Research article

Fekete-Szegö inequality for a subclass of analytic functions defined by Komatu integral operator

  • Received: 21 December 2019 Accepted: 07 February 2020 Published: 14 February 2020
  • MSC : 30C45, 30C50

  • In this paper, we introduce and study a new subclass of analytic functions defined by $\mathcal{D}^{k}\mathcal{L} _{a}^{\delta }f(z)$ differential operator in the unit disk. For this subclass, the Fekete-Szegö type coefficient inequalities are derived.

    Citation: Hava Arıkan, Halit Orhan, Murat Çağlar. Fekete-Szegö inequality for a subclass of analytic functions defined by Komatu integral operator[J]. AIMS Mathematics, 2020, 5(3): 1745-1756. doi: 10.3934/math.2020118

    Related Papers:

  • In this paper, we introduce and study a new subclass of analytic functions defined by $\mathcal{D}^{k}\mathcal{L} _{a}^{\delta }f(z)$ differential operator in the unit disk. For this subclass, the Fekete-Szegö type coefficient inequalities are derived.


    加载中


    [1] H. R. Abdel-Gawad, D. K. Thomas, The Fekete Szegö problem for strongly close-to-convex functions, Proc. Amer. Math. Soc., 114 (1992), 345-349.
    [2] J. W. Alexander, Function which map the interior of the unit circle upon simple regions, Annals of

    Math. Second Series, 17 (1915), 12-22. doi: 10.2307/2007212

    [3] S. D. Bernardi, Convex and starlike univalent functions, Trans. Amer. Math. Soc., 135 (1965), 429-446.
    [4] S. Bulut, Fekete-Szegö problem for subclasses of analytic functions defined by Komatu integral operator, Arab. J. Math., 2 (2013), 177-183. doi: 10.1007/s40065-012-0062-x
    [5] A. Chonweerayoot, D. K. Thomas, W. Upakarnitikaset, On the Fekete Szegö theorem for close-toconvex functions, Publ. Inst. Math., 66 (1992), 18-26.
    [6] M. Darus, D. K. Thomas, On the Fekete Szegö theorem for close-to-convex functions, Mathematica Japonica, 47 (1998), 125-132.
    [7] E. Deniz, H. Orhan, The Fekete Szegö problem for a generalized subclass of analytic functions, Kyungpook Math. J., 50 (2010), 37-47.
    [8] M. Fekete, G. Szegö, Eine Bemerkung über ungerade schlichte Funktionen, J. London Math. Soc., 8 (1933), 85-89.
    [9] T. M. Flett, The dual of an inequality of Hardy and Littlewood and some related inequation, J. Math. Anal. Appl., 38 (1972), 746-765. doi: 10.1016/0022-247X(72)90081-9
    [10] I. B. Jung, Y. C. Kim, H. M. Srivastava, The Hardy space of analytic function associated with certain one-paprameter families of integral operators, J. Math. Anal. Appl., 176 (1993), 138-147. doi: 10.1006/jmaa.1993.1204
    [11] S. Kanas, H. E. Darwish, Fekete Szegö problem for starlike and convex functions of complex order, Appl. Math. Lett., 23 (2010), 777-782.
    [12] F. R. Keogh, E. P. Merkes, A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc., 20 (1969), 8-12. doi: 10.1090/S0002-9939-1969-0232926-9
    [13] W. Koepf, On the Fekete Szegö problem for close-to-convex functions, Proc. Amer. Math. Soc., 101 (1987), 89-95.
    [14] Y. Komatu, On analytical prolongation of a family of operators, Mathematica (cluj), 32 (1990), 141-145.
    [15] R. J. Libera, Some classes of regular univalent functions, Proc. Amer. Math. Soc., 16 (1965), 755-758. doi: 10.1090/S0002-9939-1965-0178131-2
    [16] R. R. London, Fekete Szegö inequalities for close-to-convex functions, Proc. Amer. Math. Soc., 117 (1993), 947-950.
    [17] W. Ma, D. Minda, A unified treatment of some special classes of univalent functions, In: Proceeding of Conference on Complex Analytic, (1994), 157-169.
    [18] R. N. Mohapatra, T. Panigrahi, Second Hankel determinant for a class of analytic functions defined by Komatu integral operator, Rend. Mat. Appl., 7 (2019), 1-8.
    [19] M. A. Nasr, M. K. Aouf, Starlike function of complex order, J. Natural Sci. Math., 25 (1985), 1-12.
    [20] M. A. Nasr, M. K. Aouf, On convex functions of complex order, Mansoura Science Bulletin, 9 (1982), 565-582.
    [21] H. Orhan, E. Deniz, D. Rãducanu, The Fekete-Szegö problem for subclasses of analytic functions defined by a differential operator related to conic domains, Comput. Math. Appl., 59 (2010), 283-295. doi: 10.1016/j.camwa.2009.07.049
    [22] H. Orhan, D. Rãducanu, Fekete-Szegö problem for strongly starlike functions associated with generalized hypergeometric functions, Math. Comput. Model., 50 (2009), 430-438. doi: 10.1016/j.mcm.2009.04.014
    [23] H. Orhan, E. Deniz, M. Çağlar, Fekete-Szegö problem for certain subclasses of analytic functions, Demonstratio Math., 45 (2012), 835-846.
    [24] A. Pfluger, The Fekete-Szegö inequality by a variational method, Annales Academiae Scientiorum Fennicae Seria A. I., 10 (1985), 447-454.
    [25] C. Pommerenke, Univalent functions, In: Studia Mathematica Mathematische Lehrbucher, Vandenhoeck and Ruprecht, 1975.
    [26] G. S. Sãlãgean, Subclasses of univalent functions, Complex analysis-Proceedings 5th RomanianFinnish Seminar, Bucharest, 1013 (1983), 362-372.
    [27] B. A. Uralegaddi, C. Somanatha, Certain classes of univalent functions, In: Current topics in analytic function theory, 1992, 371-374.
    [28] P. Wiatrowski, The coefficients of a certain family of holomorphic functions, Univ. Lodzk. Nauk. Math. Przyrod. Ser. II, Zeszyt, 39 (1971), 75-85.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3861) PDF downloads(560) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog