Research article

Refinements of Jensen’s and McShane’s inequalities with applications

  • Received: 29 March 2020 Accepted: 27 May 2020 Published: 04 June 2020
  • MSC : 26B25, 26D15

  • In this article, we consider the generalized forms of the Jensen's inequality given by Jessen and McShane for isotonic linear functionals, derive several refinements for the Jessen's and McShane's inequalities connected to certain functions from the linear space, generalize the Jessen's and McShane's inequalities pertaining n certain functions. As applications, we provide some improvements for the generalized means, Holder and generalized Beck's inequalities.

    Citation: Muhammad Adil Khan, Josip Pečarić, Yu-Ming Chu. Refinements of Jensen’s and McShane’s inequalities with applications[J]. AIMS Mathematics, 2020, 5(5): 4931-4945. doi: 10.3934/math.2020315

    Related Papers:

  • In this article, we consider the generalized forms of the Jensen's inequality given by Jessen and McShane for isotonic linear functionals, derive several refinements for the Jessen's and McShane's inequalities connected to certain functions from the linear space, generalize the Jessen's and McShane's inequalities pertaining n certain functions. As applications, we provide some improvements for the generalized means, Holder and generalized Beck's inequalities.


    加载中


    [1] M. Adil Khan, M. Hanif, Z. A. Khan, et al. Association of Jensen's inequality for s-convex function with Csiszár divergence, J. Inequal. Appl., 2019 (2019), 1-14. doi: 10.1186/s13660-019-1955-4
    [2] S. Khan, M. Adil Khan, Y. M. Chu, Converses of the Jensen inequality derived from the Green functions with applications in information theory, Math. Method. Appl. Sci., 43 (2020), 2577-2587. doi: 10.1002/mma.6066
    [3] S. Khan, M. Adil Khan, Y. M. Chu, New converses of Jensen inequality via Green functions with applications, RACSAM, 114 (2020), 114.
    [4] X. S. Chen, New convex functions in linear spaces and Jensen's discrete inequality, J. Inequal. Appl., 2013 (2013), 1-8. doi: 10.1186/1029-242X-2013-1
    [5] S. S. Dragomir, On the Hadamard's inequality for convex functions on the co-ordinates in a rectangle from the plane, Taiwanese J. Math., 5 (2001), 775-788. doi: 10.11650/twjm/1500574995
    [6] G. M. Eshaghi, M. Rostanian Delavar, M. De La Sen, On φ-convex functions, J. Math. Inequal., 10 (2016), 173-183.
    [7] K. Krulić, J. Pečarić, K. Smoljak, α(x)-convex functions and their inequalities, Bull. Malays. Math. Sci. Soc., 35 (2012), 695-716.
    [8] N. Merentes, K. Nikodem, Remarks on strongly convex functions, Aequationes Math., 80 (2010), 193-199. doi: 10.1007/s00010-010-0043-0
    [9] X. M. Hu, J. F. Tian, Y. M. Chu, et al. On Cauchy-Schwarz inequality for N-tuple diamond-alpha integral, J. Inequal. Appl., 2020 (2020), 1-15. doi: 10.1186/s13660-019-2265-6
    [10] S. Rashid, M. A. Noor, K. I. Noor, et al. Ostrowski type inequalities in the sense of generalized $\mathcal{K}$-fractional integral operator for exponentially convex functions, AIMS Mathematics, 5 (2020), 2629-2645. doi: 10.3934/math.2020171
    [11] S. Rashid, F. Jarad, Y. M. Chu, A note on reverse Minkowski inequality via generalized proportional fractional integral operator with respect to another function, Math. Probl. Eng., 2020 (2020), 1-12.
    [12] S. Rashid, M. A. Noor, K. I. Noor, et al. Hermite-Hadamrad type inequalities for the class of convex functions on time scale, Mathematics, 7 (2019), 1-20.
    [13] M. A. Latif, S. Rashid, S. S. Dragomir, et al. Hermite-Hadamard type inequalities for co-ordinated convex and qausi-convex functions and their applications, J. Inequal. Appl., 2019 (2019), 1-33. doi: 10.1186/s13660-019-1955-4
    [14] M. Adil Khan, N. Mohammad, E. R. Nwaeze, et al. Quantum Hermite-Hadamard inequality by means of a Green function, Adv. Differ. Equ., 2020 (2020), 1-20. doi: 10.1186/s13662-019-2438-0
    [15] A. Iqbal, M. Adil Khan, S. Ullah, et al. Some new Hermite-Hadamard-type inequalities associated with conformable fractional integrals and their applications, J. Funct. Space., 2020 (2020), 1-18.
    [16] M. U. Awan, S. Talib, Y. M. Chu, et al. Some new refinements of Hermite-Hadamard-type inequalities involving Ψk-Riemann-Liouville fractional integrals and applications, Math. Probl. Eng., 2020 (2020), 1-20.
    [17] M. U. Awan, N. Akhtar, S. Iftikhar, et al. Hermite-Hadamard type inequalities for n-polynomial harmonically convex functions, J. Inequal. Appl., 2020 (2020), 1-12. doi: 10.1186/s13660-019-2265-6
    [18] T. H. Zhao, L. Shi, Y. M. Chu, Convexity and concavity of the modified Bessel functions of the first kind with respect to Hölder means, RACSAM, 114 (2020), 1-14. doi: 10.1007/s13398-019-00732-2
    [19] I. Abbas Baloch, Y. M. Chu, Petrović-type inequalities for harmonic h-convex functions, J. Funct. Space., 2020 (2020), 1-7.
    [20] S. Rashid, F. Jarad, H. Kalsoom, et al. On Pólya-Szegö and Ćebyšev type inequalities via generalized k-fractional integrals, Adv. Differ. Equ., 2020 (2020), 1-18. doi: 10.1186/s13662-019-2438-0
    [21] S. Rashid, R. Ashraf, M. A. Noor, et al. New weighted generalizations for differentiable exponentially convex mappings with application, AIMS Mathematics, 5 (2020), 3525-3546. doi: 10.3934/math.2020229
    [22] S. Zaheer Ullah, M. Adil Khan, Z. A. Khan, et al. Integral majorization type inequalities for the functions in the sense of strong convexity, J. Funct. Space., 2019 (2019), 1-11.
    [23] S. Rashid, F. Jarad, M. A. Noor, et al. Inequalities by means of generalized proportional fractional integral operators with respect another function, Mathematics, 7 (2019), 1-18.
    [24] W. M. Qian, Z. Y. He, Y. M. Chu, Approximation for the complete elliptic integral of the first kind, RACSAM, 114 (2020), 1-12. doi: 10.1007/s13398-019-00732-2
    [25] Z. H. Yang, W. M. Qian, W. Zhang, et al. Notes on the complete elliptic integral of the first kind, Math. Inequal. Appl., 23 (2020), 77-93.
    [26] M. K. Wang, H. H. Chu, Y. M. Li, et al. Answers to three conjectures on convexity of three functions involving complete elliptic integrals of the first kind, Appl. Anal. Discrete Math., 14 (2020), 255-271.
    [27] S. Rafeeq, H. Kalsoom, S. Hussain, et al. Delay dynamic double integral inequalities on time scales with applications, Adv. Differ. Equ., 2020 (2020), 1-32. doi: 10.1186/s13662-019-2438-0
    [28] H. Z. Xu, Y. M. Chu, W. M. Qian, Sharp bounds for the Sándor-Yang means in terms of arithmetic and contra-harmonic means, J. Inequal. Appl., 2018 (2018), 1-13. doi: 10.1186/s13660-017-1594-6
    [29] W. M. Qian, Y. Y. Yang, H. W. Zhang, et al. Optimal two-parameter geometric and arithmetic mean bounds for the Sándor-Yang mean, J. Inequal. Appl., 2019 (2019), 1-12. doi: 10.1186/s13660-019-1955-4
    [30] W. M. Qian, W. Zhang, Y. M. Chu, Bounding the convex combination of arithmetic and integral means in terms of one-parameter harmonic and geometric means, Miskolc Math. Notes, 20 (2019), 1157-1166.
    [31] M. K. Wang, Z. Y. He, Y. M. Chu, Sharp power mean inequalities for the generalized elliptic integral of the first kind, Comput. Meth. Funct. Th., 20 (2020), 111-124. doi: 10.1007/s40315-020-00298-w
    [32] B. Wang, C. L. Luo, S. H. Li, et al. Sharp one-parameter geometric and quadratic means bounds for the Sándor-Yang means, RACSAM, 114 (2020), 1-10. doi: 10.1007/s13398-019-00732-2
    [33] T. H. Zhao, Y. M. Chu, H. Wang, Logarithmically complete monotonicity properties relating to the gamma function, Abstr. Appl. Anal., 2011 (2011), 1-13.
    [34] S. Zaheer Ullah, M. Adil Khan, Y. M. Chu, A note on generalized convex functions, J. Inequal. Appl., 2019 (2019), 1-10. doi: 10.1186/s13660-019-1955-4
    [35] M. K. Wang, M. Y. Hong, Y. F. Xu, et al. Inequalities for generalized trigonometric and hyperbolic functions with one parameter, J. Math. Inequal., 14 (2020), 1-21.
    [36] M. Adil Khan, D. Pečarić, J. Pečarić, Bounds for Csiszár divergence and hybrid Zipf-Mandelbrot entropy, Math. Method. Appl. Sci., 42 (2019), 7411-7424. doi: 10.1002/mma.5858
    [37] J. G. Liao, A. Berg, Sharpening Jensen's inequality, Am. Stat., 79 (2019), 278-281.
    [38] Q. Lin, Jensen inequality for superlinear expectations, Stat. Probab. Lett., 151 (2019), 79-83. doi: 10.1016/j.spl.2019.03.006
    [39] B. Jessen, Bemrkninger om konvekse Funktioner og Uligheder imellem Middelvrdier I, Mat. Tidsskr. B, 2 (1931), 17-26.
    [40] J. E. Pečarić, F. Proschan, Y. L. Tong, Convex Functions, Partial Orderings, and Statistical Applications, Academic Press, Boston, 1992.
    [41] E. J. McShane, Jensen's inequality, B. Am. Math. Soc., 43 (1937), 521-527. doi: 10.1090/S0002-9904-1937-06588-8
    [42] E. Beck, Über Ungleichungen von der Form f(Mφ(x; α), Mψ(y; α)) ≥ Mχ(f(x, y); α), Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., 320-328 (1970), 1-14.
    [43] M. Adil Khan, D. Pečarić, J. Pečarić, New refinement of the Jensen inequality associated to certain functions with applications, J. Inequal. Appl., 2020 (2020), 1-11. doi: 10.1186/s13660-019-2265-6
    [44] V. Čuljak, B. Ivanković, J. Pečarić, On Jensen-Mcshane's inequality, Period. Math. Hungar., 58 (2019), 139-154.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4469) PDF downloads(353) Cited by(43)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog