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Abstract: In brain information science, it is still unclear how multiple data can be stored and 

transmitted in ambiguously behaving neuronal networks. In the present study, we analyze the 

spatiotemporal propagation of spike trains in neuronal networks. Recently, spike propagation was 

observed functioning as a cluster of excitation waves (spike wave propagation) in cultured neuronal 

networks. We now assume that spike wave propagations are just events of communications in the 

brain. However, in reality, various spike wave propagations are generated in neuronal networks. Thus, 

there should be some mechanism to classify these spike wave propagations so that multiple 

communications in brain can be distinguished. To prove this assumption, we attempt to classify 

various spike wave propagations generated from different stimulated neurons using our original 

spatiotemporal pattern matching method for spike temporal patterns at each neuron in spike wave 

propagation in the cultured neuronal network. Based on the experimental results, it became clear that 

spike wave propagations have various temporal patterns from stimulated neurons. Therefore these 

stimulated neurons could be classified at several neurons away from the stimulated neurons. These 



2 

AIMS Neuroscience Volume 4, Issue 1, 1-13. 

are the classifiable neurons. Moreover, distribution of classifiable neurons in a network is also 

different when stimulated neurons generating spike wave propagations are different. These results 

suggest that distinct communications occur via multiple communication links and that classifiable 

neurons serve this function. 

Keywords: cultured neuronal network; spike wave propagation; spatiotemporal form; classifying; 

multiple communications 

 

1. Introduction 

The brain is an intellectual information processing system [1–5]. How a neuronal network of 

ambiguously behaving neurons establishes a highly reliable information processing system, distinct 

communication, and organized communication links is an unanswered question. Despite many 

researchers attempting to solve this question, it remains a mystery. 

In previous studies, factors such as spatiotemporal coding, the Synfire chain, and the 

spatiotemporal form of spike activity were considered the fundamental generators of natural 

intelligence in the brain [6–11]. However, basic communication functions between neurons have not 

been elucidated in these studies. Therefore, the abovementioned question still remains unsolved. 

Recently, we focused on distinct and different communication to investigate the previously 

mentioned question [12–15]. In previous work [16], spike propagation as a cluster of excitation 

waves, termed as spike wave propagation, was observed in cultured neuronal networks. However, in 

those experiments, it was only observed that various spike wave propagations were generated in 

neuronal networks. The details of these mechanisms were still unclear. 

To investigate these mechanisms, we simulated a 9 × 9 2D mesh neural network consisting of 

an integrate-and-fire model without leak. Resulting from this method, multiplex communication is 

possible at a success rate of 99% [17]. This result suggested that distinction of the spike wave 

propagation spatiotemporal form was the clue to classifying multiple communications in the brain. 

Here, we assume spike wave propagations are just communication events in the brain and attempt to 

prove this assumption. However, physiological experiments, analysis, and discussions about these 

events have yet to be reported [17]. 

In this study, we attempt to classify various spike wave propagation from different stimulated 

neurons in cultured neuronal networks, as well as discuss the implications of these classifying results 

in a view of brain communication. The authors’ research group is presently studying the functions of 

neuronal networks by combining experiments with cultured neuronal networks with artificial neural 

network simulations. This paper corresponds to previous work on the ability of remote receiving 

neurons to identify two transmitting neuron groups stimulated in a neuronal network, i.e., 2 to 1 

communication [17]. These mechanisms may be the basis of higher cortical functions. 
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The aim of this study is to investigate the most essential question in our study: to identify what 

the spatiotemporal form of spike wave propagation suggests in view of communication in 

brain physiologically.  

2. Methods 

2.1. Cell cultures 

Cell cultures of hippocampal neurons were dissected from Wistar rats on embryonic day 18. The 

procedure conformed to the protocols approved by the Institutional Animal Care and Use Committee 

of the National Institute of Advanced Industrial Science and Technology. Hippocampi were 

dissociated with 0.1% trypsin (Invitrogen; Tokyo, Japan) in Ca2+- and Mg2+-free phosphate-buffered 

saline at 37°C for 15 min. The dissociated neurons were planted at a density of 3.3 × 105 cells/mm2 

in polyethylentimine-coated microelectrode array (MEA) dishes (MED-P515A, Alpha MED 

Scientific; Kadoma, Japan) with 8 × 8 planar microelectrodes. The size and spacing of the electrodes 

were 50 × 50 μm2 and 150 or 450 μm, respectively. To position the neuronal networks in the central 

area of each MEA dish, a cloning ring with an inner diameter of 7 mm was used. The ring was 

removed the following day. Neurons adhered to the substrate of the MEAs, covering all electrodes. 

Neurons were maintained at 37°C in a humidified atmosphere of 5% CO2 and cultured for 

21–40 days in Dulbecco’s modified Eagle’s medium (Invitrogen), which contained 5% horse 

serum and 5% fetal calf serum with supplements of 100 U/ml penicillin, 100 μg/ml streptomycin, 

and 5 μg/ml insulin. Half of the culture medium was renewed twice per week. In this study, four 

cultured cell samples at 22–50 days in vitro were prepared and are referred to as Cultures 1, 2, 3, 

and 4. Figure 1 shows a micrograph of the cultured neurons in an MEA. 

 

 

 

 

 

 

 

Figure 1. Micrograph of cultured neurons in an MEA (×20). 

2.2. Stimulated spike recording 

Stimulated spikes were recorded using MED64 (Alpha MED Scientific; Osaka Japan), an 

extracellular recording system with 64 electrodes (channels). The size of each electrode is 

approximately the size of a neuron. The recording was performed for 3 s at a sampling rate of 20 kHz. 
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A selected channel was stimulated at 5 ms after the start of the recording. The stimulation signal was 

a current-controlled bipolar pulse (positive, then negative) with a strength of 10 uA and a duration of 

100 us.  

Two to three channels in each culture were selected as the stimulation channels, and they were 

subjected to 10–15 recordings. In this study, the stimulated channels are referred to as StimA, StimB, 

and StimC. Incidentally, this study investigates whether the original stimulated channels (StimA, B, 

or C) can be identified from spike train at each channel (including multi-neurons), rather than by 

single neurons. Therefore, spike sorting was not performed. 

2.3. Coding spike trains 

The recorded spike trains were coded as follows: first, raster plots were generated by detecting 

peaks above a pre-specified threshold on each channel in the recorded spike responses [18]. Then, 

spike interval trains were calculated from the raster plot data. 

2.4. Classifying procedure  

Previously [16], effort was made to analyze the differences in the spike spatiotemporal pattern 

corresponding to the stimulated neuron using the dynamic time warping (DTW) method. This 

method uses a dynamic programming technique to find the minimum distance by stretching or 

shrinking the linearly or non-linearly warped time series and is thus useful for finding the optimal 

alignment between two non-uniform time series [19]. However, the DTW method does not offer an 

adequate resolution [20]. Therefore, the qualities of the analysis results were not enough to clarify 

whether multiple spike waves are classifiable. 

The brain must have some physiological learning mechanism for classifying spike wave 

propagations with various temporal patterns. Considering previous experimental results, we used an 

analytical method with a learning algorithm instead of DTW. In the field of machine learning, back 

propagation, deep learning, etc. are well known. Though these methods, which imitate the behavior 

of physiological neuronal networks, are very effective for classifying various and complex data, the 

learning algorithm seems to be better suited for arranging physiological behavior to fit machine 

learning. Therefore, in this study, we use a simpler learning algorithm based on the arithmetical 

average method, which seems to have more compatibility with natural recognition (See 

Supplementary S-1). 

The outline of classifying procedure is as follows. 
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 Repeat for each 64 channel on MED64 

(1) Spike train is learned by 5–10 spike temporal patterns with the same stimulated neuron 

(called neuron A temporarily). This spike train form is termed Learning pattern A. 

(2) Learning pattern B (stimulated neuron is neuron B) are created by the same method as 

Learning pattern A. 

(3) To find classifiable neurons, the resemblance of spike train (before learning) on trial 

(named Trial Data) and learning pattern A or B was estimated by the procedure described in 

Supplementary S-2. 

3. Results 

*To explain the detection method of classifiable neurons, the results of Cultures 1 and 2 are in 

described in detail. 

3.1. Culture 1 

In Culture 1, 15 spike responses were recorded when channel 4 was stimulated. Five spike 

responses from the 15 were used for Trial Data named Tr401, Tr402, . . . Tr405, while the other 10 

spike responses were used for Learning Pattern 4. Next, five Trial Data named Tr2801, Tr2802, . . . 

Tr2805, and Learning Pattern 28 (channel 28 is stimulated) were created by the same procedure as 

Tr401-Tr405 and Learning Pattern 4. 

Figure 2 shows the result of the resemblance test for Tr2801. In Fig. 2b, which focused on 

channel 16, the mean value of SpsetTrial was significantly greater than that of SpsetLocal (see 

Supplementary S-2), when the stimulated neuron of the trial was different than that in the learning 

pattern. No significant difference was observed when the stimulated neuron of Trial Data was the 

same as in learning pattern (Figure 2a). This result suggested that the stimulated neuron of these 

Trial Data was not neuron 4. In other words, these Trial Data can be extracted from Leaning Pattern 

4 and the stimulated neuron 28 can be classified successfully as a neuron on channel 16. Therefore, 

this neuron was a classifiable neuron. In this trial, there were 14 classifiable neurons. Table 1a shows 

the number of classifiable neuron in each trial in Culture 1. 

3.2. Culture 2 

In Culture 2, Tr1301, Tr1302, . . . Tr1305, Learning Pattern 13, Tr3001, Tr3002, . . . Tr3005, 

Learning Pattern 30, Tr5401, Tr5402, . . . Tr5405, and Learning Pattern 54 (the stimulated neurons 

were channels 13, 30, and 54, respectively) were prepared for experiments and learning patterns 

were created by 5-spike responses. Figure 3 shows the estimation result of the comparison for 

Tr1304. Sixteen classifiable neurons were observed through comparison with Learning Pattern 54 
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and 10 through comparison with Learning Pattern 30. Table 1b shows the number of classifiable 

neurons for each trial. 

 

Figure 2. Estimation results of the comparisons for Tr2801. (a) Comparison 

with Learning pattern 28 (b) Comparison with Learning pattern 4. Green cells 

indicate that the mean value of SpsetTrial was significantly greater than that of 

SpsetLocal (see Supplementary S-2). Blue cells indicate that SpsetTrial was not 

significantly greater than SpsetLocal. Gray cells indicate no spikes or that the 

number of spike was less than eight in the recording. 

 

 

Figure 3. Estimation results of the comparisons for Tr1304. (a) Comparison with 

Learning Pattern 13 (b) Comparison with Learning Pattern 54 (c) Comparison with 

Learning Pattern 30. Green cells indicate the mean value of SpsetTrial was significantly 

greater than that of SpsetLocal (see Supplementary S-2). Blue cells indicate that 

SpsetTrial was not significantly greater than SpsetLocal. Gray cells indicate no spikes or 

that the number of spikes was less than eight in this recording.  

3.3. Cultures 3 and 4 

For Culture 3, channels 4 and 38 were stimulated. For Culture 4, channels 8, 10, and 57 were 

stimulated. The detection method of classifiable neurons in these cultures was similar to Culture 1 

and 2. Therefore, in Culture 3 and 4, only the number of classifiable neurons for each Trial Data in 

Table 1c and 1d is shown.  
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49 50 51 52 53 54 55 56
57 58 59 60 61 62 63 64
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17 18 19 20 21 22 23 24
25 26 27 28 29 30 31 32
33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48
49 50 51 52 53 54 55 56
57 58 59 60 61 62 63 64

(a) (b) 



7 

AIMS Neuroscience Volume 4, Issue 1, 1-13. 

3.4. Comparing with Spike Interval Shuffling data 

As shown in Figure 2, Figure 3, and Table 1, classifiable neurons were observed in particular 

areas of neuronal networks. However, there was indication that these classifiable neurons were 

detected accidentally and purpose of the number of experiments performed was not to dispel this 

doubt. Therefore, we attempted to detect classifiable neurons from shuffled spike-interval sequence, 

called Interval Shuffle (Int. Shuf) [21], in parts of the trial data in Cultures 2 and 3.  

The numbers of classifiable neurons from Interval Shuffle data were less than from original 

(non-Interval Shuffle) spike-interval data. In Culture 2, the difference between the two was 

significant (p < 0.05, as result of t-test). These results show that the detected classifiable neurons 

from the original spike data were not accidental. 

Table 1. The number of classifiable neurons for each Trial Data. 

     a. Culture 1                  b. Culture 2                c. Culture 3           

 

 

 

 

 

 

 

 

 

 

 

       d. Culture 4              e. Culture 2 (Int. Shuf)       f. Culture 3(Int. Shuf) 

 

 

 

 

 

 

 

 

 

vs ch4 stim vs ch 38 stim

Tr401 - 19

Tr402 - 25
Tr403 - 21
Tr404 - 24
Tr405 - 10

Tr3801 18 -
Tr3802 0 -
Tr3803 19 -
Tr3804 20 -
Tr3805 17 -

Classification
Trial

vs ch57 stim vs ch08 stim vs ch 10 stim

Tr5701 - 9 0

Tr5702 - 2 0
Tr5703 - 8 2

Tr0801 0 - 0
Tr0802 0 - 0
Tr0803 0 - 0

Tr1001 10 7 -

Trial
Classification

vs ch13 stim vs ch54 stim vs ch 30 stim

Tr1301 - 0 0

Tr1302 - 5 1
Tr1303 - 0 0
Tr1304 - 0 2
Tr1305 - 0 3
Tr5401 6 - 0
Tr5402 0 - 0
Tr5403 2 - 0
Tr5404 6 - 3
Tr5405 0 - 0

Trial
Classification

vs ch4 stim vs ch 38 stim

Tr401 - 3

Tr3805 0 -

Trial
Classification

vs ch 13 stim vs ch 54 stim vs ch 30 stim

Tr1301 - 10 10

Tr1302 - 17 19
Tr1303 - 16 15
Tr1304 - 16 10
Tr1305 - 11 6
Tr5401 21 - 3
Tr5402 18 - 7
Tr5403 16 - 2
Tr5404 19 - 5
Tr5405 19 - 6
Tr3001 16 9 -
Tr3002 21 6 -
Tr3003 8 7 -
Tr3004 15 3 -
Tr3005 10 10 -

Classifcation
Trial

Classification 

vs ch 4 stim vs ch 28 stim

Tr401 - 10

Tr402 - 9
Tr403 - 10
Tr404 - 17
Tr405 - 13
Tr2801 14 -
Tr2802 12 -
Tr2803 13 -
Tr2804 14 -
Tr2805 14 -

Trial
ClassifcationClassification 



8 

AIMS Neuroscience Volume 4, Issue 1, 1-13. 

4. Discussion 

4.1. Discussion on the analysis results 

Based on the experimental results, several classifiable neurons were observed in particular areas 

of neuronal networks. In detail, multiplexed spike wave propagation share several neurons and some 

may be used to classify different spike wave propagations. Accordingly, questions arose considering 

the distribution of classifiable neurons: do both classifiable and non-classifiable neurons exist in the 

same neuronal network? 

The distribution of classifiable neurons is influenced by the distribution of synaptic weights in 

the neuronal network. It is well known that each neuron has an individually specific (intrinsic) 

synaptic weight and each neuron is considered classifiable neuron or not depending on conditions 

such as synaptic weights. In the physiological experiments, unlike the simulation experiments [17], it 

is difficult to determine weight distributions intentionally and only a limited number of realized 

weight distributions were observed. Therefore, distributions of classifiable neurons varied between 

different cultures. 

In attempt to understand why non-classifiable neurons are intermingled with classifiable 

neurons are intermingled in the same neuronal network, three conditions of spike wave propagation 

scheme were presumed, as shown in Figure 4. For simplicity, it was assumed that all neurons were 

connected to neighboring neurons and spike waves spread radially from stimulated neurons. Due to 

the influence of the synaptic weight distribution in neuronal networks, each spike wave propagates 

with its own individual spatiotemporal pattern. Therefore, neurons sharing multiple spike wave 

propagations could be used to classify different spike wave propagations if a spike wave does not 

spread to neurons stimulated another spike wave each other (Figure 4 a1-2). However, if one spike 

wave spreads to neurons stimulated by another spike wave, as shown in Figure 4b, some neurons fire 

the same temporal patterns, even when a different neuron is stimulated. Results shown in Figure 2, 

Figure 3, and Table 1 suggest that this condition was realized in neuronal network used in 

these experiments. 

Moreover, it was difficult to classify the stimulations of channel 54 and channel 30 in Culture 2, 

as fewer classifiable neurons were observed. The reason for this result was that spike waves spread 

to neurons that were stimulated by other spike waves, as shown in Figure 4c. Under this condition, 

some neurons fire the same temporal patterns, even when a different neuron is stimulated. 

Additionally, although we assume in this discussion that the spike waves spread in a simple radial 

direction, neurons are connected randomly in reality. Therefore, both classifiable neurons and non- 

classifiable neurons observed (Figures 2 and 3). 

From Figures 3b and 3c, the distribution of classifiable neurons in Learning Pattern 54 

(stimulated neuron was ch54) was different from the distribution of classifiable neurons based on 

Learning Pattern 30. This phenomenon provides explanation for how spikes wave spread, as shown 
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in Figure 4. If a pair of naturally stimulated neurons generate two different spike waves, the 

distribution of these spike waves and the overlap area are different, thus reflecting the distribution of 

classifiable neurons. Consequently, the spatial distribution of classifiable neurons in the network 

varies when there are multiple targets for spike waves. 

 

Figure 4 Condition of spike wave propagation scheme. (a1-a2) The spike wave generated from 

neuron A did not cover neuron B and spike wave generated from neuron B did not cover neuron A. In 

this condition, each spike wave was generated independently when neuron A or B was stimulated. 

Neurons overlapping both spike waves (green) generate different temporal patterns when the 

stimulated neuron was different Therefore, two stimulated neurons were classifiable in this area. If a 

pair of stimulated neurons generated two different spike waves, the distribution of these spike waves 

and the overlap area were different, thus reflecting the distribution of classifiable neurons. (a2) If the 

location of neuron B was different from a1, the spread and distribution of “green neurons,” 

corresponding to the different overlapping areas. (b) Spike waves generated from neuron A covered 

neuron B; neuron B fired and spike wave were generated from neuron B. Under this condition, 

neurons indicated in blue fired in the same temporal pattern both when neuron A was stimulated and 

when neuron B was stimulated. Therefore, no difference was observed in the temporal pattern in this 

area. However, two stimulated neurons were classifiable (green). (c) Spike waves generated from 

neuron A covered neuron B and spike wave generated from neuron B covered neuron A. Both spike 

wave were generated from either stimulated neuron A or B. Hence, the temporal pattern was observed. 

 

 

A

B

A

B

A

B

A

B

(a1) (a2) 

(c) (b) 
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Furthermore, we investigated how multiplexed communication affects the processing of 

intellectual information in the brain. A simple multiplexed communication in the brain was modeled, 

as shown in Figure 5. The establishment of a virtual communication link from stimulated neurons to 

a particular area in the neuronal network was observed. Consequently, specific information was 

received in a particular area (Figure 5). We consider these processes as the fundamental mechanisms 

of intelligence in the brain. In fact, we hypothesize that the present model is valid not only for simple 

situations, but also for more complex similar situations. 

 

 

 

 

 

 

 

 

 

Figure 5. A sample of the multiplexed communication field in the brain. The figure 

shows events corresponding to stimulated neurons and spike wave propagations. In Area 1, 

event A was distinguishable from event C and in Area 2, event B was distinguishable from 

event C because classifiable neurons were concentrated in these areas. From a broad 

perspective, information for event A was receivable in Area 1 and information for event B 

was receivable in Area 2. Thus, two communication links from event A to Area 1 and from 

event B to Area 2 were extracted. In this case, event C was the comparison criterion of the 

spike spatiotemporal pattern of events A and B (if another event, such as event A or B, was 

the comparison criterion, the communication link for event C could also be extracted). 

In contrast, for a few neurons, the mean value of SpsetTrial was greater than SpsetLocal. The 

mean value was significantly greater when both the trial pattern and the learning pattern were 

generated from the same stimulated neurons (Figures 2a and 3a). The results of these experiments 

suggest the possibility of the incorrect classification of some spike wave propagations. However, 

such neurons are fewer in number than classifiable neurons (when the stimulated neurons are 

different between the trial and the learning pattern). Therefore, the activities of such neurons may be 

masked by classifiable neurons. In brief, the trials successfully classified the entire neuronal network 

in a broad way and the experimental results reflect the distribution of synaptic weight in 

neuronal networks. 

event Ａ

event B Area  1

Area  2

event C
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4.2. Function of classifiable neurons in the brain 

The function of classifiable neurons was investigated in the brain. It was considered that 

classifiable neurons may participate in distinguishing different communications in the brain and that 

multiplexed spike wave propagations correspond to multiplexed communications in the brain. Some 

communications use the same neurons, as shown in Figure 4. In this case, the function of classifiable 

neurons was to classify multiple communications and recognize individual information. This 

function is similar to the multiplexed communication mechanism in artificial communication 

systems, such as mobile phones.  

5. Conclusion 

In this study, we classified various spike wave propagations individually generated from 

different stimulated neurons using an original spatiotemporal pattern matching the method of spikes 

in a cultured neuronal network. Based on the experimental results, classifiable neurons were 

observed in the neuronal network. We also confirmed that the spatial pattern of classifiable neurons 

within the neuronal network depended on stimulated neurons generating different spike wave 

propagations. These results suggest that distinct communications occur via multiple communication 

links in the brain and classifiable neurons play a significant role in this process.  

Moreover, multiplexed communication scheme in the neuronal network were modeled in order 

to discuss the meaning of the multiplexed communication mechanism with regard to the 

management of intellectual information in the brain. The results of this study suggest that 

communication in the neuronal network is the basis of brain activity. This research provides a 

significant clue to solving one of the deepest mysteries of neuronal networks, namely, how 

seemingly ambiguous behavior among neurons leads to a reliable information processing system. 

In this study, multiplexed communication is only modeled for one simple situation in a neuronal 

network. Because the comparable spatiotemporal patterns in the present analytical program are 

limited to two (events A vs B, A vs C, or B vs C), the resulting multiple analyzed spike 

spatiotemporal pattern includes only a pair of events (events A vs B, A vs C, or B vs C). Thus, the 

present multiplexed communication scheme is incomplete and further research is required to 

investigate situations with more than three events. Although the present scheme may be adequate for 

more complex situations as well, it is necessary to clarify these situations of multiple 

communications in the brain in future studies.  

Lastly, the features of this paper are summarized as follows: 

(1) To our current knowledge this study is the first attempt to investigate multiplex 

communication in a cultured neuronal network.  

(2) Experiments and analysis correspond to a simulation experiment in 9 × 9 2D mesh neural 

network and sought to identify two transmitting neuron groups stimulated in a simulated 
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neuronal network, i.e., 2:1 communication [17]. 

(3) The results of this study show a signal transmission principle in neuronal networks which 

provides a possible solution to the mystery of the manner of reliable neuronal communication, 

which is thought to be the basis of brain activity. 
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