Citation: Thomas Asaki, Heather A. Moon. Anisotropic variation formulas for imaging applications[J]. AIMS Mathematics, 2019, 4(3): 576-592. doi: 10.3934/math.2019.3.576
[1] | V. Caselles, A. Chambolle, D. Cremers, et al. An introduction to total variation for image analysis, In: Fornasier M. Editor, Theoretical Foundations and Numerical Methods for Sparse Recovery, De Gruyters, 2010. |
[2] | R. H. Chan, S. Setzer and G. Steidl, Inpainting by flexible Haar-wavelet shrinkage, SIAM J. Imaging Sci., 1 (2008), 273-293. doi: 10.1137/070711499 |
[3] | T. F. Chan and S. Esedoḡlu, A multiscale algorithm for Mumford-Shah image segmentation, UCLA CAM Report 03-57, 2003. |
[4] | H. Chen, C. Wang, Y. Song, et al. Split Bregmanized anisotropic total variation model for image deblurring, J. Vis. Commun. Image R., 31 (2015), 282-293. doi: 10.1016/j.jvcir.2015.07.004 |
[5] | R. Choksi, Y. V. Gennip and A. Oberman, Anisotropic total variation regularized L1-approximation and denoising/deblurring of 2D bar code, Inverse Probl. Imag., 5 (2010), 591-617. |
[6] | L. Condat, Discrete total variation: New definition and minimization, SIAM J. Imaging Sci., 10 (2017), 1258-1290. doi: 10.1137/16M1075247 |
[7] | V. Duval, J. F. Aujol and Y. Gousseau, The TVL1 model: A geometric point of view, J. Multiscale Model. Simulat., 8 (2009), 154-189. doi: 10.1137/090757083 |
[8] | S Esedoḡlu and S. J. Osher, Decomposition of images by the anisotropic Rudin-Osher-Fatemi model, Commun. Pure Appl. Math., 57 (2004), 1609-1626. doi: 10.1002/cpa.20045 |
[9] | D. Goldfarb andW. Yin, Parametric maximum flow algorithms for fast total variation minimization, SIAM J. Sci. Comput., 31 (2009), 3712-3743. doi: 10.1137/070706318 |
[10] | T. Goldstein and S. Osher, The split Bregman method for L1-regularized problems, SIAM J. Imaging Sci., 2 (2009), 323-343. doi: 10.1137/080725891 |
[11] | Y. Lou, T. Zeng, S. Osher, et al. A weighted difference of anisotropic and isotropic total variation model for image processing, SIAM J. Imaging Sci., 8 (2015), 1798-1823. doi: 10.1137/14098435X |
[12] | S. P. Morgan and K. R. Vixie, L1TV computes the flat norm for boundaries, Abstr. Appl. Anal., 2007 (2007), Article ID 45153. |
[13] | L. B. Montefusco, D. Lazzaro and S. Papi, Fast sparse image reconstruction using adaptive nonlinear filtering, IEEE Trans. Image Process., 20 (2011), 534-544. doi: 10.1109/TIP.2010.2062194 |
[14] | H. A. Moon and T. Asaki, A finite hyperplane traversal Algorithm for 1-dimensional L1pTV minimization, for 0 < p ≤ 1, Comput. Optim. Appl., 61 (2015), 783-818. |
[15] | H. T. Nguyen, M. Worring and R. V. D. Boomgaard, Watersnakes: Energy-driven watershed segmentation, IEEE T. Pattern Anal., 25 (2003), 330-342. doi: 10.1109/TPAMI.2003.1182096 |
[16] | D. Strong and T. F. Chan, Edge-preserving and scale-dependent properties of total variation regularization, Inverse Probl., 19 (2003), S165-S187. |