Research article

A class of analytic functions related to convexity and functions with bounded turning

  • Received: 09 October 2019 Accepted: 14 February 2020 Published: 18 February 2020
  • MSC : 30C45, 30C80

  • In this paper, we define a new subclass k-Q(α) of analytic functions, which generalizes the class of k-uniformly convex functions. Various interesting relationships between k-Q(α) and the class B(δ) of functions with bounded turning are derived.

    Citation: Zhi-Gang Wang, M. Naeem, S. Hussain, T. Mahmood, A. Rasheed. A class of analytic functions related to convexity and functions with bounded turning[J]. AIMS Mathematics, 2020, 5(3): 1926-1935. doi: 10.3934/math.2020128

    Related Papers:

    [1] Muhammad Ghaffar Khan, Nak Eun Cho, Timilehin Gideon Shaba, Bakhtiar Ahmad, Wali Khan Mashwani . Coefficient functionals for a class of bounded turning functions related to modified sigmoid function. AIMS Mathematics, 2022, 7(2): 3133-3149. doi: 10.3934/math.2022173
    [2] Rabha W. Ibrahim, Dumitru Baleanu . Fractional operators on the bounded symmetric domains of the Bergman spaces. AIMS Mathematics, 2024, 9(2): 3810-3835. doi: 10.3934/math.2024188
    [3] Muhammmad Ghaffar Khan, Wali Khan Mashwani, Jong-Suk Ro, Bakhtiar Ahmad . Problems concerning sharp coefficient functionals of bounded turning functions. AIMS Mathematics, 2023, 8(11): 27396-27413. doi: 10.3934/math.20231402
    [4] Muhammmad Ghaffar Khan, Wali Khan Mashwani, Lei Shi, Serkan Araci, Bakhtiar Ahmad, Bilal Khan . Hankel inequalities for bounded turning functions in the domain of cosine Hyperbolic function. AIMS Mathematics, 2023, 8(9): 21993-22008. doi: 10.3934/math.20231121
    [5] Zhen Peng, Muhammad Arif, Muhammad Abbas, Nak Eun Cho, Reem K. Alhefthi . Sharp coefficient problems of functions with bounded turning subordinated to the domain of cosine hyperbolic function. AIMS Mathematics, 2024, 9(6): 15761-15781. doi: 10.3934/math.2024761
    [6] Lina Ma, Shuhai Li, Huo Tang . Geometric properties of harmonic functions associated with the symmetric conjecture points and exponential function. AIMS Mathematics, 2020, 5(6): 6800-6816. doi: 10.3934/math.2020437
    [7] Xinghua You, Ghulam Farid, Lakshmi Narayan Mishra, Kahkashan Mahreen, Saleem Ullah . Derivation of bounds of integral operators via convex functions. AIMS Mathematics, 2020, 5(5): 4781-4792. doi: 10.3934/math.2020306
    [8] İbrahim Aktaş . On some geometric properties and Hardy class of q-Bessel functions. AIMS Mathematics, 2020, 5(4): 3156-3168. doi: 10.3934/math.2020203
    [9] Muhammad Ghaffar Khan, Sheza.M. El-Deeb, Daniel Breaz, Wali Khan Mashwani, Bakhtiar Ahmad . Sufficiency criteria for a class of convex functions connected with tangent function. AIMS Mathematics, 2024, 9(7): 18608-18624. doi: 10.3934/math.2024906
    [10] Yue Wang, Ghulam Farid, Babar Khan Bangash, Weiwei Wang . Generalized inequalities for integral operators via several kinds of convex functions. AIMS Mathematics, 2020, 5(5): 4624-4643. doi: 10.3934/math.2020297
  • In this paper, we define a new subclass k-Q(α) of analytic functions, which generalizes the class of k-uniformly convex functions. Various interesting relationships between k-Q(α) and the class B(δ) of functions with bounded turning are derived.


    Let A denote the class of functions f which are analytic in the open unit disk Δ={zC:|z|<1}, normalized by the conditions f(0)=f(0)1=0. So each fA has series representation of the form

    f(z)=z+n=2anzn. (1.1)

    For two analytic functions f and g, f is said to be subordinated to g (written as fg) if there exists an analytic function ω with ω(0)=0 and |ω(z)|<1 for zΔ such that f(z)=(gω)(z).

    A function fA is said to be in the class S if f is univalent in Δ. A function fS is in class C of normalized convex functions if f(Δ) is a convex domain. For 0α1, Mocanu [23] introduced the class Mα of functions fA such that f(z)f(z)z0 for all zΔ and

    ((1α)zf(z)f(z)+α(zf(z))f(z))>0(zΔ). (1.2)

    Geometrically, fMα maps the circle centred at origin onto α-convex arcs which leads to the condition (1.2). The class Mα was studied extensively by several researchers, see [1,10,11,12,24,25,26,27] and the references cited therein.

    A function fS is uniformly starlike if f maps every circular arc Γ contained in Δ with center at ζ Δ onto a starlike arc with respect to f(ζ). A function fC is uniformly convex if f maps every circular arc Γ contained in Δ with center ζ Δ onto a convex arc. We denote the classes of uniformly starlike and uniformly convex functions by UST and  UCV, respectively. For recent study on these function classes, one can refer to [7,9,13,19,20,31].

    In 1999, Kanas and Wisniowska [15] introduced the class k-UCV (k0) of k-uniformly convex functions. A function fA is said to be in the class k-UCV if it satisfies the condition

    (1+zf(z)f(z))>k|zf(z)f(z)|(zΔ). (1.3)

    In recent years, many researchers investigated interesting properties of this class and its generalizations. For more details, see [2,3,4,14,15,16,17,18,30,32,35] and references cited therein.

    In 2015, Sokół and Nunokawa [33] introduced the class MN, a function fMN if it satisfies the condition

    (1+zf(z)f(z))>|zf(z)f(z)1|(zΔ).

    In [28], it is proved that if (f)>0 in Δ, then f is univalent in Δ. In 1972, MacGregor [21] studied the class B of functions with bounded turning, a function fB if it satisfies the condition (f)>0 for zΔ. A natural generalization of the class B is B(δ1) (0δ1<1), a function fB(δ1) if it satisfies the condition

    (f(z))>δ1(zΔ;0δ1<1), (1.4)

    for details associated with the class B(δ1) (see [5,6,34]).

    Motivated essentially by the above work, we now introduce the following class k-Q(α) of analytic functions.

    Definition 1. Let k0 and 0α1. A function fA is said to be in the class k-Q(α) if it satisfies the condition

    ((zf(z))f(z))>k|(1α)f(z)+α(zf(z))f(z)1|(zΔ). (1.5)

    It is worth mentioning that, for special values of parameters, one can obtain a number of well-known function classes, some of them are listed below:

    1. k-Q(1)=k-UCV;

    2. 0-Q(α)=C.

    In what follows, we give an example for the class k-Q(α).

    Example 1. The function f(z)=z1Az(A0) is in the class k-Q(α) with

    k1b2bb(1+α)[b(1+α)+2]+4(b=|A|). (1.6)

    The main purpose of this paper is to establish several interesting relationships between k-Q(α) and the class B(δ) of functions with bounded turning.

    To prove our main results, we need the following lemmas.

    Lemma 1. ([8]) Let h be analytic in Δ with h(0)=1, β>0 and 0γ1<1. If

    h(z)+βzh(z)h(z)1+(12γ1)z1z,

    then

    h(z)1+(12δ)z1z,

    where

    δ=(2γ1β)+(2γ1β)2+8β4. (2.1)

    Lemma 2. Let h be analytic in Δ and of the form

    h(z)=1+n=mbnzn(bm0)

    with h(z)0 in Δ. If there exists a point z0(|z0|<1) such that |argh(z)|<πρ2(|z|<|z0|) and |argh(z0)|=πρ2 for some ρ>0, then z0h(z0)h(z0)=iρ, where

    :{n2(c+1c)(argh(z0)=πρ2),n2(c+1c)(argh(z0)=πρ2),

    and (h(z0))1/ρ=±ic(c>0).

    This result is a generalization of the Nunokawa's lemma [29].

    Lemma 3. ([37]) Let ε be a positive measure on [0,1]. Let ϝ be a complex-valued function defined on Δ×[0,1] such that ϝ(.,t) is analytic in Δ for each t[0,1] and ϝ(z,.) is ε-integrable on [0,1] for all zΔ. In addition, suppose that (ϝ(z,t))>0, ϝ(r,t) is real and (1/ϝ(z,t))1/ϝ(r,t) for |z|r<1 and t[0,1]. If ϝ(z)=10ϝ(z,t)dε(t), then (1/ϝ(z))1/ϝ(r).

    Lemma 4. ([22]) If 1D<C1, λ1>0 and (γ2)λ1(1C)/(1D), then the differential equation

    s(z)+zs(z)λ1s(z)+γ2=1+Cz1+Dz(zΔ)

    has a univalent solution in Δ given by

    s(z)={zλ1+γ2(1+Dz)λ1(CD)/Dλ1z0tλ1+γ21(1+Dt)λ1(CD)/Ddtγ2λ1(D0),zλ1+γ2eλ1Czλ1z0tλ1+γ21eλ1Ctdtγ2λ1(D=0).

    If r(z)=1+c1z+c2z2+ satisfies the condition

    r(z)+zr(z)λ1r(z)+γ21+Cz1+Dz(zΔ),

    then

    r(z)s(z)1+Cz1+Dz,

    and s(z) is the best dominant.

    Lemma 5. ([36,Chapter 14]) Let w, x and\ y0,1,2, be complex numbers. Then, for (y)>(x)>0, one has

    1. 2G1(w,x,y;z)=Γ(y)Γ(yx)Γ(x)10sx1(1s)yx1(1sz)wds;

    2. 2G1(w,x,y;z)= 2G1(x,w,y;z);

    3. 2G1(w,x,y;z)=(1z)w2G1(w,yx,y;zz1).

    Firstly, we derive the following result.

    Theorem 1. Let 0α<1 and k11α. If fk-Q(α), then fB(δ), where

    δ=(2μλ)+(2μλ)2+8λ4(λ=1+αkk(1α);μ=kαk1k(1α)). (3.1)

    Proof. Let f=, where is analytic in Δ with (0)=1. From inequality (1.5) which takes the form

    (1+z(z)(z))>k|(1α)(z)+α(1+z(z)(z))1|=k|1α(z)+α(z)αz(z)(z)|,

    we find that

    ((z)+1+αkk(1α)z(z)(z))>kαk1k(1α),

    which can be rewritten as

    ((z)+λz(z)(z))>μ(λ=1+αkk(1α);μ=kαk1k(1α)).

    The above relationship can be written as the following Briot-Bouquet differential subordination

    (z)+λz(z)(z)1+(12μ)z1z.

    Thus, by Lemma 1, we obtain

    1+(12δ)z1z, (3.2)

    where δ is given by (3.1). The relationship (3.2) implies that fB(δ). We thus complete the proof of Theorem 3.1.

    Theorem 2. Let 0<α1, 0<β<1, c>0, k1, nm+1(m N ), ||n2(c+1c) and

    |αβ±(1α)cβsinβπ2|1. (3.3)

    If

    f(z)=z+n=m+1anzn(am+10)

    and fk-Q(α), then fB(β0), where

    β0=min{β:β(0,1)}

    such that (3.3) holds.

    Proof. By the assumption, we have

    f(z)=(z)=1+n=mcnzn(cm0). (3.4)

    In view of (1.5) and (3.4), we get

    (1+z(z)(z))>k|(1α)(z)+α(1+z(z)(z))1|.

    If there exists a point z0Δ such that

    |arg(z)|<βπ2(|z|<|z0|;0<β<1)

    and

    |arg(z0)|=βπ2(0<β<1),

    then from Lemma 2, we know that

    z0(z0)(z0)=iβ,

    where

    ((z0))1/β=±ic(c>0)

    and

    :{n2(c+1c)(arg(z0)=βπ2),n2(c+1c)(arg(z0)=βπ2).

    For the case

    arg(z0)=βπ2,

    we get

    (1+z0(z0)(z0))=(1+iβ)=1. (3.5)

    Moreover, we find from (3.3) that

    k|(1α)(z0)+α(1+z0(z0)(z0))1|=k|(1α)((z0)1)+αz0(z0)(z0)|=k|(1α)[(±ic)β1]+iαβ|=k(1α)2(cβcosβπ21)2+[αβ±(1α)cβsinβπ2]21. (3.6)

    By virtue of (3.5) and (3.6), we have

    (1+z(z0)(z0))k|(1α)(z0)+α(1+z0(z0)(z0))1|,

    which is a contradiction to the definition of k-Q(α). Since β0=min{β:β(0,1)} such that (3.3) holds, we can deduce that fB(β0).

    By using the similar method as given above, we can prove the case

    arg(z0)=βπ2

    is true. The proof of Theorem 2 is thus completed.

    Theorem 3. If 0<β<1 and 0ν<1. If fk-Q(α), then

    (f)>[2G1(2β(1ν),1;1β+1;12)]1,

    or equivalently, k-Q(α)B(ν0), where

    ν0=[2G1(2β(1μ),1;1β+1;12)]1.

    Proof. For

    w=2β(1ν), x=1β, y=1β+1,

    we define

    ϝ(z)=(1+Dz)w10tx1(1+Dtz)wdt=Γ(x)Γ(y) 2G1(1,w,y;zz1). (3.7)

    To prove k-Q(α)B(ν0), it suffices to prove that

    inf|z|<1{(q(z))}=q(1),

    which need to show that

    (1/ϝ(z))1/ϝ(1).

    By Lemma 3 and (3.7), it follows that

    ϝ(z)=10ϝ(z,t)dε(t),

    where

    ϝ(z,t)=1z1(1t)z(0t1),

    and

    dε(t)=Γ(x)Γ(w)Γ(yw)tw1(1t)yw1dt,

    which is a positive measure on [0,1].

    It is clear that (ϝ(z,t))>0 and ϝ(r,t) is real for |z|r<1 and t[0,1]. Also

    (1ϝ(z,t))=(1(1t)z1z)1+(1t)r1+r=1ϝ(r,t)

    for |z|r<1. Therefore, by Lemma 3, we get

    (1/ϝ(z))1/ϝ(r).

    If we let r1, it follows that

    (1/ϝ(z))1/ϝ(1).

    Thus, we deduce that k-Q(α)B(ν0).

    Theorem 4. Let 0α<1 and k11α. If fk-Q(α), then

    f(z)s(z)=1g(z),

    where

    g(z)=2G1(2λ,1,1λ+1;zz1)(λ=1+αkk(1α)).

    Proof. Suppose that f=. From the proof of Theorem 1, we see that

    (z)+z(z)1λ(z)1+(12μ)z1z1+z1z(λ=1+αkk(1α);μ=kαk1k(1α)).

    If we set λ1=1λ, γ2=0, C=1 and D=1 in Lemma 4, then

    (z)s(z)=1g(z)=z1λ(1z)2λ1/λz0t(1/λ)1(1t)2/λdt.

    By putting t=uz, and using Lemma 5, we obtain

    (z)s(z)=1g(z)=11λ(1z)2λ10u(1/λ)1(1uz)2/λdu=[2G1(2λ,1,1λ+1;zz1)]1,

    which is the desired result of Theorem 4.

    The present investigation was supported by the Key Project of Education Department of Hunan Province under Grant no. 19A097 of the P. R. China. The authors would like to thank the referees for their valuable comments and suggestions, which was essential to improve the quality of this paper.

    The authors declare no conflict of interest.



    [1] J. W. Alexander, Functions which map the interior of the unit circle upon simple regions, Ann. Math., 17 (1915), 12-22. doi: 10.2307/2007212
    [2] M. Arif, A. Ali, J. Muhammad, Some sufficient conditions for alpha convex functions of order beta, VFAST Trans. Math., 1 (2013), 8-12.
    [3] H. Arıkan, H. Orhan, M. Çağlar, Fekete-Szegö inequality for a subclass of analytic functions defined by Komatu integral operator, AIMS Mathmatics, 5 (2020), 1745-1756.
    [4] S. M. Aydogan, F. M. Sakar, Radius of starlikeness of p-valent λ-fractional operator, Appl. Math. Comput., 357 (2019), 374-378.
    [5] D. Bshouty, A. Lyzzaik, F. M. Sakar, Harmonic mappings of bounded boundary rotation, Proc. Amer. Math. Soc., 146 (2018), 1113-1121.
    [6] S. Bulut, Some applications of secondorder differential subordination on a class of analytic functions defined by Komatu integral operator, ISRN Math. Anal., 2014 (2014), 1-6.
    [7] M. Çağlar, E. Deniz, R. Szász, Radii of α-convexity of some normalized Bessel functions of the first kind, Results Math., 72 (2017), 2023-2035. doi: 10.1007/s00025-017-0738-9
    [8] M. Darus, S. Hussain, M. Raza, On a subclass of starlike functions, Results Math., 73 (2018), 1-12. doi: 10.1007/s00025-018-0773-1
    [9] E. Deniz, R. Szász, The radius of uniform convexity of Bessel functions, J. Math. Anal. Appl., 453 (2017), 572-588. doi: 10.1016/j.jmaa.2017.03.079
    [10] J. Dziok, Characterizations of analytic functions associated with functions of bounded variation, Ann. Polon. Math., 109 (2013), 199-207. doi: 10.4064/ap109-2-7
    [11] J. Dziok, Classes of functions associated with bounded Mocanu variation, J. Inequal. Appl., 2013 (2013), 349.
    [12] J. Dziok, Generalizations of multivalent Mocanu functions, Appl. Math. Comput., 269 (2015), 965-971.
    [13] A. W. Goodman, On uniformly convex functions, Ann. Polon. Math., 56 (1991), 87-92. doi: 10.4064/ap-56-1-87-92
    [14] S. Kanas, A. Wisniowska, Conic regions and k-uniform convexity II, Folia Sci. Univ. Tech. Resov., 22 (1998), 65-78.
    [15] S. Kanas, A. Wisniowska, Conic regions and k-uniform convexity, J. Comput. Appl. Math., 105 (1999), 327-336. doi: 10.1016/S0377-0427(99)00018-7
    [16] S. Kanas, H. M. Srivastava, Linear operators associated with k-uniformly convex functions, Integral Transforms Spec. Funct., 9 (2000), 121-132. doi: 10.1080/10652460008819249
    [17] S. Kanas, Techniques of the differential subordination for domain bounded by conic sections, Int. J. Math. Sci., 38 (2003), 2389-2400.
    [18] A. Lecko, A. Wisniowska, Geometric properties of subclasses of starlike functions, J. Comput. Appl. Math., 155 (2003), 383-387. doi: 10.1016/S0377-0427(02)00875-0
    [19] W. Ma, D. Minda, Uniformly convex functions, Ann. Polon. Math., 57 (1992), 165-175. doi: 10.4064/ap-57-2-165-175
    [20] W. Ma, D. Minda, Uniformly convex functions II, Ann. Polon. Math., 58 (1993), 275-285. doi: 10.4064/ap-58-3-275-285
    [21] T. M. MacGregor, Geometric problems in complex analysis, Amer. Math. Monthly, 79 (1972), 447-468. doi: 10.1080/00029890.1972.11993067
    [22] S. S. Miller, P. T. Mocanu, Univalent solutions of Briot-Bouquet differential subordination, J. Diff. Equations, 56 (1985), 297-309. doi: 10.1016/0022-0396(85)90082-8
    [23] P. T. Mocanu, Une propriete de convexite generalisee dans la theorie de la representation conforme, Mathematica, 34 (1969), 127-133.
    [24] K. I. Noor, W. Ul-Haq, On some implication type results involving generalized bounded Mocanu variations, Comput. Math. Appl., 63 (2012), 1456-1461. doi: 10.1016/j.camwa.2012.03.055
    [25] K. I. Noor, S. Hussain, On certain analytic functions associated with Ruscheweyh derivatives and bounded Mocanu variation, J. Math. Anal. Appl., 340 (2008), 1145-1152. doi: 10.1016/j.jmaa.2007.09.038
    [26] K. I. Noor, A. Muhammad, On analytic functions with generalized bounded Mocanu variation, Appl. Math. Comput., 196 (2008), 802-811.
    [27] K. I. Noor, S. N. Malik, On generalized bounded Mocanu variation associated with conic domain, Math. Comput. Model., 55 (2012), 844-852. doi: 10.1016/j.mcm.2011.09.012
    [28] K. Noshiro, On the theory of schlicht functions, J. Fac. Sci. Hokkaido Univ. Jap., 2 (1934), 129-135.
    [29] M. Nunokawa, On the order of strongly starlikeness of strongly convex functions, Proc. Japan Acad. Ser. A., 69 (1993), 234-237. doi: 10.3792/pjaa.69.234
    [30] M. Nunokawa, J. Sokół, On order of strongly starlikeness in the class of uniformly convex functions, Math. Nachr., 288 (2015), 1003-1008. doi: 10.1002/mana.201400091
    [31] H. Orhan, E. Deniz, D. Raducanu, The Fekete-Szegö problem for subclasses of analytic functions defined by a differential operator related to conic domains, Comput. Math. Appl., 59 (2010), 283-295. doi: 10.1016/j.camwa.2009.07.049
    [32] F. M. Sakar, S. M. Aydogan, Subclass of m-quasiconformal harmonic functions in association with Janowski starlike functions, Appl. Math. Comput., 319 (2018), 461-468.
    [33] J. Sokół, M. Nunokawa, On some class of convex functions, C. R. Acad. Sci. Paris, Ser. I., 353 (2015), 427-431. doi: 10.1016/j.crma.2015.03.002
    [34] J. Sokół, R. W. Ibrahim, M. Z. Ahmad, Inequalities of harmonic univalent functions with connections of hypergeometric functions, Open Math., 13 (2015), 691-705.
    [35] J. Sokół, A. Wisniowska, On some classes of starlike functions related with parabola, Folia Sci. Univ. Tech. Resov., 28 (1993), 35-42.
    [36] E. T. Whittaker, G. N. Watson, A course of modern analysis, Cambridge university press, 1958.
    [37] D. R. Wilken, J. Feng, A remark on convex and starlike functions, J. London Math. Soc., 21 (1980), 287-290.
  • This article has been cited by:

    1. Syed Ghoos Ali Shah, Saima Noor, Saqib Hussain, Asifa Tasleem, Akhter Rasheed, Maslina Darus, Rashad Asharabi, Analytic Functions Related with Starlikeness, 2021, 2021, 1563-5147, 1, 10.1155/2021/9924434
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3854) PDF downloads(397) Cited by(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog