Citation: Leonid A. Kaledin, Fred Tepper, Yuly Vesga, Tatiana G. Kaledin. The effect of the surface roughness and ageing characteristics of boehmite on the removal of biological particles from aqueous solution[J]. AIMS Materials Science, 2019, 6(4): 498-508. doi: 10.3934/matersci.2019.4.498
[1] | Kaledin L, Tepper F, Kaledin T (2017) Electrokinetic aspects of water filtration by AlOOH-coated siliceous particles with nanoscale roughness. AIMS Mater Sci 4: 470–486. doi: 10.3934/matersci.2017.2.470 |
[2] | Farrah S, Preston D (1985) Concentration of viruses from water by using cellulose filters modified by in situ precipitation of ferric and aluminum hydroxides. Appl Environ Microb 50: 1502–1504. |
[3] | Lukasik J, Farrah S, Truesdail S, et al. (1996) Adsorption of microorganisms to sand and diatomaceous earth particles coated with metallic hydroxides. Kona Powder Part J 14: 87–91. doi: 10.14356/kona.1996014 |
[4] | Truesdail S, Lukasik J, Farrah S, et al. (1998) Analysis of bacterial deposition on metal (hydr)oxide-coated sand filter media. J Colloid Interf Sci 203: 369–378. doi: 10.1006/jcis.1998.5541 |
[5] | Tepper F, Kaledin L (2005) Nanosize electropositive fibrous adsorbent. US Patent 6,838,005. |
[6] | Tepper F, Kaledin L (2008) Drinking water filtration device. US Patent 7,390,343. |
[7] | Kaledin L, Tepper F, Kaledin T (2016) Aluminized silicious powder and water purification device incorporating the same. US Patent 9,309,131. |
[8] | Clesceri L, Greenberg A, Eaton A (1998) Standard Methods for Examination of Water and Wastewater, Washington, DC: American Public Health Association. |
[9] | Derjaguin B, Landau L (1993) Theory of stability of strongly charged lyophobic sols of the adhesion of strongly charge particles in solution electrolytes. Prog Surf Sci 43: 30–59. doi: 10.1016/0079-6816(93)90013-L |
[10] | Verwey E, Overbeek J (1948) Theory of the Stability of Lyophobic Colloids, Amsterdam: Elsevier. |
[11] | Schnitzer C, Ripperger S (2008) Influence of surface roughness on streaming potential method. Chem Eng Technol 31: 1696–1700. doi: 10.1002/ceat.200800180 |
[12] | Parsons D, Walsh R, Craig V (2014) Surface forces: surface roughness in theory and experiment. J Chem Phys 140: 164701. doi: 10.1063/1.4871412 |
[13] | Seeger S, Palm B, Günster J, et al. (2015) On the influence of the particle size on the zeta potential of ultra-pure silica powders. Ber DKG 92: E35–E40. Available from: https://www.tib.eu/en/search/id/tema%3ATEMA20150904226/On-the-Influence-of-the-Par ticle-Size-on-the-Zeta/#documentinfo. |
[14] | Lyklema J (1995) Fundamentals of interface and colloid science. Volume Ⅱ : Solid-Liquid Interfaces, Academic Press. |
[15] | Lyklema J (1991) Fundamentals of interface and colloid science. Volume I: Fundamentals, Academic Press. |
[16] | Lyklema J (2003) Electrokinetics after Smoluchowski. Colloid Surface A 222: 5–14. doi: 10.1016/S0927-7757(03)00217-6 |
[17] | Hunter R (2001) Foundations of Colloid Science, Oxford: Oxford University Press. |
[18] | Cohen R, Radke C (1991) Streaming potentials of nonuniformly charged surfaces. J Colloid Interf Sci 141: 338–347. doi: 10.1016/0021-9797(91)90330-B |
[19] | Li D (2004) Electrokinetics in Microfluidics, Amsterdam: Elsevier Academic Press. |
[20] | Erickson D, Li D (2002) Microchannel flow with patchwise and periodic surface heterogeneity. Langmuir 18: 8949–8959. doi: 10.1021/la025942r |
[21] | Erickson D, Li D (2001) Streaming potential and streaming current methods for characterizing heterogeneous solid surfaces. J Colloid Interf Sci 237: 283–289. doi: 10.1006/jcis.2001.7476 |
[22] | Bokhimi X, Toledo-Antonio J, Guzman-Castillo M, et al. (2001) Relationship between crystallite size and bond lengths in boehmite. J Solid State Chem 159: 32–40. doi: 10.1006/jssc.2001.9124 |
[23] | Kaledin L, Tepper F, Kaledin T (2016) Pristine point of zero charge (p.p.z.c.) and zeta potentials of boehmite's nanolayer and nanofiber surfaces. Int J Smart Nano Mater 7: 1–21. |
[24] | Borghi F, Vyas V, Podesta A, et al. (2013) Nanoscale roughness and morphology affect the isoelectric point of titania surfaces. PloS One 8: e68655. doi: 10.1371/journal.pone.0068655 |
[25] | Argonide Corporation (2015) Preparation of 3-mm deep precoat from 80 μm DE powders. Available from:www.tinyurl.com/my6jmzz. |
[26] | Einstein A (1956) Investigations on the Theory of the Brownian Movement, New York: Dover Publications. |
[27] | Assemi S, Nalaskowski J, Miller J, et al. (2006) Isoelectric point of fluorite by direct force measurements using atomic force microscopy. Langmuir 22: 1403–1405. doi: 10.1021/la052806o |
[28] | Kershner R, Bullard J, Cima M (2004) Zeta potential orientation dependence of sapphire substrates. Langmuir 20: 4101–4108. doi: 10.1021/la036268w |
[29] | Bullard J, Cima M (1995) Orientation dependence of the isoelectric point of TiO2 (Rutile) surfaces. J Phys Chem 99: 2114–2118. doi: 10.1021/j100007a048 |
[30] | Van Olphen H (1977) An Introduction to Clay Colloid Chemistry, New York: John Wiley and Sons. |