Citation: Vikram Kapoor, Michael Elk, Carlos Toledo-Hernandez, Jorge W. Santo Domingo. Analysis of human mitochondrial DNA sequences from fecally polluted environmental waters as a tool to study population diversity[J]. AIMS Environmental Science, 2017, 4(3): 443-455. doi: 10.3934/environsci.2017.3.443
[1] | Byrne EM, McRae AF, Zhao ZZ, et al. (2008) The use of common mitochondrial variants to detect and characterise population structure in the Australian population: implications for genome-wide association studies. Eur J Hum Genet 16: 1396-1403. doi: 10.1038/ejhg.2008.117 |
[2] | Bonatto SL, Salzano FM (1997) A single and early migration for the peopling of the Americas supported by mitochondrial DNA sequence data. Proc Natl Acad Sci USA 94: 1866-1871. doi: 10.1073/pnas.94.5.1866 |
[3] | Wallace DC (1994) Mitochondrial DNA sequence variation in human evolution and disease. Proc Natl Acad Sci USA 91: 8739-8746. doi: 10.1073/pnas.91.19.8739 |
[4] | Wallace DC, Brown MD, Lott MT (1999) Mitochondrial DNA variation in human evolution and disease. Gene 238: 211-230. doi: 10.1016/S0378-1119(99)00295-4 |
[5] | Wilson MR, DiZinno JA, Polanskey D, et al. (1995) Validation of mitochondrial DNA sequencing for forensic casework analysis. Int J Leg Med 108: 68-74. doi: 10.1007/BF01369907 |
[6] | Salas A, Lareu V, Calafell F, et al. (2000) mtDNA hypervariable region II (HVII) sequences in human evolution studies. Eur J Hum Genet 8: 964-974. doi: 10.1038/sj.ejhg.5200563 |
[7] | Baasner A, Schäfer C, Junge A, et al. (1998) Polymorphic sites in human mitochondrial DNA control region sequences: population data and maternal inheritance. Forensic Sci Int 98: 169-178. doi: 10.1016/S0379-0738(98)00163-7 |
[8] | Johnson DC, Shrestha S, Wiener HW, et al. (2015) Mitochondrial DNA diversity in the African American population. Mitochondrial DNA 26: 445-451. doi: 10.3109/19401736.2013.840591 |
[9] | Comas D, Reynolds R, Sajantila A (1999) Analysis of mtDNA HVRII in several human populations using an immobilised SSO probe hybridisation assay. Eur J Hum Genet 7: 459-468. doi: 10.1038/sj.ejhg.5200326 |
[10] | Shokralla S, Spall JL, Gibson JF, et al. (2012) Next‐generation sequencing technologies for environmental DNA research. Mol Ecol 21: 1794-1805. doi: 10.1111/j.1365-294X.2012.05538.x |
[11] | Ficetola GF, Miaud C, Pompanon F, et al. (2008) Species detection using environmental DNA from water samples. Biol Lett 4: 423-425. doi: 10.1098/rsbl.2008.0118 |
[12] | Glassmeyer ST, Furlong ET, Kolpin DW, et al. (2005) Transport of chemical and microbial compounds from known wastewater discharges: potential for use as indicators of human fecal contamination. Environ Sci Technol 39: 5157-5169. doi: 10.1021/es048120k |
[13] | Kapoor V, DeBry RW, Boccelli DL, et al. (2014) Sequencing human mitochondrial hypervariable region II as a molecular fingerprint for environmental waters. Environ Sci Technol 48: 10648-10655. doi: 10.1021/es503189g |
[14] | Kapoor V, Smith C, Santo Domingo JW, et al. (2013) Correlative assessment of fecal indicators using human mitochondrial DNA as a direct marker. Environ Sci Technol 47: 10485-10493. |
[15] | Martellini A, Payment P, Villemur R (2005) Use of eukaryotic mitochondrial DNA to differentiate human, bovine, porcine and ovine sources in fecally contaminated surface water. Water Res 39: 541-548. doi: 10.1016/j.watres.2004.11.012 |
[16] | Caldwell JM, Raley ME, Levine JF (2007) Mitochondrial multiplex real-time PCR as a source tracking method in fecal-contaminated effluents. Environ Sci Technol 41: 3277-3283. doi: 10.1021/es062912s |
[17] | Martinuzzi S, Gould WA, González OMR (2007) Land development, land use, and urban sprawl in Puerto Rico integrating remote sensing and population census data. Landscape Urban Plan 79: 288-297. doi: 10.1016/j.landurbplan.2006.02.014 |
[18] | Toledo-Hernandez C, Ryu H, Gonzalez-Nieves J, et al. (2013) Tracking the primary sources of fecal pollution in a tropical watershed in a one-year study. Appl Environ Microbiol 79: 1689-1696. doi: 10.1128/AEM.03070-12 |
[19] | Kapoor V, Pitkänen T, Ryu H, et al. (2015) Distribution of human-specific bacteroidales and fecal indicator bacteria in an urban watershed impacted by sewage pollution, determined using RNA-and DNA-based quantitative PCR assays. Appl Environ Microbiol 81: 91-99. doi: 10.1128/AEM.02446-14 |
[20] | Schloss PD, Westcott SL, Ryabin T, et al. (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75: 7537-7541. doi: 10.1128/AEM.01541-09 |
[21] | Andrews RM, Kubacka I, Chinnery PF, et al. (1999) Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA. Nat Genet 23: 147-147. doi: 10.1038/13779 |
[22] | Brandon MC, Lott MT, Nguyen KC, et al. (2005) MITOMAP: a human mitochondrial genome database-2004 update. Nucleic Acids Res 33: D611-D613. doi: 10.1093/nar/gki399 |
[23] | Ingman M, Gyllensten U (2006) mtDB: Human Mitochondrial Genome Database, a resource for population genetics and medical sciences. Nucleic Acids Res 34: D749-D751. doi: 10.1093/nar/gkj010 |
[24] | van Oven M, Kayser M (2009) Updated comprehensive phylogenetic tree of global human mitochondrial DNA variation. Hum Mutat 30: E386-E394. doi: 10.1002/humu.20921 |
[25] | Brandon MC, Ruiz‐Pesini E, Mishmar D, et al. (2009) MITOMASTER: a bioinformatics tool for the analysis of mitochondrial DNA sequences. Hum Mutat 30: 1-6. doi: 10.1002/humu.20801 |
[26] | Röck AW, Dür A, van Oven M, et al. (2013) Concept for estimating mitochondrial DNA haplogroups using a maximum likelihood approach (EMMA). Forensic Sci Int Genet 7: 601-609. doi: 10.1016/j.fsigen.2013.07.005 |
[27] | Lee C, Măndoiu II, Nelson CE (2011) Inferring ethnicity from mitochondrial DNA sequence. BMC Proc 5: S11. |
[28] | Richards M, Macaulay V, Hickey E, et al. (2000) Tracing European founder lineages in the Near Eastern mtDNA pool. Am J Hum Genet 67: 1251-1276. doi: 10.1016/S0002-9297(07)62954-1 |
[29] | Roostalu U, Kutuev I, Loogväli EL, et al. (2007) Origin and Expansion of Haplogroup H, the Dominant Human Mitochondrial DNA Lineage in West Eurasia: The Near Eastern and Caucasian Perspective. Mol Biol Evol 24: 436-448. doi: 10.1093/molbev/msl173 |
[30] | Martínez‐Cruzado JC, Toro‐Labrador G, Viera‐Vera J, et al. (2005) Reconstructing the population history of Puerto Rico by means of mtDNA phylogeographic analysis. Am J Phy Anthropol 128: 131-155. doi: 10.1002/ajpa.20108 |
[31] | U.S. Census Bureau 2010 Census of Population and Housing, Summary Population and Housing Characteristics, CPH-1-53, Puerto Rico U.S. Government Printing Office, Washington, DC. |
[32] | Guardado-Estrada M, Juarez-Torres E, Medina-Martinez I, et al. (2009) A great diversity of Amerindian mitochondrial DNA ancestry is present in the Mexican mestizo population. J Human Genetics 54: 695-705. doi: 10.1038/jhg.2009.98 |
[33] | Krings M, Geisert H, Schmitz RW, et al. (1999) DNA sequence of the mitochondrial hypervariable region II from the Neandertal type specimen. Proc Nat Acad Sci 96: 5581-5585. doi: 10.1073/pnas.96.10.5581 |
[34] | Ovchinnikov IV, Götherström A, Romanova GP, et al. (2000) Molecular analysis of Neanderthal DNA from the northern Caucasus. Nature 404: 490-493. doi: 10.1038/35006625 |