Research article

Radial stationary solutions to a class of wave system as well as their asymptotical behavior

  • Received: 16 October 2019 Accepted: 27 November 2019 Published: 08 January 2020
  • MSC : 35J20

  • For a stationary version to a class of wave system $ \left\{ \begin{aligned} & -\left(a_1 + b_1\int_{\mathbb{R}^3} {|\nabla u|^2} dx + c\int_{\mathbb{R}^3} {|\nabla v|^2} dx\right) \Delta u + u = \frac{p}{Q} |u|^{p-2}u|v|^q, \\ & -\left(a_2 + b_2\int_{\mathbb{R}^3} {|\nabla v|^2} dx +c\int_{\mathbb{R}^3} {|\nabla u|^2} dx\right) \Delta v + v = \frac{q}{Q} |u|^p |v|^{q-2}v, \end{aligned} \right. $ $u, v \in H_r^1 (\mathbb{R}^3)$, by establishing a variant variational identity and constraint set, we prove that for $a_s \gt 0$, $b_s \gt 0$, $(s = 1, \ 2)$, $c\geq 0$ and $p \gt 1$, $q \gt 1$ with $Q: = p+q \in (2, 6)$, the system admits a positive radially symmetric ground state solution in $H_r^1 (\mathbb{R}^3)\times H_r^1 (\mathbb{R}^3)$. Moreover, for any fixed $a_1 \gt 0$ and $a_2 \gt 0$, as $b_1^2 + b_2^2 + c^2 \to 0$, this solution converges to a positive radially symmetric solution to $ - a_1 \Delta u + u = \frac{p}{Q} |u|^{p-2}u|v|^q, \quad - a_2 \Delta v + v = \frac{q}{Q} |u|^p |v|^{q-2}v,\quad u,\ v\in H_r^1 (\mathbb{R}^3). $

    Citation: Jianqing Chen, Xiuli Tang. Radial stationary solutions to a class of wave system as well as their asymptotical behavior[J]. AIMS Mathematics, 2020, 5(2): 940-955. doi: 10.3934/math.2020065

    Related Papers:

  • For a stationary version to a class of wave system $ \left\{ \begin{aligned} & -\left(a_1 + b_1\int_{\mathbb{R}^3} {|\nabla u|^2} dx + c\int_{\mathbb{R}^3} {|\nabla v|^2} dx\right) \Delta u + u = \frac{p}{Q} |u|^{p-2}u|v|^q, \\ & -\left(a_2 + b_2\int_{\mathbb{R}^3} {|\nabla v|^2} dx +c\int_{\mathbb{R}^3} {|\nabla u|^2} dx\right) \Delta v + v = \frac{q}{Q} |u|^p |v|^{q-2}v, \end{aligned} \right. $ $u, v \in H_r^1 (\mathbb{R}^3)$, by establishing a variant variational identity and constraint set, we prove that for $a_s \gt 0$, $b_s \gt 0$, $(s = 1, \ 2)$, $c\geq 0$ and $p \gt 1$, $q \gt 1$ with $Q: = p+q \in (2, 6)$, the system admits a positive radially symmetric ground state solution in $H_r^1 (\mathbb{R}^3)\times H_r^1 (\mathbb{R}^3)$. Moreover, for any fixed $a_1 \gt 0$ and $a_2 \gt 0$, as $b_1^2 + b_2^2 + c^2 \to 0$, this solution converges to a positive radially symmetric solution to $ - a_1 \Delta u + u = \frac{p}{Q} |u|^{p-2}u|v|^q, \quad - a_2 \Delta v + v = \frac{q}{Q} |u|^p |v|^{q-2}v,\quad u,\ v\in H_r^1 (\mathbb{R}^3). $


    加载中


    [1] C. O. Alves, F. J. S. A. Correa, T. F. Ma, Positive solutions for a quasilinear elliptic equation of Kirchhoff type, Comput. Math. Appl., 49 (2005), 85-93. doi: 10.1016/j.camwa.2005.01.008
    [2] G. Autuori, A. Fiscella, P. Pucci, Stationary Kirchhoff problems involving a fractional elliptic operator and a critical nonlinearity, Nonlinear Analysis, 125 (2015), 699-714. doi: 10.1016/j.na.2015.06.014
    [3] H. Brezis, E. Lieb, A relation betweenn pointwise convergence of functions and convergence of functionals, P. AM. Math. Soc., 88 (1983), 486-490. doi: 10.1090/S0002-9939-1983-0699419-3
    [4] M. Caponi, P. Pucci, Existence theorems for entire solutions of stationary Kirchhoff fractional p-Laplacian equations, Ann. Mat. Pura Appl., 195 (2016), 2099-2129. doi: 10.1007/s10231-016-0555-x
    [5] L. D'Onofrio, A. Fiscella, G. Molica Bisci, Perturbation methods for nonlocal Kirchhoff type problems, Fract. Calc. Appl. Anal., 20 (2017), 829-853.
    [6] P. D'Ancona, S. Spagnoto, Global solvability for the degenerate Kirchhoff equation with real analytic data, Invent. Math., 108 (1992), 247-262. doi: 10.1007/BF02100605
    [7] Y. Deng, S. Peng, W. Shuai, Existence and asymptotic behavior of nodal solutions for the Kirchhofftype problems in $\mathbb{R}^3$, J. Funct. Anal., 269 (2015), 3500-3527.
    [8] A. Arosio and S. Panizzi, On the well-posedness of the Kirchhoff string, Trans. Amer. Math. Soc., 348 (1996), 305-330. doi: 10.1090/S0002-9947-96-01532-2
    [9] G. M. Figueiredo, N. Ikoma, J. R. S. Júnior, Existence and concentration result for the Kirchhoff type equations with general nonlinearities, Arch. Rational Mech. Anal., 213 (2014), 931-979. doi: 10.1007/s00205-014-0747-8
    [10] Z. Guo, Ground states for Kirchhoff equations without compact condition, J. Differ. Equations, 259 (2015), 2884-2902. doi: 10.1016/j.jde.2015.04.005
    [11] X. He, W. Zou, Existence and concentration behavior of positive solutions for a Kirchhoff equation in $\mathbb{R}^3$, J. Differ. Equations, 252 (2012), 1813-1834.
    [12] J. H. Jin, X. Wu, Infinitely many radial solutions for Kirchhoff-type problems in $\mathbb{R}^N$, J. Math. Anal. Appl., 369 (2010), 564-574.
    [13] G. Kirchhoff, Vorlesungen Uber Mechanik, Teubner, Leipzig, 1883.
    [14] G. Li, H. Ye, Existence of positive ground state solutions for the nonlinear Kirchhoff type equations in $\mathbb{R}^3$, J. Differ. Equations, 257 (2014), 566-600.
    [15] Z. P. Liang, F. Y. Li, J. P. Shi, Positive solutions to Kirchhoff type equations with nonlinearity having prescribed asymptotic behavior, Ann. Inst. H. Poincare Anal. Non Lineaire, 31 (2014), 155-167. doi: 10.1016/j.anihpc.2013.01.006
    [16] Y. H. Li, F. Y. Li, J. P. Shi, Existence of a positive solution to Kirchhoff type problems without compactness conditions, J. Differ. Equations, 253 (2012), 2285-2294. doi: 10.1016/j.jde.2012.05.017
    [17] J. L. Lions, On some questions in boundary value problems of mathematical physics, NorthHolland Mathematics Studies, 30 (1978), 284-346. doi: 10.1016/S0304-0208(08)70870-3
    [18] Z. Liu, S. Guo, Existence of positive ground state solutions for Kirchhoff type problems, Nonlinear Analysis, 120 (2015), 1-13. doi: 10.1016/j.na.2014.12.008
    [19] D. Lü, Existence and multiplicity results for perturbed Kirchhoff-type Schrodinger systems in $\mathbb{R}^3$, Comput. Math. Appl., 68 (2014), 1180-1193.
    [20] T. Matsuyama, M. Ruzhansky, Global well-posedness of Kirchhoff systems, J. Math. Pures Appl., 100 (2013), 220-240. doi: 10.1016/j.matpur.2012.12.002
    [21] A. Ourraoui, On a p- Kirchhoff problem involving a critical nonlinearity, C. R. Math. Acad. Sci. Paris Ser. I., 352 (2014), 295-298. doi: 10.1016/j.crma.2014.01.015
    [22] P. Piersanti, P. Pucci, Entire solutions for critical p-fractional Hardy Schrödinger Kirchhoff equations, Publ. Mat., 62 (2018), 3-36. doi: 10.5565/PUBLMAT6211801
    [23] D. Ruiz, The Schrödinger-Poisson equation under the effect of a nonlinear local term, J. Funct. Anal., 237 (2006), 655-674. doi: 10.1016/j.jfa.2006.04.005
    [24] D. Sun, Z. Zhang, Uniqueness, existence and concentration of positive ground state solutions for Kirchhoff type problems in $\mathbb{R}^3$, J. Math. Anal. Appl., 461 (2018), 128-149.
    [25] X. Wu, Existence of nontrivial solutions and high energy solutions for Schrödinger-Kirchhoff-type equations in $\mathbb{R}^3$, Nonlinear Anal-Real World Applications, 12 (2011), 1278-1287.
    [26] F. Zhou, K. Wu, X. Wu, High energy solutions of systems of Kirchhoff-type equations on $\mathbb{R}^N$, Comput. Math. Appl., 66 (2013), 1299-1305.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3103) PDF downloads(305) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog