))=0,1<p<, , tt0>0.

    As we already mentioned in the Introduction, our aim here is complement results in [8,9,10]. For this purpose we discussed briefly these results.

    In this paper, we obtain some new oscillation criteria for (1.1). The paper is organized as follows. In the next sections, we will mention some auxiliary lemmas, also, we will use the generalized Riccati transformation technique to give some sufficient conditions for the oscillation of (1.1), and we will give some examples to illustrate the main results.

    For convenience, we denote

    A(t)=q(t)(1a0)p21Mp1p2(ϑ(t)), B(t)=(p11)εϑ2(t)ζϑ(t)r1/(p11)(t), ϕ1(t)=tA(s)ds,R1(t):=(p11)μt22r1/(p11)(t),ξ(t):=q(t)(1a0)p21Mp2p11ε1(ϑ(t)t)3(p21),η(t):=(1a0)p2/p1Mp2/(p12)2t(1r(δ)δq(s)ϑp21(s)sp21ds)1/(p11)dδ,ξ(t)=tξ(s)ds, η(t)=tη(s)ds,

    for some μ(0,1) and every M1,M2 are positive constants.

    Definition 1. A sequence of functions {δn(t)}n=0 and {σn(t)}n=0 as

    δ0(t)=ξ(t), and σ0(t)=η(t),δn(t)=δ0(t)+tR1(t)δp1/(p11)n1(s)ds, n>1σn(t)=σ0(t)+tσp1/(p11)n1(s)ds, n>1. (2.1)

    We see by induction that δn(t)δn+1(t) and σn(t)σn+1(t) for tt0, n>1.

    In order to discuss our main results, we need the following lemmas:

    Lemma 2.1. [12] If the function w satisfies w(i)(ν)>0, i=0,1,...,n, and w(n+1)(ν)<0  eventually. Then, for every ε1(0,1), w(ν)/w(ν)ε1ν/n eventually.

    Lemma 2.2. [13] Let u(t) be a positive and n-times differentiable function on an interval [T,) with its nth derivative u(n)(t) non-positive on [T,) and not identically zero on any interval of the form [T,), TT and u(n1)(t)u(n)(t)0, ttu then there exist constants θ, 0<θ<1  and ε>0 such that

    u(θt)εtn2u(n1)(t),

    for all sufficient large t.

    Lemma 2.3 [14] Let uCn([t0,),(0,)). Assume that u(n)(t) is of fixed sign and not identically zero on [t0,) and that there exists a t1t0 such that u(n1)(t)u(n)(t)0 for all tt1. If limtu(t)0, then for every μ(0,1) there exists tμt1 such that

    u(t)μ(n1)!tn1|u(n1)(t)| for ttμ.

    Lemma 2.4. [15] Assume that (1.2) holds and u is an eventually positive solution of (1.1). Then, (r(t)(w(t))p11)<0 and there are the following two possible cases eventually:

    (G1) w(k)(t)>0, k=1,2,3,(G2) w(k)(t)>0, k=1,3, and w(t)<0.

    Theorem 2.1. Assume that

    liminft1ϕ1(t)tB(s)ϕp1(p11)1(s)ds>p11pp1(p11)1. (2.2)

    Then (1.1) is oscillatory.

    proof. Assume that u be an eventually positive solution of (1.1). Then, there exists a t1t0 such that u(t)>0, u(τ(t))>0 and u(ϑ(t))>0 for tt1. Since r(t)>0, we have

    w(t)>0, w(t)>0, w(t)>0, w(4)(t)<0 and (r(t)(w(t))p11)0, (2.3)

    for tt1. From definition of w, we get

    u(t)w(t)a0u(τ(t))w(t)a0w(τ(t))(1a0)w(t),

    which with (1.1) gives

    (r(t)(w(t))p11)q(t)(1a0)p21wp21(ϑ(t)). (2.4)

    Define

    ϖ(t):=r(t)(w(t))p11wp11(ζϑ(t)). (2.5)

    for some a constant ζ(0,1). By differentiating and using (2.4), we obtain

    ϖ(t)q(t)(1a0)p21wp21(ϑ(t)).wp11(ζϑ(t))(p11)r(t)(w(t))p11w(ζϑ(t))ζϑ(t)wp1(ζϑ(t)).

    From Lemma 2.2, there exist constant ε>0, we have

    ϖ(t)q(t)(1a0)p21wp2p1(ϑ(t))(p11)r(t)(w(t))p11εϑ2(t)w(ϑ(t))ζϑ(t)wp1(ζϑ(t)).

    Which is

    ϖ(t)q(t)(1a0)p21wp2p1(ϑ(t))(p11)εr(t)ϑ2(t)ζϑ(t)(w(t))p1wp1(ζϑ(t)),

    by using (2.5) we have

    ϖ(t)q(t)(1a0)p21wp2p1(ϑ(t))(p11)εϑ2(t)ζϑ(t)r1/(p11)(t)ϖp1/(p11)(t). (2.6)

    Since w(t)>0, there exist a t2t1 and a constant M>0 such that

    w(t)>M.

    Then, (2.6), turns to

    ϖ(t)q(t)(1a0)p21Mp2p1(ϑ(t))(p11)εϑ2(t)ζϑ(t)r1/(p11)(t)ϖp1/(p11)(t),

    that is

    ϖ(t)+A(t)+B(t)ϖp1/(p11)(t)0.

    Integrating the above inequality from t to l, we get

    ϖ(l)ϖ(t)+ltA(s)ds+ltB(s)ϖp1/(p11)(s)ds0.

    Letting l and using ϖ>0 and ϖ<0, we have

    ϖ(t)ϕ1(t)+tB(s)ϖp1/(p11)(s)ds.

    This implies

    ϖ(t)ϕ1(t)1+1ϕ1(t)tB(s)ϕp1/(p11)1(s)(ϖ(s)ϕ1(s))p1/(p11)ds. (2.7)

    Let λ=inftTϖ(t)/ϕ1(t) then obviously λ1. Thus, from (2.2) and (2.7) we see that

    λ1+(p11)(λp1)p1/(p11)

    or

    λp11p1+(p11)p1(λp1)p1/(p11),

    which contradicts the admissible value of λ1 and (p11)>0.

    Therefore, the proof is complete.

    Theorem 2.2. Assume that

    liminft1ξ(t)tR1(s)ξp1/(p11)(s)ds>(p11)pp1/(p11)1 (2.8)

    and

    liminft1η(t)t0η2(s)ds>14. (2.9)

    Then (1.1) is oscillatory.

    proof. Assume to the contrary that (1.1) has a nonoscillatory solution in [t0,). Without loss of generality, we let u be an eventually positive solution of (1.1). Then, there exists a t1t0 such that u(t)>0, u(τ(t))>0 and u(ϑ(t))>0 for tt1. From Lemma 2.4 there is two cases (G1) and (G2).

    For case (G1). Define

    ω(t):=r(t)(w(t))p11wp11(t).

    By differentiating ω and using (2.4), we obtain

    ω(t)q(t)(1a0)p21wp21(ϑ(t))wp11(t)(p11)r(t)(w(t))p11wp1(t)w(t). (2.10)

    From Lemma 2.1, we get

    w(t)w(t)3ε1t.

    Integrating again from t to ϑ(t), we find

    w(ϑ(t))w(t)ε1ϑ3(t)t3. (2.11)

    It follows from Lemma 2.3 that

    w(t)μ12t2w(t), (2.12)

    for all μ1(0,1) and every sufficiently large t. Since w(t)>0, there exist a t2t1 and a constant M>0 such that

    w(t)>M, (2.13)

    for tt2. Thus, by (2.10), (2.11), (2.12) and (2.13), we get

    ω(t)+q(t)(1a0)p21Mp2p11ε1(ϑ(t)t)3(p21)+(p11)μt22r1/(p11)(t)ωp1/(p11)(t)0,

    that is

    ω(t)+ξ(t)+R1(t)ωp1/(p11)(t)0. (2.14)

    Integrating (2.14) from t to l, we get

    ω(l)ω(t)+ltξ(s)ds+ltR1(s)ωp1/(p11)(s)ds0.

    Letting l and using ω>0 and ω<0, we have

    ω(t)ξ(t)+tR1(s)ωp1/(p11)(s)ds. (2.15)

    This implies

    ω(t)ξ(t)1+1ξ(t)tR1(s)ξp1/(p11)(s)(ω(s)ξ(s))p1/(p11)ds. (2.16)

    Let λ=inftTω(t)/ξ(t) then obviously λ1. Thus, from (2.8) and (2.16) we see that

    λ1+(p11)(λp1)p1/(p11)

    or

    λp11p1+(p11)p1(λp1)p1/(p11),

    which contradicts the admissible value of λ1 and (p11)>0.

    For case (G2). Integrating (2.4) from t to m, we obtain

    r(m)(w(m))p11r(t)(w(t))p11mtq(s)(1a0)p21wp21(ϑ(s))ds. (2.17)

    From Lemma 2.1, we get that

    w(t)ε1tw(t) and hence w(ϑ(t))ε1ϑ(t)tw(t). (2.18)

    For (2.17), letting mand using (2.18), we see that

    r(t)(w(t))p11ε1(1a0)p21wp21(t)tq(s)ϑp21(s)sp21ds.

    Integrating this inequality again from t to , we get

    w(t)ε1(1a0)p2/p1wp2/p1(t)t(1r(δ)δq(s)ϑp21(s)sp21ds)1/(p11)dδ, (2.19)

    for all ε1(0,1). Define

    y(t)=w(t)w(t).

    By differentiating y and using (2.13) and (2.19), we find

    y(t)=w(t)w(t)(w(t)w(t))2y2(t)(1a0)p2/p1M(p2/p1)1t(1r(δ)δq(s)ϑp21(s)sp21ds)1/(p11)dδ, (2.20)

    hence

    y(t)+η(t)+y2(t)0. (2.21)

    The proof of the case where (G2) holds is the same as that of case (G1). Therefore, the proof is complete.

    Theorem 2.3. Let δn(t) and σn(t) be defined as in (2.1). If

    limsupt(μ1t36r1/(p11)(t))p11δn(t)>1 (2.22)

    and

    limsuptλtσn(t)>1, (2.23)

    for some n, then (1.1)is oscillatory.

    proof. Assume to the contrary that (1.1) has a nonoscillatory solution in [t0,). Without loss of generality, we let u be an eventually positive solution of (1.1). Then, there exists a t1t0 such that u(t)>0, u(τ(t))>0 and u(ϑ(t))>0 for tt1. From Lemma 2.4 there is two cases.

    In the case (G1), proceeding as in the proof of Theorem 2.2, we get that (2.12) holds. It follows from Lemma 2.3 that

    w(t)μ16t3w(t). (2.24)

    From definition of ω(t) and (2.24), we have

    1ω(t)=1r(t)(w(t)w(t))p111r(t)(μ16t3)p11.

    Thus,

    ω(t)(μ1t36r1/(p11)(t))p111.

    Therefore,

    limsuptω(t)(μ1t36r1/(p11)(t))p111,

    which contradicts (2.22).

    The proof of the case where (G2) holds is the same as that of case (G1). Therefore, the proof is complete.

    Corollary 2.1. Let δn(t) and σn(t) be defined as in (2.1). If

    t0ξ(t)exp(tt0R1(s)δ1/(p11)n(s)ds)dt= (2.25)

    and

    t0η(t)exp(tt0σ1/(p11)n(s)ds)dt=, (2.26)

    for some n, then (1.1) is oscillatory.

    proof. Assume to the contrary that (1.1) has a nonoscillatory solution in [t0,). Without loss of generality, we let u be an eventually positive solution of (1.1). Then, there exists a t1t0 such that u(t)>0, u(τ(t))>0 and u(ϑ(t))>0 for tt1. From Lemma 2.4 there is two cases (G1) and (G2).

    In the case (G1), proceeding as in the proof of Theorem 2, we get that (2.15) holds. It follows from (2.15) that ω(t)δ0(t).  Moreover, by induction we can also see that ω(t)δn(t) for tt0, n>1. Since the sequence {δn(t)}n=0 monotone increasing and bounded above, it converges to δ(t). Thus, by using Lebesgue's monotone convergence theorem, we see that

    δ(t)=limnδn(t)=tR1(t)δp1/(p11)(s)ds+δ0(t)

    and

    δ(t)=R1(t)δp1/(p11)(t)ξ(t). (2.27)

    Since δn(t)δ(t), it follows from (2.27) that

    δ(t)R1(t)δ1/(p11)n(t)δ(t)ξ(t).

    Hence, we get

    δ(t)exp(tTR1(s)δ1/(p11)n(s)ds)(δ(T)tTξ(s)exp(sTR1(δ)δ1/(p11)n(δ)dδ)ds).

    This implies

    tTξ(s)exp(sTR1(δ)δ1/(p11)n(δ)dδ)dsδ(T)<,

    which contradicts (2.25). The proof of the case where (G2) holds is the same as that of case (G1). Therefore, the proof is complete.

    Example 2.1. Consider the differential equation

    (u(t)+12u(t2))(4)+q0t4u(t3)=0,  (2.28)

    where q0>0 is a constant. Let p1=p2=2, r(t)=1, a(t)=1/2, τ(t)=t/2, ϑ(t)=t/3 and q(t)=q0/t4. Hence, it is easy to see that

    A(t)=q(t)(1a0)(p21)Mp2p1(ϑ(t))=q02t4, B(t)=(p11)εϑ2(t)ζϑ(t)r1/(p11)(t)=εt227

    and

    ϕ1(t)=q06t3,

    also, for some ε>0, we find

    liminft1ϕ1(t)tB(s)ϕp1/(p11)1(s)ds>(p11)pp1/(p11)1.liminft6εq0t3972tdss4>14q0>121.5ε.

    Hence, by Theorem 2.1, every solution of Eq (2.28) is oscillatory if q0>121.5ε.

    Example 2.2. Consider a differential equation

    (u(t)+a0u(τ0t))(n)+q0tnu(ϑ0t)=0, (2.29)

    where q0>0 is a constant. Note that p=2, t0=1, r(t)=1, a(t)=a0, τ(t)=τ0t, ϑ(t)=ϑ0t  and q(t)=q0/tn.

    Easily, we see that condition (2.8) holds and condition (2.9) satisfied.

    Hence, by Theorem 2.2, every solution of Eq (2.29) is oscillatory.

    Remark 2.1. Finally, we point out that continuing this line of work, we can have oscillatory results for a fourth order equation of the type:

    {(r(t)|y(t)|p12y(t))+a(t)f(y(t))+ji=1qi(t)|y(σi(t))|p22y(σi(t))=0,tt0, σi(t)t, j1,, 1<p2p1<.

    The paper is devoted to the study of oscillation of fourth-order differential equations with p-Laplacian like operators. New oscillation criteria are established by using a Riccati transformations, and they essentially improves the related contributions to the subject.

    Further, in the future work we get some Hille and Nehari type and Philos type oscillation criteria of (1.1) under the condition υ01r1/(p11)(s)ds<.

    The authors express their debt of gratitude to the editors and the anonymous referee for accurate reading of the manuscript and beneficial comments.

    The author declares that there is no competing interest.



    [1] L. A. Zadeh, Fuzzy sets, Inform. Contr., 8 (1965), 338-353.
    [2] A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl., 35 (1971), 512-517.
    [3] J. M. Anthony, H. Sherwood, Fuzzy groups redefined, J. Math. Anal. Appl., 69 (1979), 124-130.
    [4] J. M. Anthony, H. Sherwood, A characterization of fuzzy subgroups, Fuzzy Set. Syst., 7 (1982), 297-305. doi: 10.1016/0165-0114(82)90057-4
    [5] P. S. Das, Fuzzy groups and level subgroups, J. Math. Anal. Appl., 84 (1981), 264-269. doi: 10.1016/0022-247X(81)90164-5
    [6] F. P. Choudhury, A. B. Chakraborty, S. S. Khare, A note on fuzzy subgroups and fuzzy homomorphism, J. Math. Anal. Appl., 131 (1988), 537-553. doi: 10.1016/0022-247X(88)90224-7
    [7] V. N. Dixit, R. Kumar, N. Ajmal, Level subgroups and union of fuzzy subgroups, Fuzzy Set. Syst., 37 (1990), 359-371. doi: 10.1016/0165-0114(90)90032-2
    [8] R. Biswas, Fuzzy subgroups and anti-fuzzy subgroups, Fuzzy Set. Syst., 35 (1990), 121-124. doi: 10.1016/0165-0114(90)90025-2
    [9] N. Ajmal, A. S. Prajapati, Fuzzy cosets and fuzzy normal subgroups, Inform. Sciences, 64 (1992), 17-25. doi: 10.1016/0020-0255(92)90107-J
    [10] A. B. Chakraborty, S. S. Khare, Fuzzy homomorphism and algebraic structures, Fuzzy Set. Syst., 59 (1993), 211-221. doi: 10.1016/0165-0114(93)90201-R
    [11] N. P. Mukherjee, P. Bhattacharya, Fuzzy normal subgroups and fuzzy cosets, Inform. Sciences, 34 (1984), 225-239. doi: 10.1016/0020-0255(84)90050-1
    [12] N. P. Mukherjee, P. Bhattacharya, Fuzzy groups: some group-theoretic analogs, Inform. Sciences, 39 (1986), 247-267. doi: 10.1016/0020-0255(86)90039-3
    [13] P. Bhattacharya, Fuzzy subgroups: some characterizations. II, Inform. Sciences, 38 (1986), 293-297. doi: 10.1016/0020-0255(86)90028-9
    [14] M. Tarnauceanu, Classifying fuzzy normal subgroups of finite groups, Iran. J. Fuzzy Syst., 12 (2015), 107-115.
    [15] B. O. Onasanya, Review of some anti fuzzy properties of some fuzzy subgroups, Anal. Fuzzy Math. Inform., 11 (2016), 899-904.
    [16] U. Shuaib, M. Shaheryar, W. Asghar, On some characterizations of o-fuzzy subgroups, IJMCS, 13 (2018), 119-131.
    [17] U. Shuaib, M. Shaheryar, On some properties of o-anti fuzzy subgroups, IJMCS, 14 (2019), 215-230.
    [18] G. M. Addis, Fuzzy homomorphism theorems on groups, Korean J. Math., 26 (2018), 373-385.
    [19] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Set. Syst., 20 (1986), 87-96.
    [20] R. Biswas, Intuitionistic fuzzy subgroup, Mathematical Forum, 10 (1989), 39-44.
    [21] J. Zhan, Z. Tan, Intuitionistic M-fuzzy groups, Soochow J. Math., 30 (2004), 85-90.
    [22] S. Bhunia, G. Ghorai, A new approach to fuzzy group theory using (α, β)-pythagorean fuzzy sets, Song. J. Sci. Tech., In press.
    [23] R. A. Husban, A. R. Salleh, A. G. Ahmad, Complex intuitionistic fuzzy normal subgroup, IJPAM, 115 (2017), 199-210.
    [24] A. Solairaju, S. Mahalakshmi, Hesitant intuitionistic fuzzy soft groups, IJMCS, 118 (2018), 223-232.
    [25] R. R. Yager, Pythagorean fuzzy subsets, In: 2013 Joint IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), 2013, 36286152.
    [26] S. Naz, S. Ashraf, M. Akram, A novel approach to decision-making with Pythagorean fuzzy information, Mathematics, 6 (2018), 1-28.
    [27] M. Akram, S. Naz, A novel decision-making approach under complex pythagorean fuzzy environment, Math. Comput. Appl., 24 (2019), 1-33.
    [28] P. A. Ejegwa, Pythagorean fuzzy set and its applications in career placements based on academics performance using max-min-max composition, Complex Intell. Syst., 5 (2019), 165-175. doi: 10.1007/s40747-019-0091-6
    [29] X. Peng, Y. Yang, Some results for Pythagorean fuzzy sets, Int. J. Intell. Syst., 30 (2015), 1133-1160. doi: 10.1002/int.21738
    [30] X. Peng, Y. Yang, Fundamental properties of interval-valued Pythagorean fuzzy aggregation operators, Int. J. Intell. Syst., 31 (2016), 444-487. doi: 10.1002/int.21790
    [31] R. R. Yager, Properties and application of Pythagorean fuzzy sets, In: Imprecision and uncertainty in information representation and processing, Cham: Springer, 2016,119-136.
  • This article has been cited by:

    1. Omar Saber Qasim, Ahmed Entesar, Waleed Al-Hayani, Solving nonlinear differential equations using hybrid method between Lyapunov's artificial small parameter and continuous particle swarm optimization, 2021, 0, 2155-3297, 0, 10.3934/naco.2021001
    2. Fahd Masood, Osama Moaaz, Shyam Sundar Santra, U. Fernandez-Gamiz, Hamdy A. El-Metwally, Oscillation theorems for fourth-order quasi-linear delay differential equations, 2023, 8, 2473-6988, 16291, 10.3934/math.2023834
    3. Peng E, Tingting Xu, Linhua Deng, Yulin Shan, Miao Wan, Weihong Zhou, Solutions of a class of higher order variable coefficient homogeneous differential equations, 2025, 20, 1556-1801, 213, 10.3934/nhm.2025011
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4638) PDF downloads(311) Cited by(12)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog