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1. Introduction

Let A denote the class of functions f which are analytic in the open unit disk A = {z € C: |z] < 1},
normalized by the conditions f(0) = f’(0) — 1 = 0. So each f € A has series representation of the
form

fR =2+ a" (1.1)
n=2

For two analytic functions f and g, f is said to be subordinated to g (written as f < g) if there exists
an analytic function w with w(0) = 0 and |w(z)| < 1 for z € A such that f(z) = (g o w)(2).

A function f € A is said to be in the class S if f is univalent in A. A function f € Sis in class C of
normalized convex functions if f (A) is a convex domain. For 0 < @ < 1, Mocanu [23] introduced the
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class M, of functions f € ‘A such that w # 0 forall z € A and

R (1—a)zf'(Z)+a(Zf,(Z))/ >0 (z€A. (1.2)

f@ J (@)

Geometrically, f € M, maps the circle centred at origin onto @-convex arcs which leads to the
condition (1.2). The class M, was studied extensively by several researchers, see [1, 10-12, 24-27]
and the references cited therein.

A function f € § is uniformly starlike if f maps every circular arc I' contained in A with center at
{ € A onto a starlike arc with respect to f ({). A function f € C is uniformly convex if f maps every
circular arc I' contained in A with center { € A onto a convex arc. We denote the classes of uniformly
starlike and uniformly convex functions by UST and UCV, respectively. For recent study on these
function classes, one can refer to [7,9,13,19,20,31].

In 1999, Kanas and Wisniowska [15] introduced the class k-UCYV (k > 0) of k-uniformly convex
functions. A function f € A is said to be in the class k-UCYV if it satisfies the condition

Zf”(z)) 2|
1@ 1@
Inrecent years, many researchers investigated interesting properties of this class and its generalizations.
For more details, see [2—4, 1418, 30, 32, 35] and references cited therein.

In 2015, Sok6t and Nunokawa [33] introduced the class MN, a function f € MN if it satisfies the
condition

R(l + (z€A). (1.3)

1

zf" @)\ _ |2/ (@)
‘R(l + 70 ) > s (z € A).
In [28], it is proved that if R(f’) > 0 in A, then f is univalent in A. In 1972, MacGregor [21] studied
the class B of functions with bounded turning, a function f € B if it satisfies the condition R(f’) > 0
for z € A. A natural generalization of the class 8B is B(d;) (0 < §; < 1), a function f € B(¢,) if it

satisfies the condition

R(f'@@)>6 (zeA 06 <1), (1.4)

for details associated with the class B(d;) (see [5, 6,34]).
Motivated essentially by the above work, we now introduce the following class k-Q(«a) of analytic
functions.

Definition 1. Let k > 0 and 0 < a@ < 1. A function f € A is said to be in the class k-Q (@) if it satisfies

the condition
% ((Zf’(z))’ (zf' ()
f@) 1@

It is worth mentioning that, for special values of parameters, one can obtain a number of well-known
function classes, some of them are listed below:

)>k‘(1 -a)f'(Q)+a -1 (ze€A). (1.5)

1. k-Q(1) = k-UCYV;
2. 0-Q(a) =C.

In what follows, we give an example for the class k-Q ().
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Example 1. The function f(z) = <= (A # 0) is in the class k-Q (@) with

1-Az

L < 1 -b?
b\ +a)[b(A+a)+2]+4

(b = |AD. (1.6)

The main purpose of this paper is to establish several interesting relationships between k-Q(a) and
the class B(0) of functions with bounded turning.

2. Preliminaries

To prove our main results, we need the following lemmas.
Lemma 1. ( [8]) Let h be analytic in Awith h(0)=1,8>0and 0 <y, < 1. If

h(z) + ﬁZZ;g) P (1 :jyl)z

b

then
1+(1-26
h(z) < u’

1-2z

where

L Cn-p V@ -+ 88

2.1

Lemma 2. Let h be analytic in A and of the form
) =1+ Y b2 (by#0)

with h(z) # 0 in A. If there exists a point zo (1zol < 1) such that larg h(z)| < 2 (2| < lzol) and |arg h (zo)| =

20/ (z0)

) = ilp, where

p
> for some p > 0, then

’> (c + %) (argh (z0) = %),

NS

t<-3(c+1) (argh(z) = -2,

and (h(z0))""? = +ic (¢ > 0).
This result is a generalization of the Nunokawa’s lemma [29].

Lemma 3. ( [37] ) Let € be a positive measure on [0, 1]. Let F be a complex-valued function defined
on A X [0, 1] such that F(.,t) is analytic in A for each t € [0, 1] and F (z,.) is e-integrable on [0, 1] for
all z € A. In addition, suppose that R(F (z,t)) > 0, F(-r,1) is real and R(1/F(z,1)) > 1/F(-r,1) for
|zl <r<landtel0,1]. IfF(z) = fol F (z,1) de(t), then R (1/F(2)) > 1/F(-r).
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Lemmad. ([22])If-1<D<C <1, 41 >0and R (y,) > —A; (1 = C) / (1 — D), then the differential
equation

78’ (z 1+Cz
s(z) + © _ _ (ze )
s +y, 1+Dz
has a univalent solution in A given by
21721+ Dy (€-D)/D v (D + 0)

Ay 7 e (1 pp i ©DPgy Ay
s(z) =
A1+ 11Cz
7121102 _ _
A ‘Etﬁl"'yz_le‘lladt A (D - O)'

Ifr(2) = 1 + c12+ 22 + - - - satisfies the condition

ro+ @D 1A
Lr()+y, 14Dz

then
1+Cz

1+D7

r(z) < s(z) <
and s(z) is the best dominant.

Lemma 5. ( [36, Chapter 14] ) Let w, xand y # 0,—1,-2, ... be complex numbers. Then, for ‘R(y) >
R(x) > 0, one has
1 )—X— -w
2- 2G1 (W’ X, ya Z) = 2G1 (x7 w, y? Z);
3. 2G (w.x.312) = (1= 27 3Gy (wy - %,y ),

3. Main results

Firstly, we derive the following result.

Theorem 1. Let 0O < a < 1 and k > ﬁ If f € k-Q(a), then [ € B(6), where

5 Q- D)+ /- +82 (ﬂ 1+ak k—ak—l)

4 “rk-o' T ki -w

3.1

Proof. Let f” = #, where #i is analytic in A with A(0) = 1. From inequality (1.5) which takes the form

Q%(Hz;lz(g))ﬂ‘(l_a)h(z)m(uZ;Z’(S))q‘ :k‘l—a—h(z)+ah(z)—aZZ(S) ’
we find that 1 k zh(z) k—ak-1
+ ak zh(z — @K —
%(h@ T k- a) 1) ) T k-

which can be rewritten as

7h(2) _l+ak  k—ak-1
%(ﬁ(Z)+ﬂ%)>ﬂ (ﬂ—k(l_a),,u— k(l—a) )
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The above relationship can be written as the following Briot-Bouquet differential subordination

() 1+0-2wz

fi(z) + A o < -

Thus, by Lemma 1, we obtain

1+(1-20
< u (3.2)
l-z
where ¢ is given by (3.1). The relationship (3.2) implies that f € B (5). We thus complete the proof of
Theorem 1. o
Theorem 2. Let 0 < < 1,0<B <1l c>0k>1Ln2m+1(meN), |f| 2 4(c+1)and
‘aﬁé’i(l —a/)cﬁsin/%ﬂ > 1. (3.3)
If
fO=2+ ) ad" (@ #0)
n=m+1
and f € k-Q(«a), then [ € B(By), where
Bo =min{B: B € (0,1)}
such that (3.3) holds.
Proof. By the assumption, we have
F@=h@) =1+ e (n#0), (34)
In view of (1.5) and (3.4), we get
' (2) ' (z)
R+ >kl(1-a)fi(z) +afl + —1f.
155 |( e vel1+ 52) ‘

If there exists a point z; € A such that
s
g <57 (e <leol: 0< B < 1)
and 5
s
jarg 71 @) == (0 <p<1),

then from Lemma 2, we know that
2o’ (20) _ if,B,
f(20)

where
(h(zo)'? = xic (¢ > 0)
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and
¢ > g(c+ %) (arg 71 (z0) = &),
l:
t<-t(c+?i) (argh(zo) = -5).
For the case
() =,
we get
%(1 4 2of (ZO)):%U +ilB) = 1. (3.5)
7(z0)

Moreover, we find from (3.3) that

k|(1 = @) i(zo) + a(l + ZOh’(ZO)) - 1‘

fi(z0)
B 3 3 207’ (20)
=k|(1-a)((zo) - 1) +a 7z0)
=k|(1 - o) |(icf — 1] + ia,[%" (3.6)
2 2
—k \/(1 —ay (cﬂ cos%" - 1) ; [aﬁ{’ (1-a)cf sin%”]

>1.

By virtue of (3.5) and (3.6), we have

% (1 L H @) ZOh(Zo)) ~ 1l ’

(zo) 7(20)

which is a contradiction to the definition of k-Q(a). Since By = min{B : B € (0, 1)} such that (3.3)
holds, we can deduce that f € B(8)).
By using the similar method as given above, we can prove the case
pr

arg fi(zo) = Y

)sk‘(l—am@o)m(u

is true. The proof of Theorem 2 is thus completed. O

Theorem 3. If0 < <1and0<v < 1. If f € k-Q(a), then

2 1 1\
R > [2G1(B(1—V),1§B+1;§)] ,

or equivalently, k-Q (@) C B (vy), where

2 1 B
VOZ[zG] (,E(l_#)’l;,g+1’§)] .
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Proof. For

2 1 1

w=—-0-v),x=—=,y==-+1,

B B B

we define
! r
F) =1+ Dz)wf V(1 4+ Diz)™dt = ﬁ Gy (1,w,y; L) 3.7
0 () z—1

To prove k-Q(a) C B (vy), it suffices to prove that
inf (R(g (@)} = ¢ (-1).

which need to show that

R (1/F(z)) = 1/F(-1).
By Lemma 3 and (3.7), it follows that

1
F(z) = f F(z,1)de(1),
0

where
—_ 1 —<
F(Z,f)—m (OSZSI),
and '
— —X w—1 _ -w—1
de(t) = FOOE G = W)t (1-1¢y dt,

which is a positive measure on [0, 1].
It is clear that R(F(z,1)) > 0 and F(—r, 1) is real for |zl < r < 1 and ¢ € [0, 1]. Also

1\ L (1-U-pz\_1+0-Dr 1
%(H;n)'%( -z )2 l+r  F(-r0

for |z| < r < 1. Therefore, by Lemma 3, we get
R(1/F(z)) = 1/F(-r).

If we let r — 17, it follows that
R (1/F(z)) = 1/F(-1).

Thus, we deduce that k-Q (@) C B(vp). O
Theorem 4. Let0 < a < 1 and k > ﬁ If f € k-Q (), then

: _ 1
(@) <s(2) = 2’

2 1 z 1+ ak
=G5+ 1) [a= .
8@ =2 %a At z—l) ( Ml—aJ

where

AIMS Mathematics Volume 5, Issue 3, 1926-1935.



1933

Proof. Suppose that f” = #i. From the proof of Theorem 1, we see that

74 1 1-2 1 1 k k—ak—-1
h(z)+zl (z)< +( ,U)z< +z :l;#:“—_
1h(2) l-z l-z k(l-a) k(1 - a)
Ifweset4; = 1,7, =0,C =1and D = -1 in Lemma 4, then

Z% (1 — Z)_%

h =— = :
R e /A [ 1=1(1 = 7 ar

By putting ¢ = uz, and using Lemma 5, we obtain

1 1 2 1 2\
h(z) < s(z) = = = [2G1 (—, I,—=+1; —)] ,
8@ 11— [Mut1 (1 - uz) A du 7 Tz-1
which is the desired result of Theorem 4. O
Acknowledgments

The present investigation was supported by the Key Project of Education Department of Hunan
Province under Grant no. 19A097 of the P. R. China. The authors would like to thank the referees for
their valuable comments and suggestions, which was essential to improve the quality of this paper.

Conflict of interest

The authors declare no conflict of interest.

References

1. J. W. Alexander, Functions which map the interior of the unit circle upon simple regions, Ann.
Math., 17 (1915), 12-22.

2. M. Arif, A. Ali, J. Muhammad, Some sufficient conditions for alpha convex functions of order beta,
VFAST Trans. Math., 1 (2013), 8-12.

3. H. Arikan, H. Orhan, M. Caglar, Fekete-Szego inequality for a subclass of analytic functions defined
by Komatu integral operator, AIMS Mathmatics, 5 (2020), 1745-1756.

4. S. M. Aydogan, F. M. Sakar, Radius of starlikeness of p-valent A-fractional operator, Appl. Math.
Comput., 357 (2019), 374-378.

5. D. Bshouty, A. Lyzzaik, F. M. Sakar, Harmonic mappings of bounded boundary rotation, Proc.
Amer. Math. Soc., 146 (2018), 1113-1121.

6. S. Bulut, Some applications of secondorder differential subordination on a class of analytic
functions defined by Komatu integral operator, ISRN Math. Anal., 2014 (2014), 1-6.

AIMS Mathematics Volume 5, Issue 3, 1926-1935.



1934

7.

10.

11.

12.

13

15.

16.

17.

18.

19.
20.
21.

22.

23.

24.

25.

26.

27.

M. Caglar, E. Deniz, R. Szdsz, Radii of a-convexity of some normalized Bessel functions of the first
kind, Results Math., 72 (2017), 2023-2035.

M. Darus, S. Hussain, M. Raza, On a subclass of starlike functions, Results Math., 73 (2018),
1-12.

E. Deniz, R. Szasz, The radius of uniform convexity of Bessel functions, J. Math. Anal. Appl., 453
(2017), 572-588.

J. Dziok, Characterizations of analytic functions associated with functions of bounded variation,
Ann. Polon. Math., 109 (2013), 199-207.

J. Dziok, Classes of functions associated with bounded Mocanu variation, J. Inequal. Appl., 2013
(2013), 349.

J. Dziok, Generalizations of multivalent Mocanu functions, Appl. Math. Comput., 269 (2015),
965-971.

. A. W. Goodman, On uniformly convex functions, Ann. Polon. Math., 56 (1991), 87-92.
14.

S. Kanas, A. Wisniowska, Conic regions and k-uniform convexity II, Folia Sci. Univ. Tech. Resov.,
22 (1998), 65-78.

S. Kanas, A. Wisniowska, Conic regions and k-uniform convexity, J. Comput. Appl. Math., 105
(1999), 327-336.

S. Kanas, H. M. Srivastava, Linear operators associated with k-uniformly convex functions, Integral
Transforms Spec. Funct., 9 (2000), 121-132.

S. Kanas, Techniques of the differential subordination for domain bounded by conic sections, Int.
J. Math. Sci., 38 (2003), 2389-2400.

A. Lecko, A. Wisniowska, Geometric properties of subclasses of starlike functions, J. Comput.
Appl. Math., 155 (2003), 383-387.

W. Ma, D. Minda, Uniformly convex functions, Ann. Polon. Math., 57 (1992), 165-175.
W. Ma, D. Minda, Uniformly convex functions II, Ann. Polon. Math., 58 (1993), 275-285.

T. M. MacGregor, Geometric problems in complex analysis, Amer. Math. Monthly, 79 (1972),
447-468.

S. S. Miller, P. T. Mocanu, Univalent solutions of Briot-Bouquet differential subordination, J. Diff.
Equations, 56 (1985), 297-309.

P. T. Mocanu, Une propriete de convexite generalisee dans la theorie de la representation
conforme, Mathematica, 34 (1969), 127-133.

K. I. Noor, W. Ul-Haq, On some implication type results involving generalized bounded Mocanu
variations, Comput. Math. Appl., 63 (2012), 1456-1461.

K. I. Noor, S. Hussain, On certain analytic functions associated with Ruscheweyh derivatives and
bounded Mocanu variation, J. Math. Anal. Appl., 340 (2008), 1145-1152.

K. I. Noor, A. Muhammad, On analytic functions with generalized bounded Mocanu variation,
Appl. Math. Comput., 196 (2008), 802—-811.

K. I. Noor, S. N. Malik, On generalized bounded Mocanu variation associated with conic domain,
Math. Comput. Model., 55 (2012), 844-852.

AIMS Mathematics Volume 5, Issue 3, 1926-1935.



1935

28

29.

30.

31.

32.

33.

34.

35.

36.
37.

. K. Noshiro, On the theory of schlicht functions, J. Fac. Sci. Hokkaido Univ. Jap., 2 (1934), 129-
135.

M. Nunokawa, On the order of strongly starlikeness of strongly convex functions, Proc. Japan Acad.
Ser. A., 69 (1993), 234-237.

M. Nunokawa, J. Sok6t, On order of strongly starlikeness in the class of uniformly convex functions,
Math. Nachr., 288 (2015), 1003-1008.

H. Orhan, E. Deniz, D. Raducanu, The Fekete-Szego problem for subclasses of analytic functions
defined by a differential operator related to conic domains, Comput. Math. Appl., 59 (2010), 283—
295.

F. M. Sakar, S. M. Aydogan, Subclass of m-quasiconformal harmonic functions in association with
Janowski starlike functions, Appl. Math. Comput., 319 (2018), 461-468.

J. Sokét, M. Nunokawa, On some class of convex functions, C. R. Acad. Sci. Paris, Ser. 1., 353
(2015), 427-431.

J. Sokét, R. W. Ibrahim, M. Z. Ahmad, [Inequalities of harmonic univalent functions with
connections of hypergeometric functions, Open Math., 13 (2015), 691-705.

J. Sokét, A. Wisniowska, On some classes of starlike functions related with parabola, Folia Sci.
Univ. Tech. Resov., 28 (1993), 35-42.

E. T. Whittaker, G. N. Watson, A course of modern analysis, Cambridge university press, 1958.

D. R. Wilken, J. Feng, A remark on convex and starlike functions, J. London Math. Soc., 21 (1980),
287-290.

©2020 the Author(s), licensee AIMS Press. This
is an open access article distributed under the

@ AIMS Press terms of the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 5, Issue 3, 1926-1935.


http://creativecommons.org/licenses/by/4.0

	Introduction
	Preliminaries
	Main results

