Research article

Dynamics of a thermoelastic-laminated beam problem

  • Received: 26 February 2020 Accepted: 31 May 2020 Published: 19 June 2020
  • MSC : 35B35, 35B40, 35D35, 37L05, 37L30, 93D15

  • The main goal of this work is to study the dynamics of a nonlinear thermoelastic laminated beam system with infinite memory acting on the effective rotation angle. We establish the well-posedness and prove the existence of a finite-dimensional global attractor.

    Citation: Cyril Dennis Enyi, Soh Edwin Mukiawa. Dynamics of a thermoelastic-laminated beam problem[J]. AIMS Mathematics, 2020, 5(5): 5261-5286. doi: 10.3934/math.2020338

    Related Papers:

  • The main goal of this work is to study the dynamics of a nonlinear thermoelastic laminated beam system with infinite memory acting on the effective rotation angle. We establish the well-posedness and prove the existence of a finite-dimensional global attractor.


    加载中


    [1] S. W. Hansen, R. Spies, Structural damping in a laminated beams due to interfacial slip, J. Sound Vib., 204 (1997), 183-202. doi: 10.1006/jsvi.1996.0913
    [2] T. A. Apalara, General stability of memory-type thermoelastic Timoshenko beam acting on shear force, Continuum Mech. Thermodyn., 30 (2018), 291-300. doi: 10.1007/s00161-017-0601-y
    [3] S. E Mukiawa, T. A. Apalara, S. A. Messaoudi, A general and optimal stability result for a laminated beam, Journal of Integral Equations and Applications, 2020.
    [4] T. A. Apalara, S. A. Messaoudi, An exponential stability result of a Timoshenko system with thermoelasticity with second sound and in the presence of delay, Appl. Math. Optim., 71 (2015), 449-472. doi: 10.1007/s00245-014-9266-0
    [5] T. A. Apalara, S. A. Messaoudi, A. A. Keddi, On the decay rates of Timoshenko system with second sound, Math. Methods Appl. Sci., 39 (2016), 2671-2684. doi: 10.1002/mma.3720
    [6] T. A. Apalara, Uniform stability of a laminated beam with structural damping and second sound Z. Angew. Math. Phys., 41 (2017), 68(2).
    [7] V. I. Arnold, Mathematical Methods of Classical Mechanics, New York: Springer-Verlag, 1989.
    [8] X. G. Cao, D. Y. Liu, G. Q. Xu,Easy test for stability of laminated beams with structural damping and boundary feedback controls, J. Dyn. Control Syst., 13 (2007), 313-336. doi: 10.1007/s10883-007-9022-8
    [9] M. M. Cavalcanti, A, Guesmia, General decay rates of solutions to a nonlinear wave equation with boundary condition of memory type, Differ. Integral Equ., 18 (2005), 583-600.
    [10] I. Chueshov, I. Lasiecka, Long-Time behaviour of second order evolution equations with nonlinear damping, Memoirs of the American Mathematical Society, Providence, 195, 2008.
    [11] A. Miranville, S. Zelik, Attractors for dissipative partial differential equations in bounded and unbounded domains, Evolutionary Equations, IV (2008), 103-200.
    [12] R. Temam, Infinite dimensional dynamical systems in mechanics and physics, Springer-Verlag, Berlin, Heidelberg, 2Eds, New York, 1997.
    [13] M. M. Chen, W. J. Liu, W. C. Zhou, Existence and general stabilization of the Timoshenko system of thermo-viscoelasticity of type III with frictional damping and delay terms, Adv. Nonlinear Anal., 7 (2018), 547-569. doi: 10.1515/anona-2016-0085
    [14] B. Feng, Uniform decay of energy for a porous thermoelasticity system with past history, Appl. Anal., 97 (2018), 210-229. doi: 10.1080/00036811.2016.1258116
    [15] H. D. Fernández Sare, R. Racke, On the stability of damped Timoshenko systems: Cattaneo versus Fourier law, Arch. Ration. Mech. Anal., 194 (2009), 221-251. doi: 10.1007/s00205-009-0220-2
    [16] S. W. Hansen, A model for a two-layered plate with interfacial slip. In: Control and Estimation of Distributed Parameter Systems:, Nonlinear Phenomena (Vorau, 1993), International Series of Numerical Mathematics, 118 (1993), 143-170.
    [17] W. Liu, W. Zhao, Stabilization of a thermoelastic laminated beam with past history, Appl. Math. Optim., 80 (2019), 103-133. doi: 10.1007/s00245-017-9460-y
    [18] A. Lo, N. E. Tatar, Uniform stability of a laminated beam with structural memory, QTDS 15 (2016), 517-540.
    [19] A. Lo, N. E. Tatar, Stabilization of laminated beams with interfcial slip EJDE, 129 (2015), 1-14.
    [20] S. E. Mukiawa, C. D. Enyi, Well-posedness and Attractors for a Memory-type Thermoelastic Timoshenko Beam Acting on Shear Force, Taiwanese J. Math., DOI: 10.11650/tjm/191106.
    [21] S. A. Messaoudi, A. Fareh, General decay for a porous thermoelastic system with memory: the case of equal speeds, Nonlinear Anal., 74 (2011), 6895-6906. doi: 10.1016/j.na.2011.07.012
    [22] S. A. Messaoudi, A. Fareh, General decay for a porous-thermoelastic system with memory: The case of nonequal speeds, Acta Math. Sci. Ser. B Engl. Ed., 33 (2013), 23-40.
    [23] C. A. Raposo, Exponential stability for a structure with interfacial slip and frictional damping, Appl. Math. Lett., 53 (2016), 85-91. doi: 10.1016/j.aml.2015.10.005
    [24] N. E. Tatar, Stabilization of a laminated beam with interfacial slip by boundary controls, Bound. Value Probl., 2015 (2015), 1-11. doi: 10.1186/s13661-014-0259-3
    [25] M. L. Santos, D. S. A. Junior, J. E. M. Rivera, The stability of number of the Timoshenko system with second sound, J. Differ. Equ., 253 (2012), 2715-2733. doi: 10.1016/j.jde.2012.07.012
    [26] J. M. Wang, G. Q. Xu, S. P. Yung, Exponential stabilization of laminated beams with structural damping and boundary feedback controls, SIAM J. Control Optim., 44 (2005), 1575-1597. doi: 10.1137/040610003
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3020) PDF downloads(207) Cited by(4)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog