Citation: Heidi S. Nygård, Espen Olsen. Molten salt pyrolysis of milled beech wood using an electrostatic precipitator for oil collection[J]. AIMS Energy, 2015, 3(3): 284-296. doi: 10.3934/energy.2015.3.284
[1] | Bridgwater AV (2012) Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenerg 38: 68-94. doi: 10.1016/j.biombioe.2011.01.048 |
[2] | Venderbosch RH, Prins W (2010) Fast pyrolysis technology development. Biofuel Bioprod Bior 4: 178-208. doi: 10.1002/bbb.205 |
[3] | Lovering DG (1982) Molten salt technology. California, USA: Plenum Press. 533. |
[4] | Jiang H, Ai N, Wang M, et al. (2009) Experimental Study on Thermal Pyrolysis of Biomass in Molten Salt Media. Electrochemistry 77: 730-735. doi: 10.5796/electrochemistry.77.730 |
[5] | Adinberg R, Epstein M, Karni J (2004) Solar Gasification of Biomass: A Molten Salt Pyrolysis Study. J Sol Energ Eng 126: 850-857. doi: 10.1115/1.1753577 |
[6] | Hathaway BJ, Davidson JH, Kittelson DB (2011) Solar Gasification of Biomass: Kinetics of Pyrolysis and Steam Gasification in Molten Salt. J Sol Energ Eng 133: 021011. doi: 10.1115/1.4003680 |
[7] | Sada E, Kumazawa H, Kudsy M (1992) Pyrolysis of lignins in molten salt media. Ind Eng Chem Res 31: 612-616. doi: 10.1021/ie00002a025 |
[8] | Kudsy M, Kumazawa H, Sada E (1995) Pyrolysis of kraft lignin in molten ZNCL2-KCL media with tetralin vapor addition. Can J Chem Eng 73: 411-415. doi: 10.1002/cjce.5450730319 |
[9] | Hammond V, Mudge L (1975) Feasibility study of use of molten salt technology for pyrolysis of solid waste. Richland, Washington, USA: Battele Pacific Northwest Labs. EPA-670/2-75-014 EPA-670/2-75-014. |
[10] | Iwaki H, Ye S, Katagiri H, et al. (2004) Wastepaper gasification with CO2 or steam using catalysts of molten carbonates. Appl Catal A: Gen 270: 237-243. doi: 10.1016/j.apcata.2004.05.010 |
[11] | Jin G, Iwaki H, Arai N, et al. (2005) Study on the gasification of wastepaper/carbon dioxide catalyzed by molten carbonate salts. Energy 30: 1192-1203. doi: 10.1016/j.energy.2004.08.002 |
[12] | Menzel J, Perkow H, Sinn H (1973) Recycling plastics. Chem Ind 570-573. |
[13] | Bertolini GE, Fontaine J (1987) Value recovery from plastics waste by pyrolysis in molten salts. Conserv Recy 10: 331-343. doi: 10.1016/0361-3658(87)90064-6 |
[14] | Chambers C, Larsen JW, Li W, et al. (1984) Polymer waste reclamation by pyrolysis in molten salts. Ind Eng Chem Proc Des Dev 23: 648-654. |
[15] | Williams D (2006) Assessment of candidate molten salt coolants for the NGNP/NHI heat-transfer loop. Oak Ridge, Tennessee, USA: Oak Ridge National Laboratory. |
[16] | Bridgwater AV, Peacocke GVC (2000) Fast pyrolysis processes for biomass. Renew Sust Energ Rev 4: 1-73. doi: 10.1016/S1364-0321(99)00007-6 |
[17] | Oasmaa A, Peacocke C (2010) Properties and fuel use of biomass-derived fast pyrolysis liquids. VTT Publications: Finland 731: 79. |
[18] | Mochizuki T, Toba M, Yoshimura Y (2013) Effect of Electrostatic Precipitator on COllection Efficiency of Bio-oil in Fast Pyrolysis of Biomass. J Jpn Petrol Inst 56: 401-405. doi: 10.1627/jpi.56.401 |
[19] | Bedmutha RJ, Ferrante L, Briens C, et al. (2009) Single and two-stage electrostatic demisters for biomass pyrolysis application. Chem Eng Proc: Proc Intens 48: 1112-1120. doi: 10.1016/j.cep.2009.02.007 |
[20] | Nygård HS, Olsen E (2012) Review of thermal processing of biomass and waste in molten salts for production of renewable fuels and chemicals. Int J Low-Carbon Technol: ctr045. |
[21] | Nygård HS, Danielsen F, Olsen E (2012) Thermal History of Wood Particles in Molten Salt Pyrolysis. Energ Fuels 26: 6419-6425. doi: 10.1021/ef301121j |
[22] | Di Blasi C, Branca C (2003) Temperatures of Wood Particles in a Hot Sand Bed Fluidized by Nitrogen. Energ Fuels 17: 247-254. doi: 10.1021/ef020146e |
[23] | Nygård HS, Olsen E (2014) Effect of Salt Composition and Temperature on the Thermal Behavior of Beech Wood in Molten Salt Pyrolysis. Energ Procedia 58: 221-228. doi: 10.1016/j.egypro.2014.10.432 |
[24] | Lüftl S, Visakh P, Chandran S (2014) Polyoxymethylene Handbook: Structure, Properties, Applications and Their Nanocomposites. New Jersey, USA: John Wiley & Sons. |
[25] | Lucas JR (2001) High voltage engineering. Colombo, Open University of Sri Lanka 64-89. |
[26] | Huheey JE, Keiter EA, Keiter RL, et al. (2006) Inorganic Chemistry: Principles of Structure and Reactivity. Delhi, India: Pearson Education, 808. |
[27] | Klas M, Radmilović-Radjenović M, Radjenović B, et al. (2012) Transport parameters and breakdown voltage characteristics of the dry air and its constituents. Nucl Instrum Meth B: 279: 96-99. doi: 10.1016/j.nimb.2011.10.045 |
[28] | Grønli MG (1996) A theoretical and experimental study of the thermal degradation of biomass [Doctoral thesis]. Trondheim, Norway: The Norwegian University of Science and Technology. 282 . |
[29] | Hathaway BJ, Davidson JH, Kittelson DB (2011) Solar Gasification of Biomass: Kinetics of Pyrolysis and Steam Gasification in Molten Salt. J Sol Energ Eng 133: 021011-021011. doi: 10.1115/1.4003680 |
[30] | Olson LC, Ambrosek JW, Sridharan K, et al. (2009) Materials corrosion in molten LiF-NaF-KF salt. J Fluorine Chem 130: 67-73. doi: 10.1016/j.jfluchem.2008.05.008 |
[31] | Hoekstra E, Hogendoorn KJ, Wang X, et al. (2009) Fast pyrolysis of biomass in a fluidized bed reactor: in situ filtering of the vapors. Ind Eng Chem Res 48: 4744-4756. doi: 10.1021/ie8017274 |
[32] | Basu P (2013) Biomass Gasification, Pyrolysis and Torrefaction: Practical Design and Theory. San Diego, USA: Elsevier Science 552. |
[33] | Kersten S, Garcia-Perez M (2013) Recent developments in fast pyrolysis of ligno-cellulosic materials. Curr Opin Biotech 24: 414-420. doi: 10.1016/j.copbio.2013.04.003 |
[34] | Wang Z, McDonald AG, Westerhof RJ, et al. (2013) Effect of cellulose crystallinity on the formation of a liquid intermediate and on product distribution during pyrolysis. J Anal Appl Pyrol 100: 56-66. doi: 10.1016/j.jaap.2012.11.017 |
[35] | Zhou S, Pecha B, van Kuppevelt M, et al. (2014) Slow and fast pyrolysis of Douglas-fir lignin: Importance of liquid-intermediate formation on the distribution of products. Biomass Bioenerg 66: 398-409. doi: 10.1016/j.biombioe.2014.03.064 |
[36] | Boroson ML (1987) Secondary reactions of tars from pyrolysis of sweet gum hardwood [Doctoral thesis]: Massachusetts Institute of Technology. |
[37] | Dauenhauer PJ, Colby JL, Balonek CM, et al. (2009) Reactive boiling of cellulose for integrated catalysis through an intermediate liquid. Green Chem 11: 1555-1561. doi: 10.1039/b915068b |
[38] | Wang X, Kersten SRA, Prins W, et al. (2005) Biomass Pyrolysis in a Fluidized Bed Reactor. Part 2: Experimental Validation of Model Results. Ind Eng Chem Res 44: 8786-8795. |
[39] | Scott DS, Majerski P, Piskorz J, et al. (1999) A second look at fast pyrolysis of biomass—the RTI process. J Anal Appl Pyrol 51: 23-37. doi: 10.1016/S0165-2370(99)00006-6 |
[40] | Hoekstra E, Westerhof RJM, Brilman W, et al. (2012) Heterogeneous and homogeneous reactions of pyrolysis vapors from pine wood. AIChE J 58: 2830-2842. doi: 10.1002/aic.12799 |
[41] | Ouyang F-Y, Chang C-H, Kai J-J (2014) Long-term corrosion behaviors of Hastelloy-N and Hastelloy-B3 in moisture-containing molten FLiNaK salt environments. J Nucl Mater 446: 81-89. doi: 10.1016/j.jnucmat.2013.11.045 |
[42] | Roine A, Lamberg P, Mansikka-aho J, et al. (2006) HSC Chemistry 6.12. Helsinki, Finland: Outotec Research Oy. |