Citation: Yougang Wang, Anwar Zeb, Ranjit Kumar Upadhyay, A Pratap. A delayed synthetic drug transmission model with two stages of addiction and Holling Type-II functional response[J]. AIMS Mathematics, 2021, 6(1): 1-22. doi: 10.3934/math.2021001
[1] | 2019 World Drug Report, UNODC. Available from: http://www.hqrw.com.cn/2019/0627/87860.shtml. |
[2] | 2017 China Drug Report, 2018. Available from: http://www.nncc626.com/2018-06/25/c_129900461.htm. |
[3] | 2018 China Drug Report, 2019. Available from: http://www.nncc626.com/2019-06/17/c_1210161797.htm. |
[4] | J. L. Liu, T. L. Zhang, Global behaviour of a heroin epidemic model with distributed delays, Appl. Math. Lett., 24 (2011), 1685-1692. doi: 10.1016/j.aml.2011.04.019 |
[5] | M. J. Ma, S. Y. Liu, J. Li, Does media coverage influence the spread of drug addiction? Commun. Nonlinear Sci., 50 (2017), 169-179. |
[6] | J. L. Manthey, A. Y. Aidoo, K. Y. Ward, Campus drinking: an epidemiological model, J. Biol. Dyn., 2 (2008), 346-356. doi: 10.1080/17513750801911169 |
[7] | H. F. Huo, N. N. Song, Global stability for a binge drinking model with two stages, Discrete Dyn. Nat. Soc., 2012 (2012), 1-15. |
[8] | H. Xiang, N. N. Song, H. F. Huo, Modelling effects of public health educational campaigns on drinking dynamics, J. Bio. Dyn., 10 (2016), 164-178. doi: 10.1080/17513758.2015.1115562 |
[9] | B. Khajji, A. Labzai, O. Balatif, M. Rachik, Mathematical modeling and analysis of an alcohol drinking model with the influence of alcohol treatment centers, Int. J. Math. Math. Sci., 2020 (2020), 1-12. |
[10] | C. C. Garsow, G. J. Salivia, A. R. Herrera, Mathematical models for dynamics of tobacco use, recovery and relapse, Technical 390 Report Series BU-1505-M, Cornell University, Ithaca, NY, 2000. |
[11] | G. Rahman, R. P. Agarwal, L. L. Liu, A. Khan, Threshold dynamics and optimal control of an age-structured giving up smoking model, Nonlinear Anal-Real, 43 (2018), 96-120. doi: 10.1016/j.nonrwa.2018.02.006 |
[12] | X. K. Zhang, Z. Z. Zhang, J. Y. Tong, M. Dong, Ergodicity of stochastic smoking model and parameter estimation, Adv. Differ. Equ., 274 (2016), 1-20. |
[13] | G. U. Rahman, R. P. Agarwal, Q. Din, Mathematical analysis of giving up smoking model via harmonic mean type incidence rate, Appl. Math. Comput., 354 (2019), 128-148. |
[14] | S. Ucar, E. Ucar, N. Ozdemir, Z. Hammouch, Mathematical analysis and numerical simulation for a smoking model with Atangana-Baleanu derivative, Chaos, Solitons Fractals, 118 (2019), 300-306. doi: 10.1016/j.chaos.2018.12.003 |
[15] | Z. Z. Zhang, R. B. Wei, W. J. Xia, Dynamical analysis of a giving up smoking model with time delay, Adv. Differ. Equ., 88 (2017), 1-16. |
[16] | J. L. Wang, J. Wang, T. Kuniya, Analysis of an age-structured multi-group heroin epidemic model, Appl. Math. Comput., 347 (2019), 78-100. |
[17] | I. M. Wangari, L. Stone, Analysis of a heroin epidemic model with saturated treatment function, J. Appl. Math., 2017 (2017), 1-21. |
[18] | S. T. Liu, L. Zhang, X. B. Zhang, A. B. Li, Dynamics of a stochastic heroin epidemic model with bilinear incidence and varying population size, Int. J. Biomath., 12 (2019), 1-21. |
[19] | Y. C. Wei, Q. G. Yang, G. J. Li, Dynamics of the stochastically perturbed Heroin epidemic model under non-degenerate noises, Physica A, 526 (2019), 120914. doi: 10.1016/j.physa.2019.04.150 |
[20] | F. Nyabadza, J. B. H. Njagarah, R. J. Smith, Modelling the dynamics of crystal meth(tik) abuse in the presence of drug-supply chain in South Africa, B. Math. Biol., 75 (2013), 24-28. doi: 10.1007/s11538-012-9790-5 |
[21] | P. Y. Liu, L. Zhang, Y. F. Xing, Modeling and stability of a synthetic drugs transimission model with relapse and treatment, J. Appl. Math. Comput., 60 (2019), 465-484. doi: 10.1007/s12190-018-01223-0 |
[22] | M. J. Ma, S. Y. Liu, H. Xiang, J. Liu, Dynamics of synthetic drugs transmission model with psychological addicts and general incidence rate, Physica A, 491 (2018), 641-649. doi: 10.1016/j.physa.2017.08.128 |
[23] | S. Saha, G. P. Samanta, Synthetic drugs transmission:stability analysis and optimal control, Letters in Biomath, 6 (2019), 1-31. doi: 10.30707/LiB6.1Banuelos |
[24] | Y. X. Guo, N. N. Ji, B. Niu, Hopf bifurcation analysis in a predator-prey model with time delay and food subsidies, Adv. Differ. Equ., 99 (2019), 1-22. |
[25] | S. Kundu, S. Maitra, Dynamics of a delayed predator-prey system with stage structure and cooperation for preys, Chaos, Solitons Fractals, 114 (2018), 453-460. doi: 10.1016/j.chaos.2018.07.013 |
[26] | Y. Z. Bai, Y. Y. Li, Stability and Hopf bifurcation for a stage-structured predator-prey model incorporating refuge for prey and additional food for predator, Adv. Differ. Equ., 42 (2019), 1-20. |
[27] | C. D. Huang, H. L, J. D. Cao, A novel strategy of bifurcation control for a delayed fractional predator-prey model, Appl. Math. Comput., 347 (2019), 808-838. |
[28] | K. Zheng, X. L. Zhou, Z. H. Wu, Z. M. Wang, T. J. Zhou, Hopf bifurcation controlling for a fractional order delayed paddy ecosystem in the fallow season, Adv. Differ. Equ., 309 (2019), 1-14. |
[29] | H. Miao, C. J. Kang, Stability and Hopf bifurcation analysis for an HIV infection model with Beddington-DeAngelis incidence and two delays, J. Appl. Math. Comput., 60 (2019), 265-290. doi: 10.1007/s12190-018-1213-9 |
[30] | Z. Z. Zhang, S. Kundu, J. P. Tripathi, S. Bugalia, Stability and Hopf bifurcation analysis of an SVEIR epidemic model with vaccination and multiple time delays, Chaos Solitons Fractals, 131 (2020), 1-17. |
[31] | Z. Z. Zhang, S. Kumari, R. K. Upadhyay, A delayed e-epidemic SLBS model for computer virus, Adv. Differ. Equ., 414 (2019), 1-24. |
[32] | Z. Z. Zhang, T. Zhao, Bifurcation analysis of an e-SEIARS model with multiple delays for pointto-group worm propagation, Adv. Differ. Equ., 228 (2019), 1-26. |
[33] | X. L. Li, J. J. Wei, On the zeros of a fourth degree exponential polynomial with applications to a neural network model with delays, Chaos, Solitons Fractals, 26 (2005), 519-526. doi: 10.1016/j.chaos.2005.01.019 |
[34] | B. D. Hassard, N. D. Kazarinoff, Y. H. Wan, Theory and Applications of Hopf Bifurcation, Cambridge: Cambridge University Press, 1981. |