Research article

Spatial variability of airborne radar reflectivity and velocity measurements of tropical rain with application to spaceborne radar

  • Received: 26 January 2019 Accepted: 18 April 2019 Published: 16 May 2019
  • One of the challenges in accurate estimation of rainfall from spaceborne radars is achievement of adequate spatial resolution with reasonable-sized antennas. Previous studies have shown that variability of precipitation within the radar beam can result in errors in rainfall and Doppler estimation from spaceborne radars. In designing these radars, it is therefore necessary to achieve a spatial resolution that reduces such errors to acceptable levels. In this work the author considers data acquired by airborne radar in the tropics or sub-tropics, over ocean. The author confirms many of the findings of previous studies, specifically large Ku-band reflectivity fluctuations and relatively short Ku-band reflectivity correlation lengths in convective areas. This study also examines similar statistics for Ku-band path integrated attenuation and for vertical motion, the latter of which is not widely discussed in the literature. Results from these observations are then applied to spatial resolution considerations for future spaceborne precipitation radars.

    Citation: Stephen L. Durden. Spatial variability of airborne radar reflectivity and velocity measurements of tropical rain with application to spaceborne radar[J]. AIMS Electronics and Electrical Engineering, 2019, 3(2): 164-180. doi: 10.3934/ElectrEng.2019.2.164

    Related Papers:

  • One of the challenges in accurate estimation of rainfall from spaceborne radars is achievement of adequate spatial resolution with reasonable-sized antennas. Previous studies have shown that variability of precipitation within the radar beam can result in errors in rainfall and Doppler estimation from spaceborne radars. In designing these radars, it is therefore necessary to achieve a spatial resolution that reduces such errors to acceptable levels. In this work the author considers data acquired by airborne radar in the tropics or sub-tropics, over ocean. The author confirms many of the findings of previous studies, specifically large Ku-band reflectivity fluctuations and relatively short Ku-band reflectivity correlation lengths in convective areas. This study also examines similar statistics for Ku-band path integrated attenuation and for vertical motion, the latter of which is not widely discussed in the literature. Results from these observations are then applied to spatial resolution considerations for future spaceborne precipitation radars.


    加载中


    [1] Meneghini R, Kozu T (1990) Spaceborne Weather Radar. Norwood, MA, USA: Artech House.
    [2] Bringi VN, Chandrasekar V (2005) Polarimetric Doppler Weather Radar: Principles and Applications. Cambridge, UK: Cambridge University Press.
    [3] Doviak RJ, Zrnic DS (1993) Doppler Radar and Weather Observations. New York, NY, USA: Academic Press.
    [4] Kozu T, Kawanishi T, Kuroiwa H, et al. (2001) Development of precipitation radar onboard the Tropical Rainfall Measuring Mission (TRMM) satellite. IEEE T Geosci Remote 39: 102–116. doi: 10.1109/36.898669
    [5] Hou AY, Kakar RK, Neeck S, et al. (2014) The Global Precipitation Measurement Mission. B Am Meteorol Soc 95: 701–722. doi: 10.1175/BAMS-D-13-00164.1
    [6] Tanelli S, Durden SL, Im E, et al. (2008) CloudSat's Cloud Profiling Radar after two years in orbit: performance, external calibration, and processing. IEEE T Geosci Remote 46: 3560–3573. doi: 10.1109/TGRS.2008.2002030
    [7] Peral E, Statham S, Im E, et al. (2018) The Radar-in-a-Cubesat (RAINCUBE) and measurement results. In: IGARSS 2018-2018 IEEE International Geoscience Remote Sensing Symposium, pp. 6297–6300.
    [8] Ishamaru A (1978) Wave Propagation and Scattering in Random Media. New York, NY, USA: Academic Press.
    [9] Nakamura K (1991) Biases of rain retrieval algorithms for spaceborne radar caused by nonuniformity of rain. J Atmos Ocean Tech 8: 363–373. doi: 10.1175/1520-0426(1991)008<0363:BORRAF>2.0.CO;2
    [10] Durden SL, Haddad ZS, Kitiyakara A, et al. (1998) Effects of non-uniform beam-filling on rainfall retrieval for the TRMM Precipitation Radar. J Atmos Ocean Tech 15: 635–646. doi: 10.1175/1520-0426(1998)015<0635:EONBFO>2.0.CO;2
    [11] Zhang L, Lu D, Duan S, et al. (2004) Small-Scale rain nonuniformity and its effect on evaluation of nonuniform beam-filling error for spaceborne radar rain measurement. J Atmos Ocean Tech 21: 1190–1197. doi: 10.1175/1520-0426(2004)021<1190:SRNAIE>2.0.CO;2
    [12] Ha E, North GR (1995) Model studies of the beam-filling error for rain-rate retrieval with microwave radiometers. J Atmos Ocean Tech 12: 268–281. doi: 10.1175/1520-0426(1995)012<0268:MSOTBF>2.0.CO;2
    [13] Durden SL, Tanelli S (2008) Predicted effects of nonuniform beam filling on GPM radar data. IEEE Geosci Remote S 5: 308–310. doi: 10.1109/LGRS.2008.916068
    [14] Huff FA, Shipp WL (1969) Spatial correlations of storm, monthly, and seasonal precipitation. J Appl Meteorol 8: 542–550. doi: 10.1175/1520-0450(1969)008<0542:SCOSMA>2.0.CO;2
    [15] Tapiador FJ, Checa R, de Castro M (2010) An experiment to measure the spatial variability of rain drop size distribution using sixteen laser disdrometers. Geophys Res Lett 37: L16803.
    [16] Jaffrain J, Berne A (2012) Quantification of the small-scale spatial structure of the raindrop size distribution from a network of disdrometers. J Appl Meteorol Clim 51: 941–953. doi: 10.1175/JAMC-D-11-0136.1
    [17] Jameson, AR (2016) Quantifying drop size distribution variability over areas: Some implications for ground validation experiments. J Hydrometeorol 17: 2689–2698. doi: 10.1175/JHM-D-16-0094.1
    [18] Tokay A, D'Adderio LP, Procu F, et al. (2017) A field study of footprint-scale variability of raindrop size distribution. J Hydrometeorol 18: 3165–3179. doi: 10.1175/JHM-D-17-0003.1
    [19] Kessler E (1966) Computer program for calculating average lengths of weather radar echoes and pattern bandedness. J Atmos Sci 23: 569–574. doi: 10.1175/1520-0469(1966)023<0569:CPFCAL>2.0.CO;2
    [20] Zawadzki II (1973) Statistical properties of precipitation patterns. J Appl Meteorol 12: 459–472. doi: 10.1175/1520-0450(1973)012<0459:SPOPP>2.0.CO;2
