Citation: Stephen L. Durden. Spatial variability of airborne radar reflectivity and velocity measurements of tropical rain with application to spaceborne radar[J]. AIMS Electronics and Electrical Engineering, 2019, 3(2): 164-180. doi: 10.3934/ElectrEng.2019.2.164
[1] | Meneghini R, Kozu T (1990) Spaceborne Weather Radar. Norwood, MA, USA: Artech House. |
[2] | Bringi VN, Chandrasekar V (2005) Polarimetric Doppler Weather Radar: Principles and Applications. Cambridge, UK: Cambridge University Press. |
[3] | Doviak RJ, Zrnic DS (1993) Doppler Radar and Weather Observations. New York, NY, USA: Academic Press. |
[4] | Kozu T, Kawanishi T, Kuroiwa H, et al. (2001) Development of precipitation radar onboard the Tropical Rainfall Measuring Mission (TRMM) satellite. IEEE T Geosci Remote 39: 102–116. doi: 10.1109/36.898669 |
[5] | Hou AY, Kakar RK, Neeck S, et al. (2014) The Global Precipitation Measurement Mission. B Am Meteorol Soc 95: 701–722. doi: 10.1175/BAMS-D-13-00164.1 |
[6] | Tanelli S, Durden SL, Im E, et al. (2008) CloudSat's Cloud Profiling Radar after two years in orbit: performance, external calibration, and processing. IEEE T Geosci Remote 46: 3560–3573. doi: 10.1109/TGRS.2008.2002030 |
[7] | Peral E, Statham S, Im E, et al. (2018) The Radar-in-a-Cubesat (RAINCUBE) and measurement results. In: IGARSS 2018-2018 IEEE International Geoscience Remote Sensing Symposium, pp. 6297–6300. |
[8] | Ishamaru A (1978) Wave Propagation and Scattering in Random Media. New York, NY, USA: Academic Press. |
[9] | Nakamura K (1991) Biases of rain retrieval algorithms for spaceborne radar caused by nonuniformity of rain. J Atmos Ocean Tech 8: 363–373. doi: 10.1175/1520-0426(1991)008<0363:BORRAF>2.0.CO;2 |
[10] | Durden SL, Haddad ZS, Kitiyakara A, et al. (1998) Effects of non-uniform beam-filling on rainfall retrieval for the TRMM Precipitation Radar. J Atmos Ocean Tech 15: 635–646. doi: 10.1175/1520-0426(1998)015<0635:EONBFO>2.0.CO;2 |
[11] | Zhang L, Lu D, Duan S, et al. (2004) Small-Scale rain nonuniformity and its effect on evaluation of nonuniform beam-filling error for spaceborne radar rain measurement. J Atmos Ocean Tech 21: 1190–1197. doi: 10.1175/1520-0426(2004)021<1190:SRNAIE>2.0.CO;2 |
[12] | Ha E, North GR (1995) Model studies of the beam-filling error for rain-rate retrieval with microwave radiometers. J Atmos Ocean Tech 12: 268–281. doi: 10.1175/1520-0426(1995)012<0268:MSOTBF>2.0.CO;2 |
[13] | Durden SL, Tanelli S (2008) Predicted effects of nonuniform beam filling on GPM radar data. IEEE Geosci Remote S 5: 308–310. doi: 10.1109/LGRS.2008.916068 |
[14] | Huff FA, Shipp WL (1969) Spatial correlations of storm, monthly, and seasonal precipitation. J Appl Meteorol 8: 542–550. doi: 10.1175/1520-0450(1969)008<0542:SCOSMA>2.0.CO;2 |
[15] | Tapiador FJ, Checa R, de Castro M (2010) An experiment to measure the spatial variability of rain drop size distribution using sixteen laser disdrometers. Geophys Res Lett 37: L16803. |
[16] | Jaffrain J, Berne A (2012) Quantification of the small-scale spatial structure of the raindrop size distribution from a network of disdrometers. J Appl Meteorol Clim 51: 941–953. doi: 10.1175/JAMC-D-11-0136.1 |
[17] | Jameson, AR (2016) Quantifying drop size distribution variability over areas: Some implications for ground validation experiments. J Hydrometeorol 17: 2689–2698. doi: 10.1175/JHM-D-16-0094.1 |
[18] | Tokay A, D'Adderio LP, Procu F, et al. (2017) A field study of footprint-scale variability of raindrop size distribution. J Hydrometeorol 18: 3165–3179. doi: 10.1175/JHM-D-17-0003.1 |
[19] | Kessler E (1966) Computer program for calculating average lengths of weather radar echoes and pattern bandedness. J Atmos Sci 23: 569–574. doi: 10.1175/1520-0469(1966)023<0569:CPFCAL>2.0.CO;2 |
[20] | Zawadzki II (1973) Statistical properties of precipitation patterns. J Appl Meteorol 12: 459–472. doi: 10.1175/1520-0450(1973)012<0459:SPOPP>2.0.CO;2 |
[21] | Crane RK (1990) Space-time structure of rain fields. J Geophys Res 95: 2011–2020. doi: 10.1029/JD095iD03p02011 |
[22] | Kozu T, Iguchi T (1999) Nonuniform beamfilling correction for spaceborne radar rainfall measurement: Implications from TOGA COARE radar data analysis. J Atmos Ocean Tech 16: 1722–1735. doi: 10.1175/1520-0426(1999)016<1722:NBCFSR>2.0.CO;2 |
[23] | Lee CK, Lee GW, Zawadzki I, et al. (2009) A preliminary analysis of spatial variability of raindrop size distributions during stratiform rain events. J Appl Meteorol Clim 48: 270–283. doi: 10.1175/2008JAMC1877.1 |
[24] | Bringi VN, Tolstoy L, Thurai M, et al. (2015) Estimation of spatial correlation of drop size distribution parameters and rain rate using NASA's S-band polarimetric radar and 2D video disdrometer network: Two case studies from MC3E. J Hydrometeorol 16: 1207–1221. doi: 10.1175/JHM-D-14-0204.1 |
[25] | Lebo ZJ, Williams CR, Feingold G, et al. (2015) Parameterization of the spatial variability of rain for large-scale models and remote sensing. J Appl Meteorol Clim 54: 2027–2046. doi: 10.1175/JAMC-D-15-0066.1 |
[26] | Amayenc P, Testud J, Marzoug M (1993) Proposal for a spaceborne dual beam rain radar with Doppler capability. J Atmos Ocean Tech 10: 262–276. doi: 10.1175/1520-0426(1993)010<0262:PFASDB>2.0.CO;2 |
[27] | Durden SL, Siqueira P, Tanelli S (2007) On the use of multiantenna radars for spaceborne Doppler precipitation measurements. IEEE Geosci Remote S 4: 181–183. doi: 10.1109/LGRS.2006.887136 |
[28] | Durden SL, Tanelli S, Epp LW, et al. (2016) System design and subsystem technology for a future spaceborne cloud radar. IEEE Geosci Remote S 13: 560–564. doi: 10.1109/LGRS.2016.2525718 |
[29] | Kollias P, Tanelli S, Battaglia A, et al. (2014) Evaluation of EarthCARE Cloud Profiling Radar Doppler velocity measurements in particle sedimentation regimes. J Atmos Ocean Tech 31: 366–386. doi: 10.1175/JTECH-D-11-00202.1 |
[30] | Tanelli S, Im E, Durden SL, et al. (2002) The effects of nonuniform beam filling on vertical rainfall velocity measurements with a spaceborne Doppler radar. J Atmos Ocean Tech 19: 1019–1034. doi: 10.1175/1520-0426(2002)019<1019:TEONBF>2.0.CO;2 |
[31] | LeMone MA, Zipser EJ (1980) Cumulonimbus vertical velocity events in GATE. Part I: Diameter, intensity, and mass flux. J Atmos Sci 37: 2444–2457. |
[32] | Jorgensen DP, Zipser EJ, LeMone MA (1985) Vertical motions in hurricanes. J Atmos Sci 42: 839–856. doi: 10.1175/1520-0469(1985)042<0839:VMIIH>2.0.CO;2 |
[33] | Jorgensen DP, LeMone MA (1989) Vertical velocity characteristics of oceanic convection. J Atmos Sci 46: 621–640. doi: 10.1175/1520-0469(1989)046<0621:VVCOOC>2.0.CO;2 |
[34] | Black ML, Burpee RW, Marks FD (1996) Vertical motion characteristics of tropical cyclones determined with airborne Doppler radial velocities. J Atmos Sci 53: 1887–1909. doi: 10.1175/1520-0469(1996)053<1887:VMCOTC>2.0.CO;2 |
[35] | Anderson NF, Grainger CA, Stith JL (2005) Characteristics of Strong Updrafts in Precipitation Systems over the Central Tropical Pacific Ocean and in the Amazon. J Appl Meteorol 44: 731–738. doi: 10.1175/JAM2231.1 |
[36] | Heymsfield GM, Tian L, Heymsfield AJ, et al. (2010) Characteristics of deep tropical and subtropical convection from nadir-viewing high-altitude airborne Doppler radar. J Atmos Sci 67: 285–308. doi: 10.1175/2009JAS3132.1 |
