Citation: Araz Alizadeh, MohammadBehshad Shafii, Alireza hajiseyed Mirzahosseini, Abtin Ataei. Experimental and simulation investigation of pulsed heat pipes in gas compressors[J]. AIMS Energy, 2020, 8(3): 438-454. doi: 10.3934/energy.2020.3.438
[1] | Man Y, Han Y, Hu Y, et al. (2018) Synthetic natural gas as an alternative to coal for power generation in China: Life cycle analysis of haze pollution, greenhouse gas emission, and resource consumption. J Cleaner Prod 172: 2503-2512. doi: 10.1016/j.jclepro.2017.11.160 |
[2] | Mohd NS, Francisco MJ, Olav B, et al. (2018) Techno-economic assessment of chemical looping reforming of natural gas for hydrogen production and power generation with integrated CO2 capture. Int J Greenhouse Gas Control 78: 7-20. doi: 10.1016/j.ijggc.2018.07.022 |
[3] | Valizadeh K, Farahbakhsh S, Bateni A, et al. (2019) A parametric study to simulate the non‐Newtonian turbulent flow in spiral tubes. J Energy Sci Eng 8: 134-149. |
[4] | Borelli D, Devia F, Cascio EL, et al. (2018) Energy recovery from natural gas pressure reduction stations: Integration with low temperature heat sources. J Energy Convers Manage 159: 274-283. doi: 10.1016/j.enconman.2017.12.084 |
[5] | Vaughn T, Bell C,Yacovitch T, et al. (2017) Comparing facility-level methane emission rate estimates at natural gas gathering and boosting stations. J Elem Sci Anth 5: (NREL/JA-6A20-70688). |
[6] | Bac S, Keskin S, Avci AK (2018) Modeling and simulation of water-gas shift in a heat exchange integrated microchannel converter. Int J Hydrogen Energy 43: 1094-1104. doi: 10.1016/j.ijhydene.2017.09.141 |
[7] | Wang L, Davarpanah A (2020) An experimental investigation to consider thermal methods efficiency on oil recovery enhancement. J Heat Transfer. |
[8] | Agwu O, Markson I, Umana M (2016) Minimizing energy consumption in compressor stations along two gas pipelines in Nigeria. J Mech Eng Autom 3: 29-34. |
[9] | Demissie A, Zhu W, Belachew C (2017) A multi-objective optimization model for gas pipeline operations. J Comput Chem Eng 100: 94-103. doi: 10.1016/j.compchemeng.2017.02.017 |
[10] | Davarpanah A, Mirshekari B (2019a) Experimental investigation and mathematical modeling of gas diffusivity by carbon dioxide and methane kinetic adsorption. J Ind Eng Chem Res 58: 12392-12400. |
[11] | Zarei M, Davarpanah A, Mokhtarian N, et al. (2020) Integrated feasibility experimental investigation of hydrodynamic, geometrical and, operational characterization of methanol conversion to formaldehyde. J Energy Sources, Part A: Recovery, Util, Environ Eff 42: 89-103. |
[12] | Cordova JL, Heshmat H (2018) High effectiveness low pressure drop heat exchanger. Google Patents. |
[13] | Wan Mohamed WAN, Talib S, Zakaria I, et al. (2018) Effect of dynamic load on the temperature profiles and cooling response time of a proton exchange membrane fuel cell. J Energy Inst 91: 349-357. doi: 10.1016/j.joei.2017.02.006 |
[14] | Davarpanah A, Mirshekari B (2019b) Experimental study of CO2 solubility on the oil recovery enhancement of heavy oil reservoirs. J Therm Anal Calorim. |
[15] | Rosli RE, Sulong AB, Daud WRW, et al. (2017) A review of high-temperature proton exchange membrane fuel cell (HT-PEMFC) system. Int J Hydrogen Energy 42: 9293-9314. doi: 10.1016/j.ijhydene.2016.06.211 |
[16] | Zhao J, Qifei J, Luo L, et al. (2018) Dynamic behavior study on voltage and temperature of proton exchange membrane fuel cells. J Appl Therm Eng 145: 343-351. doi: 10.1016/j.applthermaleng.2018.09.030 |
[17] | Tao H, Wang C, Zhu C, et al. (2018) Optimization of waste heat recovery power generation system for cement plant by combining pinch and exergy analysis methods. J Appl Therm Eng 140: 334-340. doi: 10.1016/j.applthermaleng.2018.05.039 |
[18] | Davarpanah A, Mazarei M, Mirshekari B (2019) A simulation study to enhance the gas production rate by nitrogen replacement in the underground gas storage performance. J Energy Rep 5: 431-435. doi: 10.1016/j.egyr.2019.04.004 |
[19] | Davarpanah A, Zarei M, Valizadeh K, et al. (2019) CFD design and simulation of ethylene dichloride (EDC) thermal cracking reactor. J Energy Sources, Part A: Recovery, Util, Environ Eff 41: 1573-1587. |
[20] | Kwon HM, Kim TS, Sohn JL (2018) Performance improvement of gas turbine combined cycle power plant by dual cooling of the inlet air and turbine coolant using an absorption chiller. J Energy 163: 1050-1061. doi: 10.1016/j.energy.2018.08.191 |
[21] | Rahman AA, Mokheimer EMA (2018) Comparative analysis of different inlet air cooling technologies including solar energy to boost gas turbine combined cycles in hot regions. J Energy Resour Technol 140: 112006. doi: 10.1115/1.4040195 |
[22] | Vasiliev LL (2005) Heat pipes in modern heat exchangers. J Appl Therm Eng 25: 1-19. doi: 10.1016/j.applthermaleng.2003.12.004 |
[23] | Delpech B, Axcell B, Jouhara H (2019) Experimental investigation of a radiative heat pipe for waste heat recovery in a ceramics kiln. J Energy 170: 636-651. doi: 10.1016/j.energy.2018.12.133 |
[24] | Ma H, Yin L, Shen X, et al. (2016) Experimental study on heat pipe assisted heat exchanger used for industrial waste heat recovery. J Appl Energy 169: 177-186. doi: 10.1016/j.apenergy.2016.02.012 |
[25] | Jafari-Mosleh H, Bijarchi MA, Shafii MB (2019) Experimental and numerical investigation of using pulsating heat pipes instead of fins in air-cooled heat exchangers. J Energy Convers Manage 181: 653-662. doi: 10.1016/j.enconman.2018.11.081 |
[26] | Sun X, Ling L, Liao S, et al. (2018) A thermoelectric cooler coupled with a gravity-assisted heat pipe: An analysis from heat pipe perspective. J Energy Convers Manage 155: 230-242. doi: 10.1016/j.enconman.2017.10.068 |
[27] | Burlacu A, Sosoi G, Vizitiu RS, et al. (2018) Energy efficient heat pipe heat exchanger for waste heat recovery in buildings. J Procedia Manuf 22: 714-721. doi: 10.1016/j.promfg.2018.03.103 |
[28] | Hagens H, Ganzevles FLA, Geld CWM, et al. (2007) Air heat exchangers with long heat pipes: experiments and predictions. J Appl Therm Eng 27: 2426-2434. doi: 10.1016/j.applthermaleng.2007.03.004 |