    [21] Crane RK (1990) Space-time structure of rain fields. J Geophys Res 95: 2011–2020. doi: 10.1029/JD095iD03p02011
    [22] Kozu T, Iguchi T (1999) Nonuniform beamfilling correction for spaceborne radar rainfall measurement: Implications from TOGA COARE radar data analysis. J Atmos Ocean Tech 16: 1722–1735. doi: 10.1175/1520-0426(1999)016<1722:NBCFSR>2.0.CO;2
    [23] Lee CK, Lee GW, Zawadzki I, et al. (2009) A preliminary analysis of spatial variability of raindrop size distributions during stratiform rain events. J Appl Meteorol Clim 48: 270–283. doi: 10.1175/2008JAMC1877.1
    [24] Bringi VN, Tolstoy L, Thurai M, et al. (2015) Estimation of spatial correlation of drop size distribution parameters and rain rate using NASA's S-band polarimetric radar and 2D video disdrometer network: Two case studies from MC3E. J Hydrometeorol 16: 1207–1221. doi: 10.1175/JHM-D-14-0204.1
    [25] Lebo ZJ, Williams CR, Feingold G, et al. (2015) Parameterization of the spatial variability of rain for large-scale models and remote sensing. J Appl Meteorol Clim 54: 2027–2046. doi: 10.1175/JAMC-D-15-0066.1
    [26] Amayenc P, Testud J, Marzoug M (1993) Proposal for a spaceborne dual beam rain radar with Doppler capability. J Atmos Ocean Tech 10: 262–276. doi: 10.1175/1520-0426(1993)010<0262:PFASDB>2.0.CO;2
    [27] Durden SL, Siqueira P, Tanelli S (2007) On the use of multiantenna radars for spaceborne Doppler precipitation measurements. IEEE Geosci Remote S 4: 181–183. doi: 10.1109/LGRS.2006.887136
    [28] Durden SL, Tanelli S, Epp LW, et al. (2016) System design and subsystem technology for a future spaceborne cloud radar. IEEE Geosci Remote S 13: 560–564. doi: 10.1109/LGRS.2016.2525718
    [29] Kollias P, Tanelli S, Battaglia A, et al. (2014) Evaluation of EarthCARE Cloud Profiling Radar Doppler velocity measurements in particle sedimentation regimes. J Atmos Ocean Tech 31: 366–386. doi: 10.1175/JTECH-D-11-00202.1
    [30] Tanelli S, Im E, Durden SL, et al. (2002) The effects of nonuniform beam filling on vertical rainfall velocity measurements with a spaceborne Doppler radar. J Atmos Ocean Tech 19: 1019–1034. doi: 10.1175/1520-0426(2002)019<1019:TEONBF>2.0.CO;2
    [31] LeMone MA, Zipser EJ (1980) Cumulonimbus vertical velocity events in GATE. Part I: Diameter, intensity, and mass flux. J Atmos Sci 37: 2444–2457.
    [32] Jorgensen DP, Zipser EJ, LeMone MA (1985) Vertical motions in hurricanes. J Atmos Sci 42: 839–856. doi: 10.1175/1520-0469(1985)042<0839:VMIIH>2.0.CO;2
    [33] Jorgensen DP, LeMone MA (1989) Vertical velocity characteristics of oceanic convection. J Atmos Sci 46: 621–640. doi: 10.1175/1520-0469(1989)046<0621:VVCOOC>2.0.CO;2
    [34] Black ML, Burpee RW, Marks FD (1996) Vertical motion characteristics of tropical cyclones determined with airborne Doppler radial velocities. J Atmos Sci 53: 1887–1909. doi: 10.1175/1520-0469(1996)053<1887:VMCOTC>2.0.CO;2
    [35] Anderson NF, Grainger CA, Stith JL (2005) Characteristics of Strong Updrafts in Precipitation Systems over the Central Tropical Pacific Ocean and in the Amazon. J Appl Meteorol 44: 731–738. doi: 10.1175/JAM2231.1
    [36] Heymsfield GM, Tian L, Heymsfield AJ, et al. (2010) Characteristics of deep tropical and subtropical convection from nadir-viewing high-altitude airborne Doppler radar. J Atmos Sci 67: 285–308. doi: 10.1175/2009JAS3132.1
    [37] Atlas D, Srivastava RC. Sekhon S (1973) Doppler radar characteristics of precipitation at Vertical Incidence, Rev Geophys 11: 1–35.
    [38] Durden SL, Im E, Li FK, et al. (1994) ARMAR: An airborne rain mapping radar. J Atmos Ocean Tech 11: 727–737. doi: 10.1175/1520-0426(1994)011<0727:AAARMR>2.0.CO;2
    [39] Tanelli S, Durden SL, Im E (2006) Simultaneous measurements of Ku- and Ka-band sea surface cross-sections by an airborne radar. IEEE Geosci Remote S 3: 359–363. doi: 10.1109/LGRS.2006.872929
    [40] Meneghini R, Kim H, Liao L, et al. (2015) An initial assessment of the Surface Reference Technique applied to data from the Dual-Frequency Precipitation Radar (DPR) on the GPM satellite. J Atmos Ocean Tech 32: 2281–2296. doi: 10.1175/JTECH-D-15-0044.1
    [41] Durden SL, Haddad ZS (1998) Comparison of radar rainfall retrieval algorithms in convective rain during TOGA COARE. J Atmos Ocean Tech 15: 1091–1096. doi: 10.1175/1520-0426(1998)015<1091:CORRRA>2.0.CO;2
    [42] Houze RA (2004) Mesoscale convective systems. Rev Geophys 42: 237–286.
    [43] Awaka J, Iguchi T, Kumagai H, et al. (1997) Rain type classification algorithm for TRMM Precipitation Radar. In: IGARSS'97. 1997 IEEE International Geoscience and Remote Sensing Symposium Proceedings. Remote Sensing-A Scientific Vision for Sustainable Development, pp. 1633–1635.
    [44] Haddad ZS, Short DA, Durden SL, et al. (1997) A new parametrization of the rain drop size distribution. IEEE T Geosci Remote 35: 532–539. doi: 10.1109/36.581961
    [45] Davies ER (2005) Machine Vision: Theory, Algorithms and Practicalities, Third Edition. Amsterdam, Netherlands: Elsevier.
    [46] Elsner JB, Jagger TH (2013) Hurricane Climatology: A Modern Statistical Guide Using R. Oxford, UK: Oxford University Press.
    [47] Wilcox RR (2010) Fundamentals of Modern Statistical Methods, 2nd Edition. New York, NY, USA: Springer.
    [48] Haykin S (1978) Communication Systems. New York, NY, USA: Wiley.
    [49] Bracewell RN (1978) The Fourier Transform and Its Applications, 2nd Ed. McGraw-Hill.
    [50] Sørland SL, Sorteberg A (2015) The dynamic and thermodynamic structure of monsoon low-pressure systems during extreme rainfall events. Tellus A: Dynamic Meteorology and Oceanography 67: 27039. doi: 10.3402/tellusa.v67.27039
    [51] Durden SL (2018) Relating GPM radar reflectivity profile characteristics to path-integrated attenuation. IEEE T Geosci Remote 56: 4065–4074. doi: 10.1109/TGRS.2018.2821601
    [52] Battaglia A, Tanelli S, Kobayashi S, et al. (2010) Multiple-scattering in radar systems: A review. J Quant Spectroscopy Radiative Trans 111: 917–947. doi: 10.1016/j.jqsrt.2009.11.024
    [53] Long DG, Brodzik MJ (2016) Optimum image formation for spaceborne microwave radiometer products. IEEE T Geosci Remote 54: 2763–2779. doi: 10.1109/TGRS.2015.2505677
    [54] Wolde M, Battaglia A, Nguyen C, et al. (2019) Implementation of polarization diversity pulse-pair technique using airborne W-band radar. Atmos MeasTech 12: 253–269.
    [55] Atlas D, Srivastava RC, Sloss PW (1969) Wind shear and reflectivity gradient effects on Doppler radar spectra: II. J Appl Meteorol 8: 384–388. doi: 10.1175/1520-0450(1969)008<0384:WSARGE>2.0.CO;2
    [56] Tanelli S, Im E, Durden SL, et al. (2004) Rainfall Doppler velocity measurements from spaceborne radar: Overcoming NUBF effects. J Atmos Ocean Tech 21: 27–44. doi: 10.1175/1520-0426(2004)021<0027:RDVMFS>2.0.CO;2
    [57] Durden SL, Fischman MA, Johnson RA, et al. (2007) An FPGA-based Doppler processor for a spaceborne precipitation radar. J Atmos Ocean Tech 24: 1811–1815. doi: 10.1175/JTECH2086.1
  • Reader Comments
  • © 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5085) PDF downloads(1571) Cited by(1)

Article outline

Figures and Tables

Figures(6)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog