Citation: Karolína M. Šišková, Renáta Večeřová, Hana Kubičková, Magdaléna Bryksová, Klára Čépe, Milan Kolář. Revisiting spontaneous silver nanoparticles formation: a factor influencing the determination of minimum inhibitory concentration values?[J]. AIMS Environmental Science, 2015, 2(3): 607-622. doi: 10.3934/environsci.2015.3.607
[1] | Amira Bouhali, Walid Ben Aribi, Slimane Ben Miled, Amira Kebir . Impact of immunity loss on the optimal vaccination strategy for an age-structured epidemiological model. Mathematical Biosciences and Engineering, 2024, 21(6): 6372-6392. doi: 10.3934/mbe.2024278 |
[2] | Holly Gaff, Elsa Schaefer . Optimal control applied to vaccination and treatment strategies for various epidemiological models. Mathematical Biosciences and Engineering, 2009, 6(3): 469-492. doi: 10.3934/mbe.2009.6.469 |
[3] | Haoyu Wang, Xihe Qiu, Jinghan Yang, Qiong Li, Xiaoyu Tan, Jingjing Huang . Neural-SEIR: A flexible data-driven framework for precise prediction of epidemic disease. Mathematical Biosciences and Engineering, 2023, 20(9): 16807-16823. doi: 10.3934/mbe.2023749 |
[4] | Markus Thäter, Kurt Chudej, Hans Josef Pesch . Optimal vaccination strategies for an SEIR model of infectious diseases with logistic growth. Mathematical Biosciences and Engineering, 2018, 15(2): 485-505. doi: 10.3934/mbe.2018022 |
[5] | Rongjian Lv, Hua Li, Qiubai Sun, Bowen Li . Model of strategy control for delayed panic spread in emergencies. Mathematical Biosciences and Engineering, 2024, 21(1): 75-95. doi: 10.3934/mbe.2024004 |
[6] | Sarafa A. Iyaniwura, Musa Rabiu, Jummy F. David, Jude D. Kong . Assessing the impact of adherence to Non-pharmaceutical interventions and indirect transmission on the dynamics of COVID-19: a mathematical modelling study. Mathematical Biosciences and Engineering, 2021, 18(6): 8905-8932. doi: 10.3934/mbe.2021439 |
[7] | Jerzy Klamka, Helmut Maurer, Andrzej Swierniak . Local controllability and optimal control for\newline a model of combined anticancer therapy with control delays. Mathematical Biosciences and Engineering, 2017, 14(1): 195-216. doi: 10.3934/mbe.2017013 |
[8] | Bruno Buonomo . A simple analysis of vaccination strategies for rubella. Mathematical Biosciences and Engineering, 2011, 8(3): 677-687. doi: 10.3934/mbe.2011.8.677 |
[9] | M. H. A. Biswas, L. T. Paiva, MdR de Pinho . A SEIR model for control of infectious diseases with constraints. Mathematical Biosciences and Engineering, 2014, 11(4): 761-784. doi: 10.3934/mbe.2014.11.761 |
[10] | Pannathon Kreabkhontho, Watchara Teparos, Thitiya Theparod . Potential for eliminating COVID-19 in Thailand through third-dose vaccination: A modeling approach. Mathematical Biosciences and Engineering, 2024, 21(8): 6807-6828. doi: 10.3934/mbe.2024298 |
Since the publication of the seminal paper [11] mathematical compartmental models are widely used to describe infectious diseases dymanics in large populations (see, for example [9], [4], [2] and [8]). It is well accepted that once an infected individual comes into contact with an unaffected population, the disease will spread by contact with the infectious individuals. Compartmental models divide the population into compartments characterizing the spread of the diseases and letters are used to denote the number of individuals in each compartment. Usually, the size of the population to be studied is
The basic reproduction number,
Many papers on optimal control applied to epidemiology propose
In this paper we focus on optimal control problems to control, via vaccination, the spread of a disease described by a SEIR model. We follow closely the approach in [16]: we consider
The normalized SEIR model differs from the usual SEIR model since the variables are fractions of the whole population instead of the number of individuals in each compartment. The theoretical and numerical treatment involving the latter model is usually done as if the variables are continuous and not integers; treating such variables as integers would demand the use of integer programming what is known to be very heavy computationally. When we turn to normalized models the variables are, by nature, continuous. In the literature, normalized models are common when the total population is assumed to remain constant during the time frame under study. This is not our case; here we normalize a SEIR model that incorporates exponential natural birth and death, as well as disease-caused death (similarly to what is done in [14]). As far as optimal control is concerned, normalizing such model brings out some new issues related to the choice of costs and the introduction of non standard constraints, questions we discuss here when comparing optimal control for normalized and not normalized SEIR models.
Herein, we refer to the SEIR model, where the variables
We emphasize that we do not concentrate on any particular disease. Rather, our aim is to illustrate how previously proposed optimal control formulations can be handled by this new model, when different scenarios are considered. Taking into account that the set of parameters for the population in [16], based on [17], are not to be found in today's world, we use different population's parameters closed related to some European countries.
Like other models in epidemiology, SEIR models represent only a rough approximation of reality. However, they provide new insights into the spreading of diseases and, when optimal control is applied, new insight on different vaccination policies.
This paper is organized in the following way. In Section 2 we introduce an optimal control problem with
The SEIR model is a compartmental model well accepted as modelling some infectious diseases. At each instant
Optimal control techniques for SEIR models allow the study of different vaccines policies; different policies are confronted in [17] and [1] where the minimizing cost is
$
˙S(t)=bN(t)−dS(t)−cS(t)I(t)N(t)−u(t)S(t),S(0)=S0,
$
|
(1) |
$
˙E(t)=cS(t)I(t)N(t)−(f+d)E(t),E(0)=E0,
$
|
(2) |
$
˙I(t)=fE(t)−(g+a+d)I(t),I(0)=I0,
$
|
(3) |
$
˙N(t)=(b−d)N(t)−aI(t),N(0)=N0,
$
|
(4) |
where
For some
$ \label{control-constraint} 0 \leq u(t) \leq \bar u \;\;\;\; a.e. \; t \in [0,T] , $ | (5) |
where
$ \label{Rdifeq} \dot R(t) = g I(t)-dR(t)+u(t)S(t) , \;\;\;\; R(0) = R_0 . $ | (6) |
Here, the aim of applying optimal control to SEIR models is to control the spreading of the disease with some minimum financial cost. The cost should then be a weighted sum of the society financial costs of having, at each time,
$ \label{L1-objective} J_C(X,u)= \int_0^{T} \left( AI(t)+Bu(t)\right)~dt, $ | (7) |
where
Throughout this paper we refer to the optimal control problem of minimizing
$\nonumber
(P) \left\{
Minimize∫T0(AI(t)+Bu(t)) dtsubject to˙S(t)=bN(t)−dS(t)−cS(t)I(t)N(t)−u(t)S(t),S(0)=S0,˙E(t)=cS(t)I(t)N(t)−(f+d)E(t),E(0)=E0,˙I(t)=fE(t)−(g+a+d)I(t),I(0)=I0,˙N(t)=(b−d)N(t)−aI(t),N(0)=N0,u(t)∈[0,ˉu] for a. e.t∈[0,T], with ˉu∈]0,1].
\right.
\nonumber
$
|
Next, we associate
$ s(t)=\frac{S(t)}{N(t)}, \;\;\;\; e(t)=\frac{E(t)}{N(t)},\;\;\;\; i(t)=\frac{I(t)}{N(t)}, \;\;\;\; r(t)=\frac{R(t)}{N(t)} , $ | (8) |
we have
$ s(t)+e(t)+i(t)+r(t)=1\text{ for all }t. $ | (9) |
Notice that
$
˙s(t)=b−cs(t)i(t)−bs(t)+ai(t)s(t)−u(t)s(t),
$
|
(10) |
$
˙e(t)=cs(t)i(t)−(f+b)e(t)+ai(t)e(t),
$
|
(11) |
$
˙i(t)=fe(t)−(g+a+b)i(t)+ai2(t),
$
|
(12) |
$
˙r(t)=gi(t)−rb(t)+ai(t)r(t)+u(t)s(t).
$
|
(13) |
Remarkably, the dead rate parameters do not appear in this model (a feature we discuss in Remark 1 below). It is a simple matter to see that due to (9) we can discard equation (13), allowing us to reduce the number of differential equations from the normalized SEIR model (10)-(13).
Now we are faced with the choice of the cost for the normalized model. Taking into account that the main aim is to control or to eliminate the disease from the population under study, different costs is may be considered, reflecting different concerns.
The choice of the cost for
An almost straightforward translation of this reasoning to our normalized model yields
We postpone this discussion of the introduction of different costs to future research and we proceed now with the cost
$\nonumber
(P_{n}) \left\{
Minimize∫T0(ρi(t)+u(t)) dtsubject to˙s(t)=b−cs(t)i(t)−bs(t)+ai(t)s(t)−u(t)s(t),s(0)=s0,˙e(t)=cs(t)i(t)−(f+b)e(t)+ai(t)e(t),e(0)=e0,˙i(t)=fe(t)−(g+a+b)i(t)+ai2(t),i(0)=i0,u(t)∈[0,ˉu] for a. e.t∈[0,T], with ˉu∈]0,1].
\right.
\nonumber
$
|
Note that the dynamics is of the form
Remark 1. A word of caution regarding the way the system (10)-(13) is viewed. We cannot interpret the dynamics between these new compartments in the same way as with the classical model. Indeed, in equation (10) the term
We will discuss pros and cons of
Optimal control problems can be solved numerically by direct or indirect methods. Here, we opt to use the direct method (for a description these two methods see, for example, [19]): first the problem is discretized and the subsequent optimization problem is then solved using software packages with large scale nonlinear continuous optimization solvers. In this work all the simulations were made with the Applied Modelling Programming Language (AMPL), developed by [7], and interfaced to the Interior-Point optimization solver IPOPT, developed by [21]. Alternatively, the optimization solver WORHP (see [3]) can also be interfaced with AMPL. We refer the reader to [16] and references within for more information on software for optimal control problems.
The application of the Maximum Principle to problems in the form of
In all the computations we consider the time horizon to be 20 years: thus
Parameter | Description | Value |
b | Natural birth rate | 0.01 |
d | Death rate | 0.0099 |
c | Incidence coefficient | 1.1 |
f | Exposed to infectious rate | 0.5 |
g | Recovery rate | 0.1 |
a | Disease induced death rate | 0.2 |
T | Number of years | 20 |
Parameter | Description | Value |
A | weight parameter | 1 |
B | weight parameter | 2 |
S0 | Initial susceptible population | 1000 |
E0 | Initial exposed population | 100 |
I0 | Initial infected population | 50 |
R0 | Initial recovered population | 15 |
N0 | Initial population | 1165 |
Parameter | Description | Value |
s0 | Percentage of initial susceptible population | 0.858 |
e0 | Percentage of initial exposed population | 0.086 |
i0 | Percentage of initial infected population | 0.043 |
The problem
Although the two problem
Clearly, the reason why
When considering problem
$ u(t)S(t)\leq V_0, \label{eq:restricao} $ | (14) |
can be mathematically translated to normalized models but they loose their meaning. However, this drawback may be overcome by considering
We now focus on the Maximum Principle for the problem
$H(x,\;p,\;u)=pf(x)+pg(x)u-\lambda(\rho i+u),$ |
for appropriated
(ⅰ)
(ⅱ)
(ⅲ)
(ⅳ)
Since
It is a simple matter to see that condition (ⅲ) is equivalent to
$ \phi (t)u^*(t)=\displaystyle\max\limits_u \{\phi (t)u(t)\::\: 0\leq u \leq \bar{u}\}. $ | (15) |
It follows that
$
u^*(t)= \left\{
ˉu, if ϕ(t)>0,0, if ϕ(t)<0,singular, if ϕ(t)=0.
\right.
\label{eq:sis_sing_sem_restr}
$
|
(16) |
In terms of the data of
$ -\dot{p}_s(t)\;\;\;\; = (ai(t)-ci(t)-b-u(t))p_s(t)+ci(t)p_e(t), $ | (17) |
$ -\dot{p}_e(t) \;\;\;\;= (ai(t)-b-f)p_e(t)+fp_i(t), $ | (18) |
$ -\dot{p}_i(t) \;\;\;\; = (as(t)-cs(t))p_s(t)+(cs(t)+ae(t))p_e(t)+\nonumber \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;(2ai(t)-a-b-g)p_i(t)-\rho. $ | (19) |
Also, we have
$ \phi(t)=-1-p_s(t)s(t). $ | (20) |
Since our computations show that a singular arc appear, let us assume that
1Since the initial condition belong to the interior of
${ \mathcal{R}}:=\left\{(s,e,i)\in\mathbb{R}^3:~s\geq 0,~e\geq 0, ~ i\geq 0\right\}$ |
and so we deduce that
$\phi(t)=0 \text{ implies that }p_s(t) = -\frac{1}{s(t)}< 0.$ |
In the interior of the singular interval we have
$\dfrac{d\phi}{dt}=cs(t)i(t)p_e(t)-bp_s(t)=0$ |
implies that that
$
d2ϕdt=aci(t)2pe(t)s(t)−aci(t)pe(t)s(t)−bci(t)pe(t)s(t)+cfe(t)pe(t)s(t)−cgi(t)pe(t)s(t)−c2i(t)2pe(t)s(t)−ci(t)pe(t)s(t)u(t)+2bci(t)pe(t)+cfi(t)pe(t)s(t)−cfi(t)s(t)pi(t)+abi(t)ps(t)−bci(t)ps(t)−b2ps(t)−bps(t)u(t),
$
|
(21) |
depends on the control variable
$\dfrac{d }{d u}\left(\dfrac{d^2 \phi}{d t}\right)=-ci(t)p_e(t)s(t)-bp_s(t)>0.$ |
Thus the strict Generalized Legendre-Clebsch Condition (GLC) holds and we can solve
$
using(x,p)=c(−c+a)s(t)i(t)2pe(t)ci(t)pe(t)s(t)+bps(t)+cefs(t)pe(t)−b2ps(t)ci(t)pe(t)s(t)+bps(t)+((((−a−b+f−g)s(t)+2b)pe(t)−fs(t)pi(t)−bps(t))c+abps(t))i(t)ci(t)pe(t)s(t)+bps(t)
$
|
(22) |
It is important to observe that the above expression for singular controls depends on the multipliers. Since we do not establish that the multipliers are unique, we can only expect to use (22) to validate numerical findings but not to prove to optimality. In fact, to prove optimality of computed solution we need to check numerically sufficient conditions. Unfortunately, there are no numerically verifiable sufficient conditions for problems with singular arcs.
We now present and discuss the results of our simulations for
● Case 1:
● Case 2:
● Case 3:
In the first two cases the computed optimal control exhibits a bang-singular-bang structure while in the last one the optimal control is bang-bang. For all the three cases we present graphs with the computed controls and trajectories. As in [16] and to keep the exposition short, we do not present the graphs of the multipliers but we give their computed initial values, and we also present the final states, the costs and the switching times
Case 1. Taking
Numerical results for Case 1:
$
s(T)=0.095341,e(T)=0.00051104,i(T)=0.0020380,ps(0)=−126.5,pe(0)=−2253,pi(0)=−3219.
$
|
Case 2. The results of the simulations are shown in figures 6 and 7. In figure 6 the optimal control,
Numerical results for case 2:
$
s(T)=0.16598,e(T)=0.0033060,i(T)=0.0079433,ps(0)=−377.0,pe(0)=−5137,pi(0)=−7081.
$
|
When we go from case 1 to case 2, the optimal control goes from singular to bang-bang. This is because when we decrease the value of
Case 3. While keeping
Numerical results for case 3:
$
s(T)=0.071623,e(T)=0.0031999,i(T)=0.015275,ps(0)=−1025,pe(0)=−4692,pi(0)=−6872.
$
|
If the control is bang-bang as in case 2 and 3 second order sufficient conditions may be checked numerically as described in [15] and [16]. Here we refrain from engaging in such discussion to keep the exposition short. Here we compute numerically the switching times using the so called induced optimization problem as in [15]. Recall that the switching times are the points
Implementing the induced optimization problem with AMPL for case 2, with
For case 3, with
We now turn to case 1 where the computed control
We studied the optimal control of an epidemiological normalized SEIR model using a
Moreover, we confronted this problem with the one previously studied in [16] where the so called classical SEIR model is used. The normalized model may cover in one single problem populations of different size and it is defined with what may be seen as a more realistic cost. Because of the use of normalized model, the solution of
The authors would like to thank Prof. Helmut Maurer for numerous and enlightening discussions on this topic as well as his help in writing up AMPL codes for the problems reported here. Thanks are due to the anonymous referees whose many comments and suggestions greatly improved this paper.
The financial support of FEDER funds through COMPETE and Portuguese funds through the Portuguese Foundation for Science and Technology (FCT), within the FCT project PTDC/EEI-AUT/1450/2012—FCOMP-01-0124-FEDER-028894, PTDC/EEI-AUT/2933/2014, TOCCATTA -funded by FEDER funds through COMPETE2020 -POCI and FCT as well as POCI-01-0145-FEDER-006933 -SYSTEC -funded by FEDER funds through COMPETE2020 – Programa Operacional Competitividade e Internacionalização (POCI) – and by national funds through FCT -Fundação para a Ciência e a Tecnologia, are gratefully acknowledged.
[1] |
Liu HH., Cohen Y (2014) Multimedia environmental distribution of engineered nanomaterials. Environ Sci Technol 48: 3281-3292. doi: 10.1021/es405132z
![]() |
[2] | Lopez-Serrano A, Olivas RM, Landaluze JS, et al. (2014) Nanoparticles: a global vision. Characterization, separation, and quantification methods. Potential environmental and health impact. Anal Methods 6: 38-56. |
[3] |
Li DW, Zhai WL, Li YT, Long YT (2014) Recent progress in surface enhanced Raman spectroscopy for the detection of environmental pollutants. Microchim Acta 181: 23-43. doi: 10.1007/s00604-013-1115-3
![]() |
[4] |
Lalley J, Dionysiou DD, Varma RS, et al. (2014) Silver-based antibacterial surfaces for drinking water disinfection - an overview. Curr Opin Chem Eng 3: 25-29. doi: 10.1016/j.coche.2013.09.004
![]() |
[5] |
Han Ch, Likodimos V, Khan JA, et al. (2014) UV-visible Light-activated Ag-decorated, monodispersed TiO2 aggregates for treatment of the pharmaceutical oxytetracycline. Environ Sci Pollut Res 21: 11781-11793. doi: 10.1007/s11356-013-2233-5
![]() |
[6] |
Windler I, Height M, Nowack B (2013) Comparative evaluation of antimicrobials for textile applications. Environ Int 53: 62-73. doi: 10.1016/j.envint.2012.12.010
![]() |
[7] |
Geranio L, Heuberger M, Nowack B (2009) The behavior of silver nanotextiles during washing. Environ Sci Technol 43: 8113-8. doi: 10.1021/es9018332
![]() |
[8] |
Adegboyega NF, Sharma VK, Siskova K, et al. (2013) Interactions of Aqueous Ag+ with Fulvic Acids: Mechanisms of Silver Nanoparticle Formation and Investigation of Stability. Environ Sci Technol 47: 757-764. doi: 10.1021/es302305f
![]() |
[9] |
Akaighe N, MacCuspie RI, Navarro DA, et al. (2011) Humic acid-induced silver nanoparticle formation under environmentally relevant conditions. Environ Sci Technol 45: 3895-3901. doi: 10.1021/es103946g
![]() |
[10] |
Nadagouda MN, Iyanna N, Lalley J, et al. (2014) Synthesis of silver and gold nanoparticles using antioxidants from blackberry, blueberry, pomegranate, and turmeric extracts. ACS Sustanaible Chem Eng 2: 1717-1723. doi: 10.1021/sc500237k
![]() |
[11] |
Markova Z, Siskova KM, Filip J, et al. (2013) Air stable magnetic bimetallic Fe-Ag nanoparticles for advanced antimicrobial treatment and phosphorus removal. Environ Sci Technol 47: 5285-5293. doi: 10.1021/es304693g
![]() |
[12] | Sigma-Aldrich. Inc., Product Information, 70192 Mueller Hinton Broth (M-H Broth). Available from: http://www.sigmaaldrich.com/content/dam/sigma-aldrich/docs/Fluka/Datasheet/70192dat.pdf |
[13] |
Sintubin L, Verstraete W, Boon N (2012) Biologically produced nanosilver: current state and future perspectives. Biotechnol Bioeng 109: 2422-2436. doi: 10.1002/bit.24570
![]() |
[14] |
Faramarzi MA, Sadighi A (2013) Insights into biogenic and chemical production of inorganic nanomaterials and nanostructures. Adv Colloid Interface Sci 189-190: 1-20. doi: 10.1016/j.cis.2012.12.001
![]() |
[15] |
Suman TY, Radhika Rajasree SR, Kanchana A, et al. (2013) Biosynthesis, characterization and cytotoxic effect of plant mediated silver nanoparticles using Morinda citrifolia root extract. Colloids Surf B 106: 74-78. doi: 10.1016/j.colsurfb.2013.01.037
![]() |
[16] |
Kharissova OV, Dias HVR, Kharisov BI, et al. (2013) The greener synthesis of nanoparticles. Trends Biotechnol 31: 240-248. doi: 10.1016/j.tibtech.2013.01.003
![]() |
[17] |
Hu B, Wang SB, Wang K, et al. (2008) Microwave-assisted rapid facile “green” synthesis of uniform silver nanoparticles: self-assembly into multilayered films and their optical properties. J Phys Chem C 112: 11169-11174. doi: 10.1021/jp801267j
![]() |
[18] |
Alvarez-Puebla RA, Aroca RF (2009) Synthesis of silver nanoparticles with controllable surface charge and their application to surface-enhanced Raman scattering. Anal Chem 81: 2280-2295. doi: 10.1021/ac8024416
![]() |
[19] |
Khan Z, Talib A (2010) Growth of different morphologies (quantum dots to nanorod) of Ag-nanoparticles: role of cysteine concentration. Coll Surf B 76: 164-169. doi: 10.1016/j.colsurfb.2009.10.029
![]() |
[20] |
Rafey A, Shrivastavaa KBL, Iqbal SA, et al. (2011) Growth of Ag-nanoparticles using aspartic acid in aqueous solutions. J Colloid Interface Sci 354: 190-195. doi: 10.1016/j.jcis.2010.10.046
![]() |
[21] |
Jacob JA, Naumov S, Mukherjee T, et al. (2011) Preparation, characterization, surface modification and redox reactions of silver nanoparticles in the presence of tryptophan. Coll Surf B 87: 498-504. doi: 10.1016/j.colsurfb.2011.06.017
![]() |
[22] |
Sondi I, Goia DV, Matijevic E (2003) Preparation of highly concentrated stable dispersions of uniform silver nanoparticles. J Colloid Interface Sci 260: 75-81. doi: 10.1016/S0021-9797(02)00205-9
![]() |
[23] | Nadagouda MN, Varma RS (2008) Green synthesis of Ag and Pd nanospheres, nanowires, and nanorods using vitamin B2: catalytic polymerisation of aniline and pyrrole. J Nanomat 2008: 1-8. |
[24] |
Tan S, Erol M, Attygalle A, et al. (2007) Synthesis of positively charged silver nanoparticles via photoreduction of AgNO3 in branched polyethyleneimine/HEPES solutions. Langmuir 23: 9836-9843. doi: 10.1021/la701236v
![]() |
[25] |
Frattini A, Pellegri N, Nicastro D, et al. (2005) Effect of amine groups in the synthesis of Ag nanoparticles using aminosilanes. Mater Chem Phys 94: 148-152. doi: 10.1016/j.matchemphys.2005.04.023
![]() |
[26] |
Xie J, Lee JY, Wang DIC, et al. (2007) Silver nanoplates: from biological to biomimetic synthesis. ACS Nano 1: 429-439. doi: 10.1021/nn7000883
![]() |
[27] | Stevanovic M, Savanovic I, Uskokovic V, et al. (2012) A new, simple, green, and one-pot four-component synthesis of bare and poly(alpha,gamma, L-glutamic acid)-capped silver nanoparticles. Colloid Polym Sci 190: 221-231. |
[28] |
Yu DG (2007) Formation of colloidal silver nanoparticles stabilized by Na+-poly(gamma-glutamic acid)-silver nitrate complex via chemical reduction process. Coll Surf B 59: 171-178. doi: 10.1016/j.colsurfb.2007.05.007
![]() |
[29] |
Vigneshwaran N, Nachane RP, Balasubramanya RH (2006) A novel one-pot “green” synthesis of stable silver nanoparticles using soluble starch. Carbohydr Res 341: 2012-2018. doi: 10.1016/j.carres.2006.04.042
![]() |
[30] |
Raveendran P, Fu J, Wallen SL (2003) Completely “green” synthesis and stabilization of metal nanoparticles. J Am Chem Soc 125: 13940-13941. doi: 10.1021/ja029267j
![]() |
[31] |
Tai C, Wang YH, Liu HS (2008) A green process for preparing silver nanoparticles using spinning disk reactor. AIChE J 54: 445-452. doi: 10.1002/aic.11396
![]() |
[32] |
Sun SK, Wang HF, Yan XP (2011) A sensitive and selective resonance light scattering bioassay for homocysteine in biological fluids based on target-involved assembly of polyethyleneimine-capped Ag-nanoclusters. Chem Commun 47: 3817-3819. doi: 10.1039/c0cc04463f
![]() |
[33] |
Lee KJ, Browning LM, Nallathamby PD, et al. (2013) Study of charge-dependent transport and toxicity of peptide-functionalized silver nanoparticles using zebrafish embryos and single nanoparticle plasmonic spectroscopy. Chem Res Toxicol 26: 904-917. doi: 10.1021/tx400087d
![]() |
[34] |
Chernousova S, Epple M (2013) Silver as antibacterial agent: ion, nanoparticle, and metal. Angew Chem Ind Ed 52: 1636-1653. doi: 10.1002/anie.201205923
![]() |
[35] |
Sharma VK, Siskova KM, Zboril R, et al. (2014) Organic-coated silver nanoparticles in biological and environmental conditions: Fate, stability and toxicity. Adv Colloid Interface Sci 204: 15-34. doi: 10.1016/j.cis.2013.12.002
![]() |
[36] |
Rai MK, Deshmukh SD, Ingle AP, et al. (2012) Silver nanoparticles: the powerful nanoweapon against multidrug-resistant bacteria. J Appl Microbiol 112: 841-852. doi: 10.1111/j.1365-2672.2012.05253.x
![]() |
[37] |
Li WR, Xie XB, Shi QS, et al. (2010) Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl Microbiol Biotechnol 85: 1115-1122. doi: 10.1007/s00253-009-2159-5
![]() |
[38] |
Li WR, Xie XB, Shi QS, et al. (2011) Antibacterial effect of silver nanoparticles on Staphylococcus aureus. Biometals 24: 135-141. doi: 10.1007/s10534-010-9381-6
![]() |
[39] |
Lara HH, Ayala-Nunez NV, Turrent LCI, et al. (2010) Bactericidal effect of silver nanoparticles against multidrug-resistant bacteria. World J Microbiol Biotechnol 26: 615-621. doi: 10.1007/s11274-009-0211-3
![]() |
[40] |
Lok CN, Ho CM, Chen R, et. al. (2006) Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J Proteome Res 5: 916-924. doi: 10.1021/pr0504079
![]() |
[41] |
Yang XY, Gondikas AP, Marinakos SM, et al. (2012) Mechanism of silver nanoparticle toxicity is dependent on dissolved silver and surface coating in Caenorhabditis elegans. Environ Sci Technol 46: 1119-1127. doi: 10.1021/es202417t
![]() |
[42] |
Morones JR, Elechiguerra, JL, Camacho A, et al. (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16: 2346. doi: 10.1088/0957-4484/16/10/059
![]() |
[43] | Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for gram-negative bacteria. J Colloid Interface Sci 275: 177-182. |
[44] |
Xu H, Qu F, Xu H, et al. (2012) Role of reactive oxygen species in the antibacterial mechanism of silver nanoparticles on Escherichia coli O157:H7. Biometals 25: 45-53. doi: 10.1007/s10534-011-9482-x
![]() |
[45] |
Choi O, Hu Z (2008) Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environ Sci Technol 42: 4583-4588. doi: 10.1021/es703238h
![]() |
[46] |
Xiu ZM, Zhang QB, Puppala HL, et al. (2012) Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Lett 12: 4271-4275. doi: 10.1021/nl301934w
![]() |
[47] |
El Badawy AM, Luxton TP, Silva RG, et al. (2010) Impact of environmental conditions (pH, ionic strength, and electrolyte type) on the surface charge and aggregation of silver nanoparticles suspensions. Environ Sci Technol 44: 1260-1266. doi: 10.1021/es902240k
![]() |
[48] |
Siskova KM, Machala L, Tucek J, et al. (2013) Mixtures of L-amino acids as reaction medium for iron nanoparticles formation: the order of addition into ferrous salt solution matters. Int J Mol Sci 14: 19452-19473. doi: 10.3390/ijms141019452
![]() |
[49] |
Sloufova I, Siskova K, Vlckova B, et al. (2008) SERS-activating effect of chlorides on borate-stabilized silver nanoparticles: formation of new reduced adsorption sites and induced nanoparticle fusion. Phys Chem Chem Phys 10: 2233-2242. doi: 10.1039/b718178g
![]() |
[50] |
Siskova K, Becicka O, Safarova K, et al. (2013) HCl effect on two types of Ag nanoparticles utilizable in detection of low concentrations of organic species. Sustainable nanotechnology and the environment: advances and achievements 1124: 151-163. doi: 10.1021/bk-2013-1124.ch009
![]() |
[51] |
Sriramulu DD, Lunsdorf H, Lam JS, et al. (2005) Microcolony formation: a novel biofilm model of Pseudomonas aeruginosa for the cystic fibrosis lung. J Med Microbiol 54: 667-676. doi: 10.1099/jmm.0.45969-0
![]() |
[52] | Nakamoto K (2009) Infrared and Raman spectra of inorganic and coordination compounds, part B, Hoboken, New Jersey, USA, John Wiley & Sons, Inc., 26-84 and 388-392. |
[53] |
Moskovits M, Suh JS (1985) Confirmation of mono- and dicarboxylic acids adsorbed on silver surfaces. J Am Chem Soc 107: 6826-6829. doi: 10.1021/ja00310a014
![]() |
[54] |
Munro CH, Smith WE, Garner M, et al. (1995) Characterization of the surface of a citrate-reduced colloid optimized for use as a substrate for surface-enhanced resonance Raman scattering. Langmuir 11: 3712-3720. doi: 10.1021/la00010a021
![]() |
[55] | Lindon JC (2000) Encyclopedia of spectroscopy and spectrometry, part II, San Diego, Academic press, 1035-1057. |
[56] | Schaumann GE, Philippe A, Bundschuh M, et al. (2014) Understanding the fate and biological effects of Ag- and TiO2- nanoparticles in the environment: The quest for advanced analytics and interdisciplinary concepts. Sci Total Environ: S0048-9697: 1473-1479. |
1. | Asaf Khan, Gul Zaman, Optimal control strategy of SEIR endemic model with continuous age-structure in the exposed and infectious classes, 2018, 39, 01432087, 1716, 10.1002/oca.2437 | |
2. | Hamadjam Abboubakar, Jean Claude Kamgang, Leontine Nkague Nkamba, Daniel Tieudjo, Bifurcation thresholds and optimal control in transmission dynamics of arboviral diseases, 2018, 76, 0303-6812, 379, 10.1007/s00285-017-1146-1 | |
3. | Urszula Ledzewicz, Mahya Aghaee, Heinz Schattler, 2016, Optimal control for a SIR epidemiological model with time-varying populations, 978-1-5090-0755-4, 1268, 10.1109/CCA.2016.7587981 | |
4. | Maria do Rosário de Pinho, Filipa Nunes Nogueira, Costs analysis for the application of optimal control to SEIR normalized models, 2018, 51, 24058963, 122, 10.1016/j.ifacol.2018.11.656 | |
5. | Maria do Rosário de Pinho, Helmut Maurer, Hasnaa Zidani, Optimal control of normalized SIMR models with vaccination and treatment, 2018, 23, 1553-524X, 79, 10.3934/dcdsb.2018006 | |
6. | Y.M. Rangkuti, A. Landong, Control optimal analysis of SEIR model of covid 19 spread in Indonesia, 2022, 2193, 1742-6588, 012091, 10.1088/1742-6596/2193/1/012091 | |
7. | Hassan Tahir, Asaf Khan, Anwarud Din, Amir Khan, Gul Zaman, Optimal control strategy for an age-structured SIR endemic model, 2021, 14, 1937-1179, 2535, 10.3934/dcdss.2021054 | |
8. | Asaf Khan, Gul Zaman, Optimal control strategies for an age‐structured SEIR epidemic model, 2022, 45, 0170-4214, 8701, 10.1002/mma.7823 | |
9. | Saroj K Biswas, Nasir U Ahmed, Mathematical modeling and optimal intervention of COVID‐19 outbreak, 2021, 9, 2095-4689, 84, 10.15302/J-QB-020-0229 | |
10. | Haojie Hou, Youguo Wang, Qiqing Zhai, Xianli Sun, Synergistic control of negative information diffusion in improved semi-randomized epidemic networks, 2024, 0924-090X, 10.1007/s11071-024-10817-2 |
Parameter | Description | Value |
b | Natural birth rate | 0.01 |
d | Death rate | 0.0099 |
c | Incidence coefficient | 1.1 |
f | Exposed to infectious rate | 0.5 |
g | Recovery rate | 0.1 |
a | Disease induced death rate | 0.2 |
T | Number of years | 20 |
Parameter | Description | Value |
A | weight parameter | 1 |
B | weight parameter | 2 |
S0 | Initial susceptible population | 1000 |
E0 | Initial exposed population | 100 |
I0 | Initial infected population | 50 |
R0 | Initial recovered population | 15 |
N0 | Initial population | 1165 |
Parameter | Description | Value |
s0 | Percentage of initial susceptible population | 0.858 |
e0 | Percentage of initial exposed population | 0.086 |
i0 | Percentage of initial infected population | 0.043 |
Parameter | Description | Value |
b | Natural birth rate | 0.01 |
d | Death rate | 0.0099 |
c | Incidence coefficient | 1.1 |
f | Exposed to infectious rate | 0.5 |
g | Recovery rate | 0.1 |
a | Disease induced death rate | 0.2 |
T | Number of years | 20 |
Parameter | Description | Value |
A | weight parameter | 1 |
B | weight parameter | 2 |
S0 | Initial susceptible population | 1000 |
E0 | Initial exposed population | 100 |
I0 | Initial infected population | 50 |
R0 | Initial recovered population | 15 |
N0 | Initial population | 1165 |
Parameter | Description | Value |
s0 | Percentage of initial susceptible population | 0.858 |
e0 | Percentage of initial exposed population | 0.086 |
i0 | Percentage of initial infected population | 0.043 |