Citation: Subbarayan Sivasankaran. Optimization on dry sliding wear behavior of yellow brass using face centered composite design[J]. AIMS Materials Science, 2019, 6(1): 80-96. doi: 10.3934/matersci.2019.1.80
[1] | Bénard AEB, Hernández DM, Reyes JGG, et al. (2014) Synthesis, characterization and cold workability of cast copper-magnesium-tin alloys. Metall Mater Trans A 45: 555–562. |
[2] | Taha MA, El-Mahallawy NA, Hammouda RM, et al. (2012) Machinability characteristics of lead free-silicon brass alloys as correlated with microstructure and mechanical properties. Ain Shams Eng J 3: 383–392. doi: 10.1016/j.asej.2012.05.004 |
[3] | Kong XL, Qiao LJ, Liu YB (2003) Wear behavior of nanocrystalline Cu-Zn alloy. J Mater Eng Perform 12: 312–316. doi: 10.1361/105994903770343169 |
[4] | Sivasankaran S, Alaboodi AS, Al-Mufadi F (2018) Cold deformation of dezincification resistant yellow brass for plumbing applications. Mater Manuf Process 33: 1693–1700. doi: 10.1080/10426914.2018.1453147 |
[5] | Neishi K, Horita Z, Langdon TG (2001) Achieving superplasticity in a Cu–40% Zn alloy through severe plastic deformation. Scripta Mater 45: 965–970. doi: 10.1016/S1359-6462(01)01119-8 |
[6] | Zhang ZJ, An XH, Zhang P, et al. (2013) Effects of dislocation slip mode on high-cycle fatigue behaviors of ultrafine-grained Cu–Zn alloy processed by equal-channel angular pressing. Scripta Mater 68: 389–392. doi: 10.1016/j.scriptamat.2012.10.036 |
[7] | Vinogradov A, Vasilev E, Seleznev M, et al. (2016) On the limits of acoustic emission detectability for twinning. Mater Lett 183: 417–419. doi: 10.1016/j.matlet.2016.07.063 |
[8] | Tarasov SY, Filippov AV, Kolubaev EA, et al. (2017) Adhesion transfer in sliding a steel ball against an aluminum alloy. Tribol Int 115: 191–198. doi: 10.1016/j.triboint.2017.05.039 |
[9] | Filippov AV, Nikonov AY, Rubtsov VE, et al. (2017) Vibration and acoustic emission monitoring the stability of peakless tool turning: Experiment and modeling. J Mater Process Tech 246: 224–234. doi: 10.1016/j.jmatprotec.2017.03.030 |
[10] | Kato H, Todaka Y, Umemoto M, et al. (2015) Sliding wear behavior of sub-microcrystalline pure iron produced by high-pressure torsion straining. Wear 336–337: 58–68. |
[11] | Konkova T, Mironov S, Korznikov A, et al. (2015) An EBSD investigation of cryogenically-rolled Cu–30% Zn brass. Mater Charact 101: 173–179. doi: 10.1016/j.matchar.2015.02.004 |
[12] | Kalita K, Shivakoti I, Ghadai RK (2017) Optimizing process parameters for laser beam micro-marking using genetic algorithm and particle swarm optimization. Mater Manuf Process 32: 1101–1108. doi: 10.1080/10426914.2017.1303156 |
[13] | Shah KB, Kumar S, Dwivedi DK (2007) Aging temperature and abrasive wear behaviour of cast Al–(4%, 12%, 20%) Si–0.3% Mg alloys. Mater Design 28: 1968–1974. |
[14] | Tang C, Wang JM, Wen GW, et al. (2011) Bauschinger effect in wear of Cu–40Zn alloy and its variations with the wear condition. Wear 271: 1237–1243. doi: 10.1016/j.wear.2010.11.026 |
[15] | Mousavi SE, Meratian M, Rezaeian A (2017) Investigation of mechanical properties and fracture surfaces of dual-phase 60–40 brass alloy processed by warm equal-channel angular pressing. J Mater Sci 52: 8041–8051. doi: 10.1007/s10853-017-1006-9 |
[16] | Kim HS, Kim WY, Song KH (2012) Effect of post-heat-treatment in ECAP processed Cu–40% Zn brass. J Alloy Compd 536: S200–S203. doi: 10.1016/j.jallcom.2011.11.079 |
[17] | Seeman M, Ganesan G, Karthikeyan R, et al. (2010) Study on tool wear and surface roughness in machining of particulate aluminum metal matrix composite-response surface methodology approach. Int J Adv Manuf Tech 48: 613–624. doi: 10.1007/s00170-009-2297-z |
[18] | Gupta MK, Sood PK, Sharma VS (2016) Machining parameters optimization of titanium alloy using response surface methodology and particle swarm optimization under minimum-quantity lubrication environment. Mater Manuf Process 31: 1671–1682. doi: 10.1080/10426914.2015.1117632 |
[19] | Kiaee N, Aghaie-Khafri M (2014) Optimization of gas tungsten arc welding process by response surface methodology. Mater Design 54: 25–31. doi: 10.1016/j.matdes.2013.08.032 |
[20] | Vidyarthy RS, Dwivedi DK, Muthukumaran V (2018) Optimization of A-TIG process parameters using response surface methodology. Mater Manuf Process 33: 709–717. doi: 10.1080/10426914.2017.1303154 |
[21] | Olivares EAG, Díaz VMV (2018) Study of the hot-wire TIG process with AISI-316L filler material, analysing the effect of magnetic arc blow on the dilution of the weld bead. Weld Int 32: 139–148. doi: 10.1080/09507116.2017.1347327 |
[22] | Bawazer LA, Ihli J, Comyn TP, et al. (2015) Genetic algorithm-Guided discovery of additive combinations that direct quantum dot assembly. Adv Mater 27: 223–227. doi: 10.1002/adma.201403185 |
[23] | Nagaraju S, Vasantharaja P, Chandrasekhar N, et al. (2016) Optimization of welding process parameters for 9Cr-1Mo steel using RSM and GA. Mater Manuf Process 31: 319–327. doi: 10.1080/10426914.2015.1025974 |
[24] | Radhika N, Raghu R (2018) Prediction of mechanical properties and modeling on sliding wear behavior of LM25/TiC composite using response surface methodology. Particul Sci Technol 36: 104–111. doi: 10.1080/02726351.2016.1223773 |
[25] | Nageswaran G, Natarajan S, Ramkumar KR (2018) Synthesis, structural characterization, mechanical and wear behaviour of Cu-TiO2-Gr hybrid composite through stir casting technique. J Alloy Compd 768: 733–741. doi: 10.1016/j.jallcom.2018.07.288 |
[26] | Ramkumar KR, Sivasankaran S, Alaboodi AS (2017) Effect of alumina content on microstructures, mechanical, wear and machining behavior of Cu-10Zn nanocomposite prepared by mechanical alloying and hot-pressing. J Alloy Compd 709: 129–141. doi: 10.1016/j.jallcom.2017.03.153 |
[27] | Thankachan T, Prakash KS, Loganathan M (2018) WEDM process parameter optimization of FSPed copper-BN composites. Mater Manuf Process 33: 350–358. doi: 10.1080/10426914.2017.1339311 |
[28] | Jeyaprakash N, Duraiselvam M, Aditya SV (2018) Numerical modeling of WC-12% Co laser alloyed cast iron in high temperature sliding wear condition using response surface methodology. Surf Rev Lett 25: 1950009. doi: 10.1142/S0218625X19500094 |