[37] | Atlas D, Srivastava RC. Sekhon S (1973) Doppler radar characteristics of precipitation at Vertical Incidence, Rev Geophys 11: 1–35. |
[38] | Durden SL, Im E, Li FK, et al. (1994) ARMAR: An airborne rain mapping radar. J Atmos Ocean Tech 11: 727–737. doi: 10.1175/1520-0426(1994)011<0727:AAARMR>2.0.CO;2 |
[39] | Tanelli S, Durden SL, Im E (2006) Simultaneous measurements of Ku- and Ka-band sea surface cross-sections by an airborne radar. IEEE Geosci Remote S 3: 359–363. doi: 10.1109/LGRS.2006.872929 |
[40] | Meneghini R, Kim H, Liao L, et al. (2015) An initial assessment of the Surface Reference Technique applied to data from the Dual-Frequency Precipitation Radar (DPR) on the GPM satellite. J Atmos Ocean Tech 32: 2281–2296. doi: 10.1175/JTECH-D-15-0044.1 |
[41] | Durden SL, Haddad ZS (1998) Comparison of radar rainfall retrieval algorithms in convective rain during TOGA COARE. J Atmos Ocean Tech 15: 1091–1096. doi: 10.1175/1520-0426(1998)015<1091:CORRRA>2.0.CO;2 |
[42] | Houze RA (2004) Mesoscale convective systems. Rev Geophys 42: 237–286. |
[43] | Awaka J, Iguchi T, Kumagai H, et al. (1997) Rain type classification algorithm for TRMM Precipitation Radar. In: IGARSS'97. 1997 IEEE International Geoscience and Remote Sensing Symposium Proceedings. Remote Sensing-A Scientific Vision for Sustainable Development, pp. 1633–1635. |
[44] | Haddad ZS, Short DA, Durden SL, et al. (1997) A new parametrization of the rain drop size distribution. IEEE T Geosci Remote 35: 532–539. doi: 10.1109/36.581961 |
[45] | Davies ER (2005) Machine Vision: Theory, Algorithms and Practicalities, Third Edition. Amsterdam, Netherlands: Elsevier. |
[46] | Elsner JB, Jagger TH (2013) Hurricane Climatology: A Modern Statistical Guide Using R. Oxford, UK: Oxford University Press. |
[47] | Wilcox RR (2010) Fundamentals of Modern Statistical Methods, 2nd Edition. New York, NY, USA: Springer. |
[48] | Haykin S (1978) Communication Systems. New York, NY, USA: Wiley. |
[49] | Bracewell RN (1978) The Fourier Transform and Its Applications, 2nd Ed. McGraw-Hill. |
[50] | Sørland SL, Sorteberg A (2015) The dynamic and thermodynamic structure of monsoon low-pressure systems during extreme rainfall events. Tellus A: Dynamic Meteorology and Oceanography 67: 27039. doi: 10.3402/tellusa.v67.27039 |
[51] | Durden SL (2018) Relating GPM radar reflectivity profile characteristics to path-integrated attenuation. IEEE T Geosci Remote 56: 4065–4074. doi: 10.1109/TGRS.2018.2821601 |
[52] | Battaglia A, Tanelli S, Kobayashi S, et al. (2010) Multiple-scattering in radar systems: A review. J Quant Spectroscopy Radiative Trans 111: 917–947. doi: 10.1016/j.jqsrt.2009.11.024 |
[53] | Long DG, Brodzik MJ (2016) Optimum image formation for spaceborne microwave radiometer products. IEEE T Geosci Remote 54: 2763–2779. doi: 10.1109/TGRS.2015.2505677 |
[54] | Wolde M, Battaglia A, Nguyen C, et al. (2019) Implementation of polarization diversity pulse-pair technique using airborne W-band radar. Atmos MeasTech 12: 253–269. |
[55] | Atlas D, Srivastava RC, Sloss PW (1969) Wind shear and reflectivity gradient effects on Doppler radar spectra: II. J Appl Meteorol 8: 384–388. doi: 10.1175/1520-0450(1969)008<0384:WSARGE>2.0.CO;2 |
[56] | Tanelli S, Im E, Durden SL, et al. (2004) Rainfall Doppler velocity measurements from spaceborne radar: Overcoming NUBF effects. J Atmos Ocean Tech 21: 27–44. doi: 10.1175/1520-0426(2004)021<0027:RDVMFS>2.0.CO;2 |
[57] | Durden SL, Fischman MA, Johnson RA, et al. (2007) An FPGA-based Doppler processor for a spaceborne precipitation radar. J Atmos Ocean Tech 24: 1811–1815. doi: 10.1175/JTECH2086.1 |