Citation: João E. Ribeiro, Hernani Lopes, Pedro Martins, Manuel Braz-César. Mechanical analysis of PDMS material using biaxial test[J]. AIMS Materials Science, 2019, 6(1): 97-110. doi: 10.3934/matersci.2019.1.97
[1] | Ophir J, Céspedes I, Ponnekanti H, et al. (1991) Elastography: A quantitative method for imaging the elasticity of biological tissues. Ultrasonic Imaging 13: 111–134. doi: 10.1177/016173469101300201 |
[2] | Greenleaf J, Fatemi M, Insana M (2003) Selected methods for imaging elastic properties of biological tissues. Annu Rev Biomed Eng 5: 57–78. doi: 10.1146/annurev.bioeng.5.040202.121623 |
[3] | Choi D (2016) Mechanical characterization of biological tissues: Experimental methods based on mathematical modeling. Biomed Eng Lett 6: 181–195. doi: 10.1007/s13534-016-0222-6 |
[4] | Bronzino JD (2000) Biomedical Engineering Handbook, 2 Eds., Florida: CRC Press LLC. |
[5] | Enderle JD, Blanchard SM, Bronzino JD (2005) Introduction to biomedical engineering, 2 Eds., Oxford: Elsevier Academic Press. |
[6] | Holzapfel GA (2000) Nonlinear Solid Mechanics: A Continuum Approach for Engineering, West Sussex: John Wiley & Sons Ltd. |
[7] | Besson J, Cailletaud G, Chaboche J, et al. (2010) Non-Linear Mechanics of Materials, London: Springer Science & Business Media. |
[8] | Yannas I, Burke J (1980) Design of an artificial skin. I. Basic design principles. J Biomed Mater Res 14: 65–81. |
[9] | Tompkins R, Burke J (1990) Progress in burn treatment and the use of artificial skin. World J Surg 14: 819–824. doi: 10.1007/BF01670529 |
[10] | Sopyan I, Mel M, Ramesh S, et al. (2007) Porous hydroxyapatite for artificial bone applications. Sci Technol Adv Mat 8: 116–123. doi: 10.1016/j.stam.2006.11.017 |
[11] | Afonso J, Martins P, Girão M, et al. (2008) Mechanical properties of polypropylene mesh used in pelvic floor repair. Int Urogynecol J 19: 375–380. doi: 10.1007/s00192-007-0446-1 |
[12] | Pinho D, Bento D, Ribeiro J, et al. (2015) An In Vitro Experimental Evaluation of the Displacement Field in an Intracranial Aneurysm Model, In: Flores P, Viadero F, New Trends in Mechanism and Machine Science: From Fundamentals to Industrial Applications, Springer, 261–268. |
[13] | Bernardi L, Hopf R, Ferrari A, et al. (2017) On the large strain deformation behavior of silicone-based elastomers for biomedical applications. Polym Test 58: 189–198. doi: 10.1016/j.polymertesting.2016.12.029 |
[14] | Aziz T, Waters M, Jagger R (2003) Analysis of the properties of silicone rubber maxillofacial prosthetic materials. J Dent 31: 67–74. doi: 10.1016/S0300-5712(02)00084-2 |
[15] | Gerratt A, Michaud H, Lacour S (2015) Elastomeric electronic skin for prosthetic tactile sensation. Adv Funct Mater 25: 2287–2295. doi: 10.1002/adfm.201404365 |
[16] | Yu YS, Zhao YP (2009) Deformation of PDMS membrane and microcantilever by a water droplet: Comparison between Mooney–Rivlin and linear elastic constitutive models. J Colloid Interf Sci 332: 467–476. doi: 10.1016/j.jcis.2008.12.054 |
[17] | Yu YS, Yang Z, Zhao YP (2008) Role of vertical component of surface tension of the droplet on the elastic deformation of PDMS membrane. J Adhes Sci Technol 22: 687–698. |
[18] | Martins P, Peña E, Calvo B, et al. (2010) Prediction of nonlinear elastic behaviour of vaginal tissue: experimental results and model formulation. Comput Method Biomec 13: 327–337. doi: 10.1080/10255840903208197 |
[19] | Bakar MSA, Cheng MHW, Tang SM, et al. (2003) Tensile properties, tension-tension fatigue and biological response of polyetheretherketone-hydroxyapatite composites for load-bearing orthopedic implants. Biomaterials 24: 2245–2250. doi: 10.1016/S0142-9612(03)00028-0 |
[20] | Wang RZ, Weiner S (1997) Strain–structure relations in human teeth using Moiré fringes. J Biomech 31: 135–141. |
[21] | Zaslansky P, Shahar R, Friesem AA, et al. (2006) Relations between shape, materials properties, and function in biological materials using laser speckle interferometry: in situ tooth deformation. Adv Funct Mater 16: 1925–1936. doi: 10.1002/adfm.200600120 |
[22] | Sujatha NU, Murukeshan VM (2004) Nondestructive inspection of tissue/tissue like phantom curved surfaces using digital speckle shearography. Opt Eng 43: 3055–3060. doi: 10.1117/1.1810531 |
[23] | Zhang DS, Arola DD (2004) Applications of digital image correlation to biological tissues. J Biomed Opt 9: 691–699. doi: 10.1117/1.1753270 |
[24] | Rodrigues R, Pinho D, Bento D, et al. (2016) Wall Expansion assessment of an intracranial aneurysm model by a 3D Digital Image Correlation system. Measurement 88: 262–270. doi: 10.1016/j.measurement.2016.03.045 |
[25] | Ribeiro J, Fernandes CS, Lima R (2017) Numerical Simulation of Hyperelastic Behaviour in Aneurysm Models, In: Tavares J, Natal Jorge R, Lecture Notes in Computational Vision and Biomechanics, Springer, 937–944. |
[26] | Bischoff JE, Arruda EM, Grosh K (2000) Finite element modeling of human skin using an isotropic, nonlinear elastic constitutive model. J Biomech 33: 645–652. doi: 10.1016/S0021-9290(00)00018-X |
[27] | Ribeiro J, Lopes H, Martins P (2017) A hybrid method to characterize the mechanical behaviour of biological hyperelastic tissues. Comput Method Biomech Biomed Eng Imag Visual 5: 157–164. |
[28] | Sutton MA, Orteu JJ, Scheier HW (2009) Image Correlation for Shape, Motion and Deformation Measurements: Basic Concepts, Theory and Applications, Springer Science & Business Media. |
[29] | Nunes LCS (2011) Mechanical characterization of hyperelastic polydimethylsiloxane by simple shear test. Mat Sci Eng A-Struct 528: 1799–1804. doi: 10.1016/j.msea.2010.11.025 |
[30] | Cardoso C, Fernandes C, Lima R, et al. (2018) Biomechanical analysis of PDMS channels using different hyperelastic numerical constitutive models. Mech Res Commun 90: 26–33. doi: 10.1016/j.mechrescom.2018.04.007 |
[31] | Madenci E, Guven I (2015) The Finite Element Method and Applications in Engineering Using ANSYS®, New York: Springer. |