Citation: Zhimin Cao, Chenhui Xu, Caiwei Xiao, Wei Liu, Jiaohu Huang, Wenjun Zong, Junjie Zhang, Tao Sun. Molecular dynamics study of mechanical properties of HMX–PS interface[J]. AIMS Materials Science, 2019, 6(1): 111-118. doi: 10.3934/matersci.2019.1.111
[1] | Mathieu D (2017) Sensitivity of energetic materials: Theoretical relationships to detonation performance and molecular structure. Ind Eng Chem Res 56: 8191–8201. doi: 10.1021/acs.iecr.7b02021 |
[2] | Zhang JH, Shreeve JM (2016) Time for pairing: cocrystals as advanced energetic materials. CrystEngComm 18: 6124–6133. doi: 10.1039/C6CE01239F |
[3] | Maienschein J, Pantoya M (2014) Safety in energetic materials research and development-approaches in academia and a national laboratory. Propell Explos Pyrot 39: 483–485. doi: 10.1002/prep.201480152 |
[4] | An Q, Zybin SV, Goddard III WA, et al. (2011) Elucidation of the dynamics for hot-spot initiation at nonuniform interfaces of highly shocked materials. Phys Rev B 84: 220101. doi: 10.1103/PhysRevB.84.220101 |
[5] | Duarte CA, Grilli N, Koslowski M (2018) Effect of initial damage variability on hot-spot nucleation in energetic materials. J Appl Phys 124: 025104. doi: 10.1063/1.5030656 |
[6] | Peng YJ, Ye YQ (2015) Research progress of 'Hot-Spot' theory in energetic materials initiation. Chemistry 78: 693–701. |
[7] | Barua A, Zhou M (2011) A lagrangian framework for analyzing microstructural level response of polymer-bonded explosives. Model Simul Mater Sc 19: 055001. doi: 10.1088/0965-0393/19/5/055001 |
[8] | Barua A, Horie Y, Zhou M (2012) Energy localization in HMX-Estane polymer-bonded explosives during impact loading. J Appl Phys 111: 054902. doi: 10.1063/1.3688350 |
[9] | Barua A, Zhou M (2013) Computational analysis of temperature rises in microstructures of HMX-Estane PBXs. Comput Mech 52: 151–159. doi: 10.1007/s00466-012-0803-x |
[10] | Xiong S, Chen S, Jin S, et al. (2017) Molecular dynamic simulations on TKX-50/HMX cocrystal. RSC Adv 7: 6795–6799. doi: 10.1039/C6RA26146A |
[11] | Fu X, Fan X, Ju X, et al. (2015) Molecular dynamic simulations on the interaction between an HTPE polymer and energetic plasticizers in a solid propellant. RSC Adv 5: 52844–52851. doi: 10.1039/C5RA05312A |
[12] | Yuan DD, Zhu PZ, Fang FZ, et al. (2013) Study of nanoscratching of polymers by using molecular dynamics simulations. Sci China Phys Mech Astron 56: 1760–1769. doi: 10.1007/s11433-013-5286-z |
[13] | Chenoweth K, Van Duin ACT, Goddard WA (2008) ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation. J Phys Chem A 112: 1040–1053. doi: 10.1021/jp709896w |
[14] | Senftle TP, Hong S, Islam MM, et al. (2016) The ReaxFF reactive force-field: development, applications and future directions. npj Comput Mater 2: 15011. doi: 10.1038/npjcompumats.2015.11 |
[15] | Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117: 1–19. doi: 10.1006/jcph.1995.1039 |
[16] | Stukowski A (2010) Visualization and analysis of atomistic simulation data with OVITO-the Open Visualization Tool. Model Simul Mater Sc 18: 015012. doi: 10.1088/0965-0393/18/1/015012 |
[17] | Du K, Tang Y, Zhang J, et al. (2013) Velocity-dependent nanoscratching of amorphous polystyrene. Curr Nanosci 9: 153–158. |