Research article

Anisotropic variation formulas for imaging applications

  • Received: 16 April 2019 Accepted: 15 May 2019 Published: 30 May 2019
  • MSC : 49Mxx, 68U05, 65D18, 65D25

  • The discrete anisotropic variation, sometimes referred to as the anisotropic gradient, and its integral are important in a variety of image processing applications and set boundary measure computations. We provide a method for computing the weight factors for general anisotropic variation approximations of functions on ${\mathbb{R}^2}$. The method is developed in the framework of regular arrays, but applicability extends to arbitrary finite discrete sampling strategies. The mathematical model and computations use concepts from vector calculus and introductory linear algebra so the discussion is accessible for upper-division undergraduate students.

    Citation: Thomas Asaki, Heather A. Moon. Anisotropic variation formulas for imaging applications[J]. AIMS Mathematics, 2019, 4(3): 576-592. doi: 10.3934/math.2019.3.576

    Related Papers:

  • The discrete anisotropic variation, sometimes referred to as the anisotropic gradient, and its integral are important in a variety of image processing applications and set boundary measure computations. We provide a method for computing the weight factors for general anisotropic variation approximations of functions on ${\mathbb{R}^2}$. The method is developed in the framework of regular arrays, but applicability extends to arbitrary finite discrete sampling strategies. The mathematical model and computations use concepts from vector calculus and introductory linear algebra so the discussion is accessible for upper-division undergraduate students.


    加载中


    [1] V. Caselles, A. Chambolle, D. Cremers, et al. An introduction to total variation for image analysis, In: Fornasier M. Editor, Theoretical Foundations and Numerical Methods for Sparse Recovery, De Gruyters, 2010.
    [2] R. H. Chan, S. Setzer and G. Steidl, Inpainting by flexible Haar-wavelet shrinkage, SIAM J. Imaging Sci., 1 (2008), 273-293. doi: 10.1137/070711499
    [3] T. F. Chan and S. Esedoḡlu, A multiscale algorithm for Mumford-Shah image segmentation, UCLA CAM Report 03-57, 2003.
    [4] H. Chen, C. Wang, Y. Song, et al. Split Bregmanized anisotropic total variation model for image deblurring, J. Vis. Commun. Image R., 31 (2015), 282-293. doi: 10.1016/j.jvcir.2015.07.004
    [5] R. Choksi, Y. V. Gennip and A. Oberman, Anisotropic total variation regularized L1-approximation and denoising/deblurring of 2D bar code, Inverse Probl. Imag., 5 (2010), 591-617.
    [6] L. Condat, Discrete total variation: New definition and minimization, SIAM J. Imaging Sci., 10 (2017), 1258-1290. doi: 10.1137/16M1075247
    [7] V. Duval, J. F. Aujol and Y. Gousseau, The TVL1 model: A geometric point of view, J. Multiscale Model. Simulat., 8 (2009), 154-189. doi: 10.1137/090757083
    [8] S Esedoḡlu and S. J. Osher, Decomposition of images by the anisotropic Rudin-Osher-Fatemi model, Commun. Pure Appl. Math., 57 (2004), 1609-1626. doi: 10.1002/cpa.20045
    [9] D. Goldfarb andW. Yin, Parametric maximum flow algorithms for fast total variation minimization, SIAM J. Sci. Comput., 31 (2009), 3712-3743. doi: 10.1137/070706318
    [10] T. Goldstein and S. Osher, The split Bregman method for L1-regularized problems, SIAM J. Imaging Sci., 2 (2009), 323-343. doi: 10.1137/080725891
    [11] Y. Lou, T. Zeng, S. Osher, et al. A weighted difference of anisotropic and isotropic total variation model for image processing, SIAM J. Imaging Sci., 8 (2015), 1798-1823. doi: 10.1137/14098435X
    [12] S. P. Morgan and K. R. Vixie, L1TV computes the flat norm for boundaries, Abstr. Appl. Anal., 2007 (2007), Article ID 45153.
    [13] L. B. Montefusco, D. Lazzaro and S. Papi, Fast sparse image reconstruction using adaptive nonlinear filtering, IEEE Trans. Image Process., 20 (2011), 534-544. doi: 10.1109/TIP.2010.2062194
    [14] H. A. Moon and T. Asaki, A finite hyperplane traversal Algorithm for 1-dimensional L1pTV minimization, for 0 < p ≤ 1, Comput. Optim. Appl., 61 (2015), 783-818.
    [15] H. T. Nguyen, M. Worring and R. V. D. Boomgaard, Watersnakes: Energy-driven watershed segmentation, IEEE T. Pattern Anal., 25 (2003), 330-342. doi: 10.1109/TPAMI.2003.1182096
    [16] D. Strong and T. F. Chan, Edge-preserving and scale-dependent properties of total variation regularization, Inverse Probl., 19 (2003), S165-S187.
  • Reader Comments
  • © 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3791) PDF downloads(587) Cited by(1)

Article outline

Figures and Tables

Figures(7)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog