Citation: Yoshi Nishitani, Chie Hosokawa, Yuko Mizuno-Matsumoto, Tomomitsu Miyoshi, Shinichi Tamura. Classification of Spike Wave Propagations in a Cultured Neuronal Network: Investigating a Brain Communication Mechanism[J]. AIMS Neuroscience, 2017, 4(1): 1-13. doi: 10.3934/Neuroscience.2017.1.1
[1] | Bonifazi P, Goldin M, Picardo MA, et al. (2009) GABAergic Hub Neurons Orchestrate Synchrony in Developing Hippocampal Networks. Science 326: 1419-1424. doi: 10.1126/science.1175509 |
[2] | Lecerf C (1998) The double loop as a model of a learning neural system. Proceedings World Multiconference on Systemics. Cybernetics Informatics 1: 587-594. |
[3] | Choe Y (2003) Analogical Cascade: A Theory on the Role of the Thalamo-Cortical Loop in Brain Function. Neurocomputing 1: 52-54. |
[4] | Tamura S, Mizuno-Matsumoto Y, Chen YW, et al. (2009) Association and abstraction on neural circuit loop and coding. 5th Int’l Conf. Intelligent Information Hiding and Multimedia Signal Processing (IIHMSP2009) 10-07.546 (appears in IEEE Xplore). |
[5] | Thorpre S, Fize D, Marlot C, et al. (1996) Speed of processing in the human visual system. Nature 381: 520-522. doi: 10.1038/381520a0 |
[6] | Shadlen MN, Newsome WT (1998) The variable discharge of cortical neurons: implications for connectivity computation and information coding. J Neurosci 18: 3870-3896. |
[7] | Olshausen BA, Field DJ (1996) Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Letters Nat 381: 607-609. doi: 10.1038/381607a0 |
[8] | Bell, Sejnowski T (1997) The independent components of natural scenes are edge filters. Vision Res 37: 3327-3338. doi: 10.1016/S0042-6989(97)00121-1 |
[9] | Klipera, Hornb D, Quene B (2005) The inertial-DNF model: spatiotemporal coding on two time scales. Neurocomputing 65-66: 543-548. doi: 10.1016/j.neucom.2004.10.046 |
[10] | Takahashi K, Kim S, Coleman TP, et al. (2015) Large-scale spatiotemporal spike patterning consistent with wave propagation in motor cortex. Nat Commu 6: 7169. DOI:10.1038/ncomms8169. Available from: http://www.nature.com/ncomms/2015/150521/ncomms8169/full/ncomms8169.html doi: 10.1038/ncomms8169 |
[11] | Aviel Y, Horn D, Abeles M (2004) Synfire waves in small balanced networks. Neural Computation 58-60: 123-127. |
[12] | Nishitani Y, Hosokawa C, Mizuno-Matsumoto Y, et al. (2012) Detection of M-sequences from spike sequence in neuronal networks. Comput Intell Neurosci. Article ID, 862579: 1-9 |
[13] | Nishitani Y, Hosokawa C, Mizuno-Matsumoto Y, et al. (2014) Synchronized Code Sequences from Spike Trains in Cultured Neuronal Networks. Int J Engineer Industries 5: 13-24. |
[14] | Tamura S, Nishitani Y, Kamimura T, et al. (2013) Multiplexed spatiotemporal communication model in artificial neural networks. Auto Control Intell Systems 1: 121-130. DOI: 10.11648/j.acis.20130106.11 |
[15] | Tamura S, Nishitani Y, Hosokawa C, et al. (2016) Simulation of code spectrum and code flow of cultured neuronal networks. Compu Intell Neurosci 7186092: 1-12. |
[16] | Nishitani Y, Hosokawa C, Mizuno-Matsumoto Y, et al. (2016) Variance of spatiotemporal spiking patterns by different stimulated neurons in cultured neuronal networks. Int J Acade Res Reflect 4: 11-19. |
[17] | Shinichi Tamura Yoshi Nishitani, Chie Hosokawa (2016) Feasibility of multiplex communication in 2D mesh asynchronous neural network with fluctuations. AIMS Neurosci 3: 385-397. doi: 10.3934/Neuroscience.2016.4.385 |
[18] | Wagenaar DA, Pine J, Potter SM (2004) Effective parameters for stimulation of dissociated cultures using multi-electrode arrays. J Neurosci Method 138: 27-37. doi: 10.1016/j.jneumeth.2004.03.005 |
[19] | Muller M (2007) Dynamic Time Warping. In: Information Retrieval for Music and Motion, Springer. |
[20] | Mei J, Liu M, Wang YF, et al. (2015) Learning a Mahalanobis Distance based Dynamic Time Warping Measure for Multivariate Time Series Classification. IEEE_cybernetics Available from: https://www.google.co.jp/?gws_rd=ssl#q=dtw+weakpoint |
[21] | Rivlin-Etzion M, Ritov Y, Heimer G, et al. (2006) Local shuffling of spike trains boosts the accuracy of spike train spectral analysis. J Neurophysiol 95: 3245-3256. doi: 10.1152/jn.00055.2005 |