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Abstract: The discrete anisotropic variation, sometimes referred to as the anisotropic gradient, and
its integral are important in a variety of image processing applications and set boundary measure
computations. We provide a method for computing the weight factors for general anisotropic variation
approximations of functions on R2. The method is developed in the framework of regular arrays,
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computations use concepts from vector calculus and introductory linear algebra so the discussion is
accessible for upper-division undergraduate students.
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1. Introduction

Given a function f : Ω→ R, Ω ⊆ R2, bounded. The variation of f is given by

Var f (x, y) = max
(u,v)∈R2

‖(u,v)‖=1

lim
α→0

∣∣∣∣∣ f (x + αu, y + αv) − f (x, y)
α

∣∣∣∣∣. (1.1)

In the case that f is differentiable, Var f (x, y) = |∇ f (x, y)|. Measures of the total variation, and its
generalization the total p-variation, in images are used to solve a variety of image and data processing
tasks through the use of variational minimization methods [1, 6].

One key application is noise removal [8, 11]. The total variation is an approximate measure of the
magnitude of the noise because noisy images have more pixel-to-pixel intensity variation. The left
and right images in Figure 1 show an image and a noisy version of the same scene, respectively. The
computed variation is about 18 times larger for the noisy image.
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Figure 1. Left: A grayscale image of a set of magnets on a table. Right: A noisy version of
the same scene. The total variation of the right image is approximately 18 times that of the
left image.

A second application is that of edge-detection [12]. The image variation is relatively large at image
locations with sudden changes in intensity, which is characteristic of a (visual) edge. The left and
right images in Figure 2 shows an image of a pile of rocks and the corresponding variation image,
respectively. The same method applied to characteristic functions (binary images) can be used to
measure the length of a set boundary [7]. The left image of Figure 3 shows a binary image of the state
of Idaho. The right image of Figure 3 shows the corresponding variation image for which the sum of
the pixel intensities is proportional to the boundary length.

Figure 2. Left: A grayscale image of a rock wall. Right: The variation image which
approximates the location of image intensity edges or intensity boundaries.

Other applications include the removal of blur artifacts due to imperfect focus of camera optics
or long exposure of objects moving in a scene [4], inpainting [2, 5] which seeks to recover missing
or corrupted data, image segmentation [3], compressed sensing [10], and determining characteristic
length scales [14, 16].

An image is the discretization of a function f : Ω → R restricted to a finite regular grid. For
example, a digital camera image is a collection of values { fi, j} at (pixel) locations (i, j) on a rectangular
grid. Figure 4 is an example of such an image. It has image intensities, shown as shades of gray, on
a regular grid of square pixels. In displaying the image, each pixel value is assigned a grayscale color
which covers its associated pixel. In this case, a completely black pixel corresponds to a pixel value
of zero, while a completely white pixel corresponds to a value of 255. We say that this image was
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Figure 3. Left: A binary image of the state of Idaho. Right: The computed variation image.
The sum of the values in the right image approximate boundary length.

obtained using an 8-bit camera because all pixel values are integers satisfying 0 ≤ fi, j ≤ 255.

Figure 4. A zoomed-in portion of the grayscale image of a rock wall (large white box)
reveals pixel intensities (numerical values) arranged in a regular grid of subregions (pixels).

A regular grid may be composed of hexagonal pixels. One example is shown in Figure 5. This type
of grid is not in widespread use because of the relative difficulty in simply specifying the geometry and
the widespread use of rectangular coordinates in digital displays.

We propose a method for computing variation on images and image-like data as the sum of
weighted differences of pixel intensities. Weights are chosen optimally for computing the variation on
smooth arbitrary functions and their discrete representations. We begin in Section 2 by defining the
anisotropic variation on discrete images and introduce displacement vector sets used to calculate the
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Figure 5. An example of a hexagonal array which could be used to display images.

variation. In Section 3 we develop the theoretical aspects of the variation on discrete data such as
images and define the anisotropic gradient function. This function is defined in terms of a geometric
sampling strategy and optimal weight parameters. In Section 4 we provide details on the computation
of the anisotropic gradient weights for the general scenario and address existence and uniqueness. In
Section 5, we provide specific computational examples for determining optimal weights including
computations on rectangular grids, hexagonal grids and sampling uniformly in angle without
reference to a grid. Conclusions are provided in Section 6.

2. Computing anisotropic image variation

A central task of image processing is to approximate key continuous functions, such as Var f in
Eq. (1.1), on the scene space using only the discrete image data. Recall that ∇ f (x, y) is the vector
whose components are the partial derivatives of f , each of which is defined by limits

∂ f
∂x

(x, y) = lim
h→0

f (x + h, y) − f (x, y)
h

and
∂ f
∂y

(x, y) = lim
h→0

f (x, y + h) − f (x, y)
h

.

In the case of discrete image data, we cannot take the limit h → 0 because the function is defined at
only discrete locations. Thus, for our image analysis tasks, f need not be differentiable. Instead, our
plan is to approximate Var f at each pixel location (x`, y`). That is, we are interested in a finite sampling
strategy for approximating

g` ≡ |∇ f (x`, y`)|.

It is natural to consider a direct computation

g` =

√
f 2
x (x`, y`) + f 2

y (x`, y`), where fx =
∂ f
∂x
, and fy =

∂ f
∂y
.
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However, f is known only at the finite set of locations (x`, y`) and we do not know fx nor fy. We can
approximate the variation at each array location, gi, j, with the forward difference strategy

gi, j ≈

√(
fi+1, j − fi, j

hx

)2

+

(
fi, j+1 − fi, j

hy

)2

, (2.1)

where hx and hy are the horizontal and vertical distances between pixels. Eq. (2.1) is an example of an
isotropic gradient approximation, which is exact in the following sense for differentiable functions:

Var f (x, y) =|∇ f (x, y)|

= lim
hx,hy→0

√(
f (x + hx, y) − f (x, y)

hx

)2

+

(
f (x, y + hy) − f (x, y)

hy

)2

Throughout the remaining discussion, we will take hx = hy = 1 for simplicity.
We consider anisotropic approximations for the variation having the following form [8].

Definition 1. Suppose Ω ⊆ R2. Let f : Ω → R, define the set of nonzero displacement vectors to be
V = {dk = (uk, vk)}mk=1, and let {wk}

m
k=1 be a set of non-negative scalars. The function

g(x, y) ≡
m∑

k=1

wk| f (x + uk, y + vk) − f (x, y)| (2.2)

is an anisotropic variation of f .

If a location (x, y) corresponds to pixel array indices (i, j) in an image and if the components of
the displacement vectors are integer, then g(x, y) is determined by available pixel intensities. Several
possible configurations of displacement vectors are shown in Figure 6. These cases correspond to the
following displacement vector sets.

VA = {(1, 0), (0, 1)}
VB = {(1, 0), (0, 1), (−1, 0), (0,−1)}
VC = {(1, 0), (0, 1), (−1,−1)}
VD = {(0, 1), (−1,−1), (1,−1)}
VE = VB ∪ {(1, 1), (−1, 1), (−1,−1), (1,−1)}
VF = VE ∪ {(2, 1), (1, 2), (−1, 2), (−2, 1), (−2,−1), (−1,−2), (1,−2), (2,−1)}

VA is the two-direction set noted by Condat [6] with unit weights. VB specifies computations on the
Von Neumann neighborhood of four nearest neighbors and VE the Moore neighborhood of eight nearest
neighbors. VF uses 16 nearest neighbors which has been successful in some recent computations [9].
VA is a two-vector forward difference set yielding the approximation

gi, j = w1

∣∣∣ fi+u1, j+v1 − fi, j

∣∣∣ + w2

∣∣∣ fi+u2, j+v2 − fi, j

∣∣∣
= w1

∣∣∣ fi+1, j − fi, j

∣∣∣ + w2

∣∣∣ fi, j+1 − fi, j

∣∣∣ .
AIMS Mathematics Volume 4, Issue 3, 576–592.
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Figure 6. Six examples of displacement vector sets which can be used to compute discrete
local anisotropic gradients on rectangular arrays such as digital images.

VC shows displacement vectors that lead to the approximation

gi, j = w1

∣∣∣ fi+1, j − fi, j

∣∣∣ + w2

∣∣∣ fi, j+1 − fi, j

∣∣∣ + w3| fi−1, j−1 − fi, j|.

These examples show that the anisotropic variation is not a unique function, but is defined by the
chosen direction set V and scalar weights {wk}. Notice also that, at a local extreme point for f , where
∇ f = 0, the anisotropic variation is not necessarily equal to zero. This suggests that the anisotropic
variation does not accurately approximate the steepness of functions around local extrema.

3. Anisotropic weights

The weight computations presented here are not specific to the rectangular grids illustrated in
Figure 6. We also consider direction sets on hexagonal tilings, some of which are shown in Figure 7.
However, any other nonzero direction set in R2 can be used. No standard method for determining
weights seems to be in general use, though some authors reference weights used in similar
computational tasks [15] or weights based on geometric considerations [13]. In this section, we
discuss a criterion for choosing optimal weights. We also discuss assumptions about the functions for
which we use the anisotropic variation.

The goal in choosing specific weights for the anisotropic variation is to minimize the discrepancy
between g(x, y) Eq. (2.1) and Var f (x, y) Eq. (2.2) at pixel locations. Weights should be chosen so that
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Figure 7. Three examples of displacement vector sets which can be used to compute discrete
local anisotropic gradients on hexagonal arrays.

the approximation is good for arbitrary image functions f (x, y) as no set of weights can be optimal for
all functions. Thus, we must make assumptions on the types of functions we expect to encounter. Our
first assumption is that the gradient of f (x, y) is slowly varying over the sampling distances ‖dk‖. In
this case, differencing strategies, such as Eq. (2.2), should produce good results because any variation
calculation is only weakly affected by sampling distance. To understand this, consider a
one-dimensional example in which we seek to compute |d f /dx| for the function f : R→ R. We have

d f
dx

= lim
h→0

f (x + h) − f (x)
h

.

Notice that if f is approximately linear or affine on [x, x + h] with slope s then

f (x + h) − f (x)
h

≈
f (x) + sh − f (x)

h
= s,

and d f /dx ≈ s independent of sampling distance h.
Our second assumption is that we have no prior knowledge concerning the direction of the

gradient. If we had some such information, we could preferentially weight the anisotropic gradient
terms associated with directions which we believe are close to the gradient direction. So, whatever
weights we choose must be independent of actual gradient vector orientation, but they could depend
on relative angles between sampling directions. We expect the use of our anisotropic variation to be
robust to computing gradients of any orientation.

With these two assumptions, we begin by considering a family of functions, F , whose graphs are
planes and whose gradient has unit length. We seek optimal weights relative to this family. Functions
in this family satisfy ∇ fθ = (cos θ, sin θ), where θ is a parameter identifying a family member. The
functions are then given by

fθ(x, y) = x cos θ + y sin θ, 0 ≤ θ < 2π.

AIMS Mathematics Volume 4, Issue 3, 576–592.
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Our objective is to approximate the variation Var fθ with the anisotropic variation gθ as closely as
possible by determining optimal weights {wk} for a given direction set V . To add clarity of notation, let
w = [w1,w2, . . . ,wm]T and define gw to be the anisotropic gradient with chosen weights wk, 1 ≤ k ≤ m.
We measure optimality based on the squared error function. That is, for any given function fθ ∈ F , we
seek weights w1,w2, . . . ,wm which would minimize the function given by

E(w, θ) =
(
Var fθ − gw

θ

)2

=

1 − m∑
k=1

wk | fθ(x + uk, y + vk) − fθ(x, y)|

2

=

1 − m∑
k=1

wk |uk cos θ + vk sin θ|

2

.

However, finding the weights that minimize the squared error above is optimal for only one such
function fθ ∈ F . We are interested in finding our best overall choice of weights that would minimize
the total integrated squared error over all family members (for all possible θ):

H(w) =

∫ 2π

0
E(w, θ) dθ

=

∫ 2π

0

1 − m∑
k=1

wk |uk cos θ + vk sin θ|

2

dθ. (3.1)

That is, we want to find a point w = [w1,w2, . . . ,wm]T whose coordinates are the weights so that
H(w) ≤ H(w) for all w ∈ Rm. We seek minimizers w of H by finding stationary points (where
∇wH(w) = 0). Here, we use the notation ∇w to indicate that the derivatives are taken with respect to
the variables w1,w2, . . . ,wm. The jth component of ∇wH(w) (1 ≤ j ≤ m) is

∂H(w)
∂w j

= −2
∫ 2π

0

∣∣∣u j cos θ + v j sin θ
∣∣∣ 1 − m∑

k=1

wk |uk cos θ + vk sin θ|

 dθ

= −2
∫ 2π

0

∣∣∣u j cos θ + v j sin θ
∣∣∣ dθ

+ 2
m∑

k=1

wk

∫ 2π

0

∣∣∣u j cos θ + v j sin θ
∣∣∣ · |uk cos θ + vk sin θ| dθ

In order to simplify the representation and facilitate further computations, we define the integrals in
each of these terms as

J(k) =

∫ 2π

0
|uk cos θ + vk sin θ| dθ

and

K(k, j) =

∫ 2π

0
|uk cos θ + vk sin θ| · |u j cos θ + v j sin θ| dθ.

Thus

∂H(w)
∂w j

= −2J( j) + 2
m∑

k=1

wkK(k, j).
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Notice that this second term, involving K, can be written using a matrix product:

2
m∑

k=1

wkK(k, j) = 2
[

K( j, 1) K( j, 2) · · · K( j,m)
] 

w1

w2
...

wm

 .
Now, stationary points w of H satisfy

∑m
k=1 wkK(k, j) = J( j), for 1 ≤ j ≤ m. That is, the matrix equation

below holds. 
K(1, 1) K(1, 2) · · · K(1,m)
K(2, 1) K(2, 2) · · · K(2,m)

...
...

...

K(m, 1) K(m, 2) · · · K(m,m)




w1

w2
...

wm

 =


J(1)
J(2)
...

J(m)

 , (3.2)

The integrals evaluate to
J(k) = 4||dk||

and
K(k, j) = ‖dk‖‖d j‖

[(
π − 2∆k j

)
cos(∆k j) + 2 sin(∆k j)

]
,

where ∆k j is the minimum positive angle between sampling directions d j and dk.

4. Determining optimal weights

Collecting the integral computations, we find that the optimal weights w satisfy the following system
of equations.

Kw = J,
K(k, j) = ‖dk‖ ‖d j‖

((
π − 2∆k j

)
cos(∆k j) + 2 sin(∆k j)

)
,

K(k, k) = π‖dk‖
2,

J(k) = 4‖dk‖.

We see that the entries of each row of the matrix K and the corresponding entry in J contain a
common factor, ‖dk‖ for row k. These common factors do not affect the solution and can be removed.
Furthermore, the entries of each column of the matrix K contain a common factor, ‖d j‖ for column j.
Thus, each entry in the solution vector w can be rescaled by the corresponding vector norm. This
leads to the somewhat simplified system of equations:

Az = B,
A(k, j) =

(
π − 2∆k j

)
cos(∆k j) + 2 sin(∆k j),

A(k, k) = π,

B(k) = 4,
w j = z j/‖d j‖..

(4.1)

Now we consider existence and uniqueness of solutions to Az = B. We first show that at least
one solution exists. Next, we show that if some pair of direction vectors are colinear, then there exist
infinitely many solutions. Finally, we choose, among possibly infinitely many solutions, the solution z
that has minimum 2-norm.
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Claim 1. The system of equations Az = B given in (4.1) has at least one solution.

Proof. Recall that solutions to (4.1) are stationary points of the function H given in Eq. (3.1). We
will show that H has at least one stationary point. First note that H(w) ≥ 0 for all choices of weights
w1,w2, . . . ,wm.

Now, let us use the integral computations above to rewrite H(w).

H(w) =

∫ 2π

0

1 − m∑
k=1

wk |uk cos θ + vk sin θ|

2

dθ

=

∫ 2π

0

1 − 2
m∑

k=1

wk |uk cos θ + vk sin θ|

+

m∑
k=1

m∑
j=1

wkw j |uk cos θ + vk sin θ|
∣∣∣u j cos θ + v j sin θ

∣∣∣ dθ

= 2π − 2wT J + wT Kw,

where J and K are defined above. Notice that H is a quadratic function of w1,w2, . . . ,wm (the weights).
Notice also that if K is negative definite or indefinite (possessing at least one negative eigenvalue)

then the quadratic, H, would obtain negative values for some w. So K must be positive definite (or
positive semi-definite). Thus, H is a convex quadratic function, though not necessarily strictly convex,
and bounded below by zero. Therefore H has at least one stationary point and the system of equations
(4.1) has at least one solution. �

Another way to understand the result of the above proof is to note that a quadratic function which
is bounded below (non-negative in this case) must be either convex quadratic or constant along any
direction. If the function were to behave (nonconstant) linearly along some direction then it could not
be bounded below.

Claim 2. Suppose there exist two distinct vectors dk, d j ∈ V which are colinear. Then, the system of
equations Az = B given in (4.1) has infinitely many solutions.

Proof. The entries in row k of matrix A are determined solely by the minimum angle between each
vector in V and the line {v = αdk | α ∈ R}. If d j is colinear with dk, then they define the same line and
rows j and k of A must be equal. Thus, rank(A) < m and, by the previous claim, Az = B has infinitely
many solutions. �

If the solution is unique, then we have z∗ = A−1B. If the solution is not unique, we proceed by
diagonalizing A and constructing a pseudo-inverse operator P such that z∗ = PB.

Since A is a real symmetric matrix, it is diagonalizable by an orthogonal matrix Q as A = QDQT

where D is a diagonal matrix consisting of the eigenvalues of A. We can order the eigenvalues λi, and
the corresponding columns of Q so that λ1 ≥ λ2 ≥ · · · ≥ λm. Note also that λm ≥ 0 because of the
convexity of H(w). Suppose there are κ positive (not zero) eigenvalues. Let Q̃ be the matrix consisting
of the first κ columns of Q. Let D̃ be the κ × κ diagonal matrix with entries λ1, λ2, · · · , λκ.

Claim 3. The pseudo-inverse solution z̃ of minimum 2-norm for solving the system of equations (4.1)
is z̃ = PB = Q̃D̃−1Q̃T B.
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Proof. Consider the unique representation z = z̃ + z0, where z0 is in N(A), the null space of A, and z̃
is in N(A)⊥, the orthogonal complement of N(A). We show that PB = z̃. That is, P is the invertible
operator that maps from the range of A to N(A)⊥. We write Q =

[
Q̃ Q0

]
and note that the columns

of Q0 form a basis for N(A) and the columns of Q̃ form a basis for N(A)⊥. Observe,

PB = PAz

=
(
Q̃D̃−1Q̃T

) ([
Q̃ Q0

] [ D̃ 0
0 0

] [
Q̃T

QT
0

])
z

=
(
Q̃D̃−1Q̃T

) ([
Q̃ Q0

] [ D̃ 0
0 0

] [
Q̃T z
QT

0 z

])
= Q̃D̃−1Q̃T

(
Q̃D̃Q̃T z

)
= Q̃D̃−1D̃Q̃T z

= Q̃Q̃T z

= z̃

Thus, P returns solution z̃: Az̃ = Az̃ + 0 = Az̃ + Az0 = Az = B.
Next, we show that z̃ represents the solution of minimum 2-norm. If z̃ is the unique solution, then it

is also the solution of minimum norm. Otherwise, let ỹ be any other solution. As Aỹ = B, ỹ− z̃ ∈ N(A).
Consider the standard inner product on Rm and noting that any vector in N(A) is orthogonal to z̃, we
have 〈ỹ, ỹ〉 = 〈z̃ + ỹ − z̃, z̃ + ỹ − z̃〉 = 〈z̃, z̃〉 + 〈ỹ − z̃, ỹ − z̃〉. Or, equivalently, ‖ỹ‖2 = ‖z̃‖2 + ‖ỹ − z̃‖2. Thus,
‖ỹ‖ ≥ ‖z̃‖. �

5. Example weight computations

We next present example computations illustrating the determination of weights for several
scenarios from Figures 6 and 7. Table 1 provides weight computation results for each scenario. We
end this section with the computation for uniformly distributed (in angle) unit vector directions.

5.1. Two nearest neighbor direction set, VA

We have direction set VA = {(1, 0), (0, 1)}. We first compute the direction vector norms and the
matrix elements A(k, j):

‖d1‖ = ‖d2‖ = 1.

∆1,2 = π/2.

A(1, 1) = A(2, 2) = π.

A(1, 2) = A(2, 1) = 2.

For this set, Eq. (4.1) takes the form [
π 2
2 π

] [
z1

z2

]
=

[
4
4

]
.

AIMS Mathematics Volume 4, Issue 3, 576–592.



587

The matrix A is invertible. The solution is

z1 = z2 =
4

π + 2
≈ 0.77797 ,

and the weights are

w1 = w2 =
4

π + 2
≈ 0.77797 .

5.2. Non-colinear three-direction set, VC

We have direction set VC = {(1, 0), (0, 1), (−1,−1)}We first compute the direction vector norms and
the matrix elements A(k, j):

‖d1‖ = 1, ‖d2‖ = 1, ‖d3‖ =
√

2,

∆1,2 = π/2, ∆1,3 = ∆2,3 = π/4.

A(1, 1) = A(2, 2) = A(3, 3) = π

A(1, 2) = 2, A(1, 3) = A(2, 3) =
π + 4

2
√

2
.

For this set, Eq. (4.1) takes the form

π 2 π+4
2
√

2

2 π π+4
2
√

2

π+4
2
√

2
π+4
2
√

2
π




z1

z2

z3


=


4

4

4


.

The matrix A is invertible. The solution is

z1 ≈ 0.72501 ,

z2 ≈ 0.72501 ,

z3 ≈ 0.10784 .

Thus,

w1 = z1/‖d1‖ ≈ 0.72501 ,

w2 = z2/‖d2‖ ≈ 0.72501 ,

w3 = z3/‖d3‖ ≈ 0.07635 .
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5.3. Four nearest neighbor set, VB

Consider Von Neumann set VB = {(1, 0), (0, 1), (−1, 0), (0,−1)}. Proceeding as before, we find

‖d1‖ = ‖d2‖ = ‖d3‖ = ‖d4‖ = 1.

∆1,2 = ∆2,3 = ∆3,4 = ∆1,4 = π/2.

∆1,3 = ∆2,4 = 0.

A(1, 1) = A(2, 2) = A(3, 3) = A(4, 4) = π.

A(1, 2) = A(2, 3) = A(3, 4) = A(1, 4) = 2.

A(1, 3) = A(2, 4) = π.

For this set, Eq. (4.1) takes the form
π 2 π 2
2 π 2 π

π 2 π 2
2 π 2 π




z1

z2

z3

z4

 =


4
4
4
4

 .
The matrix A has rank 2 and is not invertible. A is diagonalizable with

D̃ =

[
2π + 4 0

0 2π − 4

]
, Q̃ =


1/2 −1/2
1/2 1/2
1/2 −1/2
1/2 1/2

 .
The pseudo-inverse operator is

P = Q̃D̃−1Q̃T =


p1 p2 p1 p2

p2 p1 p2 p1

p1 p2 p1 p2

p2 p1 p2 p1

 ,
where

p1 =
π

4π2 − 16
, p2 =

−2
4π2 − 16

.

The solution is z = PB:

z1 = z2 = z3 = z4 =
2

π + 2
≈ 0.38898 .

Since all direction vectors have norm 1, we have

w1 = w2 = w3 = w4 =
2

π + 2
≈ 0.38898 .
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Table 1. Weights for each displacement vector set example in Figures 6 and 7.

Scenario V w

rectangular

(A) d1 = (1, 0), d2 = (0, 1) w1 = w2 ≈ 0.77797

(B) d1 = (0, 1), d3 = (−1, 0), w1 = w3 ≈ 0.38898
d2 = (1, 0), d4 = (0,−1) w2 = w4 ≈ 0.38898

(C) d1 = (1, 0), d2 = (0, 1), w1 = w2 ≈ 0.72501
d3 = (−1,−1) w3 ≈ 0.07635

(D) d1 = (0, 1), w1 ≈ 0.10784
d2 = (−1,−1), d3 = (1,−1) w2 = w3 ≈ 0.51266

d1 = (0, 1), d5 = (−1, 0), w1 = w5 ≈ 0.19624
(E) d2 = (1, 1), d6 = (−1,−1), w2 = w6 ≈ 0.13876

d3 = (0, 1), d7 = (0,−1), w3 = w7 ≈ 0.19624
d4 = (−1, 1), d8 = (1,−1) w4 = w8 ≈ 0.13876

d1 = (1, 0), d9 = (−1, 0) w1 = w9 ≈ 0.12214
d2 = (2, 1), d10 = (−2,−1) w2 = w10 ≈ 0.04542
d3 = (1, 1), d11 = (−1,−1) w3 = w11 ≈ 0.04769

(F) d4 = (1, 2), d12 = (−1,−2) w4 = w12 ≈ 0.04542
d5 = (0, 1), d13 = (0,−1) w5 = w13 ≈ 0.12214
d6 = (−1, 2), d14 = (1,−2) w6 = w14 ≈ 0.04542
d7 = (−1, 1), d15 = (1,−1) w7 = w15 ≈ 0.04769
d8 = (−2, 1), d16 = (2,−1) w8 = w16 ≈ 0.04542

hexagonal

(A) d1 =
( √

3
2 ,

1
2

)
, d2 = (0, 1) w1 = w2 ≈ 0.74112

(B) d1 = (0, 1), w1 ≈ 0.52268
d2 =

(
−
√

3
2 ,−

1
2

)
, d3 =

( √
3

2 ,−
1
2

)
w2 = w3 ≈ 0.52268

d1 = (0, 1), d4 (0,−1) w1 = w4 ≈ 0.26134
(C) d2 =

(
−
√

3
2 ,

1
2

)
, d5 =

( √
3

2 ,−
1
2

)
w2 = w5 ≈ 0.26134

d3 =
(
−
√

3
2 ,−

1
2

)
, d6 =

( √
3

2 ,
1
2

)
w3 = w6 ≈ 0.26134

5.4. Uniformly distributed directions

Consider the case of m unit-length displacement vectors uniformly distributed in angle:

(uk, vk) =
(
sin

(
2π k−1

m

)
, cos

(
2π k−1

m

))
, k = 1, 2, · · · ,m.
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Symmetry dictates that w1 = w2 = · · · = wm and Eq. (3.2) reduces to

w =
4∑m

k=1 A(1, k)
,

where the unique weight, w, is expressed as a function of the number of displacement vectors. If we
consider m→ ∞, noting that 0 < ∆ < π

2 , we have

lim
m→∞

 π2m

m∑
k=1

A(1, k)

 =

∫ π
2

0
[(π − 2θ) cos θ + 2 sin θ] dθ = 4.

Thus,
lim

m→∞
mw =

π

2
.

Several weight values are given in Table 2. Notice that m = 3, 4, 6 are scenarios which also appear in
Table 1.

Table 2. Optimal anisotropic gradient weight w for m uniformly distributed unit
displacement vectors. For m ≥ 3, w is very closely approximated by π

2m .

m w π
2m m w π

2m

1 1.27324 1.57080 7 0.22439 0.22440

2 0.63662 0.78540 8 0.19624 0.19635

3 0.52268 0.52360 9 0.17453 0.17453

4 0.38898 0.39270 10 0.15704 0.15708

5 0.31409 0.31416 11 0.14280 0.14280

6 0.26134 0.26180 12 0.13089 0.13090

6. Conclusion

The discrete anisotropic gradient and its integral are important in a variety of image processing
applications and set boundary measure computations. We provided a method for computing weight
factors for general anisotropic variation approximations of functions on R2. Optimal weights are
found by minimizing the total integrated square error over all unit gradient functions. The method
was developed in the framework of regular arrays, but applies more broadly to arbitrary finite discrete
sampling strategies.
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