Research article Special Issues

A Microfluidic Device for Spatiotemporal Delivery of Stimuli to Cells

  • Received: 10 January 2015 Accepted: 20 March 2015 Published: 30 March 2015
  • Living cells encounter many stimuli from the immediate environment. Receptors recognize these environmental cues and transduce signals to produce cell responses. The frequency of a signal is now emerging as an important factor determining cell responses. As a componentry system in understanding temporal stimulation, microfluidic devices allow the observation of cell behaviour under dynamic stimulation and controllable environment. In this paper we describe the design, construction and characterization of a microfluidic device suitable for cell stimulation studies.

    Citation: Zubaidah Ningsih, James W.M. Chon, Andrew H.A. Clayton. A Microfluidic Device for Spatiotemporal Delivery of Stimuli to Cells[J]. AIMS Biophysics, 2015, 2(2): 58-72. doi: 10.3934/biophy.2015.2.58

    Related Papers:

    [1] A. Vinodkumar, T. Senthilkumar, S. Hariharan, J. Alzabut . Exponential stabilization of fixed and random time impulsive delay differential system with applications. Mathematical Biosciences and Engineering, 2021, 18(3): 2384-2400. doi: 10.3934/mbe.2021121
    [2] Eduardo Liz, Alfonso Ruiz-Herrera . Delayed population models with Allee effects and exploitation. Mathematical Biosciences and Engineering, 2015, 12(1): 83-97. doi: 10.3934/mbe.2015.12.83
    [3] Paolo Fergola, Marianna Cerasuolo, Edoardo Beretta . An allelopathic competition model with quorum sensing and delayed toxicant production. Mathematical Biosciences and Engineering, 2006, 3(1): 37-50. doi: 10.3934/mbe.2006.3.37
    [4] Yoichi Enatsu, Yukihiko Nakata, Yoshiaki Muroya . Global stability for a class of discrete SIR epidemic models. Mathematical Biosciences and Engineering, 2010, 7(2): 347-361. doi: 10.3934/mbe.2010.7.347
    [5] Xinran Zhou, Long Zhang, Tao Zheng, Hong-li Li, Zhidong Teng . Global stability for a class of HIV virus-to-cell dynamical model with Beddington-DeAngelis functional response and distributed time delay. Mathematical Biosciences and Engineering, 2020, 17(5): 4527-4543. doi: 10.3934/mbe.2020250
    [6] Hongjing Shi, Wanbiao Ma . An improved model of t cell development in the thymus and its stability analysis. Mathematical Biosciences and Engineering, 2006, 3(1): 237-248. doi: 10.3934/mbe.2006.3.237
    [7] Marion Weedermann . Analysis of a model for the effects of an external toxin on anaerobic digestion. Mathematical Biosciences and Engineering, 2012, 9(2): 445-459. doi: 10.3934/mbe.2012.9.445
    [8] Kalyan Manna, Malay Banerjee . Stability of Hopf-bifurcating limit cycles in a diffusion-driven prey-predator system with Allee effect and time delay. Mathematical Biosciences and Engineering, 2019, 16(4): 2411-2446. doi: 10.3934/mbe.2019121
    [9] C. Connell McCluskey . Global stability of an $SIR$ epidemic model with delay and general nonlinear incidence. Mathematical Biosciences and Engineering, 2010, 7(4): 837-850. doi: 10.3934/mbe.2010.7.837
    [10] Jinliang Wang, Hongying Shu . Global analysis on a class of multi-group SEIR model with latency and relapse. Mathematical Biosciences and Engineering, 2016, 13(1): 209-225. doi: 10.3934/mbe.2016.13.209
  • Living cells encounter many stimuli from the immediate environment. Receptors recognize these environmental cues and transduce signals to produce cell responses. The frequency of a signal is now emerging as an important factor determining cell responses. As a componentry system in understanding temporal stimulation, microfluidic devices allow the observation of cell behaviour under dynamic stimulation and controllable environment. In this paper we describe the design, construction and characterization of a microfluidic device suitable for cell stimulation studies.


    In this paper, we study the following general class of functional differential equations with distributed delay and bistable nonlinearity,

    $ {x(t)=f(x(t))+τ0h(a)g(x(ta))da,t>0,x(t)=ϕ(t),τt0.
    $
    (1.1)

    Many mathematical models issued from ecology, population dynamics and other scientific fields take the form of Eq (1.1) (see, e.g., [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15] and references therein). When a spatial diffusion is considered, many models are studied in the literature (see, e.g., [16,17,18,19,20,21,22]).

    For the case where $ g(x) = f(x) $ has not only the trivial equilibrium but also a unique positive equilibrium, Eq (1.1) is said to be a problem with monostable nonlinearity. In this framework, many authors studied problem (1.1) with various monostable nonlinearities such as Blowflies equations, where $ f(x) = \mu x $ and $ g(x) = \beta xe^{-\alpha x}, $ and Mackey-Glass equations, where $ f(x) = \mu x $ and $ g(x) = \beta x/(\alpha+ x^{n}) $ (see, e.g., [1,3,6,7,9,10,11,12,13,21,23,24,25,26,27]).

    When $ g(x) $ allows Eq (1.1) to have two positive equilibria $ x^{*}_1 $ and $ x^{*}_2 $ in addition to the trivial equilibrium, Eq (1.1) is said to be a problem with bistable nonlinearity. In this case, Huang et al. [5] investigated the following general equation:

    $ x'(t) = -f(x(t))+g(x(t-\tau)). $

    The authors described the basins of attraction of equilibria and obtained a series of invariant intervals using the decomposition domain. Their results were applied to models with Allee effect, that is, $ f(x) = \mu x $ and $ g(x) = \beta x^{2}e^{-\alpha x}. $ We point out that the authors in [5] only proved the global stability for $ x^{*}_2\leq M $, where $ g(M) = \max\limits_{s\in R^{+}}g(s) $. In this paper, we are interested in the dynamics of the bistable nonlinearity problem (1.1). More precisely, we will present some attracting intervals which will enable us to give general conditions on $ f $ and $ g $ that ensure global asymptotic stability of equilibria $ x_1^* $ and $ x^{*}_2 $ in the both cases $ x^{*}_2 < M $ and $ x^{*}_2\geq M. $

    The paper is organized as follows: in Section 2, we give some preliminary results including existence, uniqueness and boundedness of the solution as well as a comparison result. We finish this section by proving the global asymptotic stability of the trivial equilibrium. Section 3 is devoted to establish the attractive intervals of solutions and to prove the global asymptotic stability of the positive equilibrium $ x^{*}_2 $. In Section 4, we investigate an application of our results to a model with Allee effect. In Section 5, we perform numerical simulation that supports our theoretical results. Finally, Section 6 is devoted to the conclusion.

    In the whole paper, we suppose that the function $ h $ is positive and

    $ \int_0^{\tau}h(a)da = 1. $

    We give now some standard assumptions.

    (T1) $ f $ and $ g $ are Lipschitz continuous with $ f(0) = g(0) = 0 $ and there exists a number $ B > 0 $ such that $ \max\limits_{v\in[0, s]}g(v) < f(s) $ for all $ s > B $.

    (T2) $ f'(s) > 0 $ for all $ s\geq 0 $.

    (T3) $ g(s) > 0 $ for all $ s > 0 $ and there exists a unique $ M > 0 $ such that $ g'(s) > 0 $ for $ 0 < s < M, $ $ g'(M) = 0 $ and $ g'(s) < 0 $ for $ s > M $.

    (T4) There exist two positive constants $ x_1^{*} $ and $ x_2^{*} $ such that $ g(x) < f(x) $ if $ x\in (0, x^{*}_1)\cup (x_2^{*}, \infty) $ and $ g(x) > f(x) $ if $ x\in(x_1^{*}, x^{*}_{2}) $ and $ g'(x^{*}_1) > f'(x^{*}_1) $.

    Let $ C: = C([-\tau, 0], \mathbb{R}) $ be the Banach space of continuous functions defined in $ [-\tau, 0] $ with $ ||\phi|| = \sup\limits_{\theta\in [-\tau, 0]}|\phi(\theta)| $ and $ C_{+} = \{\phi \in C; \phi(\theta)\geq 0, -\tau\leq \theta \leq 0\} $ is the positive cone of $ C. $ Then, $ (C, C_{+}) $ is a strongly ordered Banach space. That is, for all $ \phi, \psi \in C $, we write $ \phi\geq \psi $ if $ \phi-\psi \in C_+ $, $ \phi > \psi $ if $ \phi-\psi \in C_{+}\setminus\{0\} $ and $ \phi > > \psi $ if $ \phi-\psi \in \mathrm{Int}(C_+) $. We define the following ordered interval:

    $ C_{[\phi,\psi]}: = \{\xi \in C; \phi\leq \xi\leq \psi\}. $

    For any $ \chi\in \mathbb{R}, $ we write $ \chi^{*} $ for the element of $ C $ satisfying $ \chi^{*}(\theta) = \chi $ for all $ \theta\in[-\tau, 0]. $ The segment $ x_t\in C $ of a solution is defined by the relation $ x_t(\theta) = x(t+\theta) $, where $ \theta\in[-\tau, 0] $ and $ t\geq 0 $. In particular, $ x_0 = \phi. $ The family of maps

    $ \Phi: [0,\infty)\times C_{+}\rightarrow C_{+}, $

    such that

    $ (t,\phi)\rightarrow x_t(\phi) $

    defines a continuous semiflow on $ C_{+} $ [28]. For each $ t\geq 0, $ the map $ \Phi(t, .) $ is defined from $ C_{+} $ to $ C_{+} $ which is denoted by $ \Phi_t $:

    $ \Phi_t(\phi) = \Phi(t,\phi). $

    The set of equilibria of the semiflow, which is generated by (1.1), is given by

    $ E = \big\{\chi^{*}\in C_{+}; \chi \in \mathbb{R}\; \mbox{and} \; g(\chi) = f(\chi)\big\}. $

    In this section, we first provide existence, uniqueness and boundedness of solution to problem (1.1). We then present a Lyapunov functional and show the global asymptotic stability of the trivial equilibrium. We begin by recalling a useful theorem related to a comparison principle (see Theorem 1.1 in page 78 in [29]).

    We consider the following problem:

    $ {x(t)=F(xt),t>0,x(t)=ϕ(t),τt0,
    $
    (2.1)

    where $ F: \Omega\rightarrow \mathbb{R} $ is continuous on $ \Omega, $ which is an open subset of $ C. $ We write $ x(t, \phi, F) $ for the maximal defined solution of problem (2.1). When we need to emphasize the dependence of a solution on initial data, we write $ x(t, \phi) $ or $ x(\phi). $

    Theorem 2.1. Let $ f_1, $ $ f_2 $ $ :\Omega\rightarrow \mathbb{R} $ be continuous, Lipschitz on each compact subset of $ \Omega, $ and assume that either $ f_1 $ or $ f_2 $ is a nondecreasing function, with $ f_1(\phi)\leq f_2(\phi) $ for all $ \phi \in \Omega $. Then

    $ x(t,ϕ,f1)x(t,ϕ,f2),
    $

    holds for all $ t\geq 0 $, for which both are defined.

    The following lemma states existence, uniqueness and boundedness of the positive solution to problem (1.1). For the proof, see [15,30,31].

    Lemma 2.2. Suppose that (T1) holds. For any $ \phi \in C_{+}, $ the problem (1.1) has a unique positive solution $ x(t): = x(t, \phi) $ on $ [0, \infty) $ satisfying $ x_0 = \phi, $ provided $ \phi(0) > 0. $ In addition, we have the following estimate:

    $ 0lim suptx(t)B.
    $

    Moreover, the semiflow $ \Phi_t $ admits a compact global attractor, which attracts every bounded set in $ C_{+}. $

    The following lemma can be easily proved (see also the proof of Theorem 1.1 in [29]).

    Lemma 2.3. Let $ \phi \in C $ be a given initial condition, $ x(\phi) $ be the solution of problem (1.1) and $ x_{\epsilon}(\phi), $ $ \epsilon > 0 $ be the solution of problem (1.1) when replacing $ f $ by $ f\pm \epsilon. $ Then

    $ xϵ(t,ϕ)x(t,ϕ) as ϵ0, for all t[0,).
    $

    We focus now on the global stability of the trivial equilibrium. For this purpose, we suppose that

    $ f(s)>g(s) for all s(0,x1) and f(x1)=g(x1).
    $
    (2.2)

    Lemma 2.4. Assume that (T1) and condition (2.2) hold. For a given $ \phi \in C_{[0, x_1^{*}]}\setminus\{x_1^{*}\} $, the solution $ x(\phi) $ of problem (1.1) satisfies

    $ lim suptx(t)<x1,
    $
    (2.3)

    provided that one of the following hypotheses holds:

    (i) $ g $ is a nondecreasing function over $ (0, x_1^{*}). $

    (ii) $ f $ is a nondecreasing function over $ (0, x_1^{*}). $

    Proof. Without loss of generality, we assume that $ \phi(0) < x^{*}_1. $ Suppose that (ⅰ) holds. We first claim that $ x(t) < x^{*}_1 $ for all $ t\geq 0. $ Let $ x_{\epsilon}(\phi) $ be the solution of problem (1.1) by replacing $ f $ by $ f+\epsilon. $ We prove that $ x_{\epsilon}(t): = x_{\epsilon}(t, \phi)\leq x_{1}^{*} $ for all $ t > 0. $ Suppose, on the contrary, that there exists $ t_1 > 0 $ such that $ x_{\epsilon}(t_1) = x_1^{*}, $ $ x_{\epsilon}(t)\leq x_1^{*} $ for all $ t\leq t_1 $ and $ x'_{\epsilon}(t_1)\geq 0. $ Then, using the equation of $ x_{\epsilon}(t_1) $, we have

    $ 0xϵ(t1)=f(xϵ(t1))ϵ+τ0h(a)g(xϵ(t1a))da,<f(x1)+g(x1)=0,
    $

    which leads to a contradiction. Now, applying Lemma 2.3, we obtain $ x(t)\leq x^{*}_1 $ for all $ t\geq 0 $. Next, set $ X(t) = x^{*}_1-x(t) $. We then have

    $ X(t)=f(x(t))f(x1)+τ0h(a)(g(x1)g(x(ta)))da.
    $

    Since $ x(t)\leq x^{*}_1 $ for all $ t\geq 0 $ and $ g $ is a nondecreasing function, we have, for $ t\geq \tau $,

    $ X(t)LX(t),
    $

    where $ L $ is the Lipschitz constant of $ f. $ Consequently, $ X(t)\geq X(0)e^{-Lt} $ and the claim is proved. Finally, to prove inequality (2.3), we suppose, on the contrary, that there exist an increasing sequence $ (t_n)_n, $ $ t_n\rightarrow \infty, $ $ t_0\geq \tau $ and a nondecreasing sequence $ (x(t_n))_n, $ such that $ x(t_n)\rightarrow x_1^{*} $ as $ t_n\rightarrow \infty, $ $ x(t_n) < x_1^{*} $ for some $ n $ and $ x(t_n) = \max\limits_{t\in[0, t_n]}x(t). $ Then, in view of condition (2.2), the equation of $ x(t_n) $ satisfies

    $ 0x(tn)=f(x(tn))+τ0h(a)g(x(tna))da,f(x(tn))+g(x(tn))<0,
    $

    which is a contradiction.

    Suppose now that () holds. Let $ x_{\epsilon}(t) $ be the solution of problem (1.1) by replacing $ f(s) $ by $ f(s)+\epsilon $ and $ g(s) $ by $ g^{+}(s) = \max\limits_{\sigma \in [0, s]}g(\sigma). $

    Then, again by contradiction, suppose that there exists $ t_1 > 0 $ such that $ x_{\epsilon}(t_1) = x_1^{*}, $ $ x_{\epsilon}(t)\leq x_1^{*} $ for all $ t\leq t_1 $ and $ x_{\epsilon}'(t_1)\geq 0. $ Then, arguing as above, we obtain

    $ 0xϵ(t1)=f(xϵ(t1))ϵ+τ0h(a)g+(xϵ(ta))da,<f(x1)+g+(x1).
    $
    (2.4)

    Since $ f $ is a nondecreasing function and $ g^{+} $ is the smallest nondecreasing function that is greater than $ g $, we obtain $ f(s) > g^{+}(s) $ for all $ s\in (0, x_1^{*}). $ This contradicts with inequality (2.4). Further, by combining Theorem 2.1 and Lemma 2.3, we get $ x(t)\leq x^{*}_1 $ for all $ t\geq 0 $. Finally, following the same arguments as in the first part of this proof, the lemma is proved.

    We now prove the global asymptotic stability of the trivial equilibrium.

    Theorem 2.5. Assume that (T1) and condition (2.2) hold. Suppose also that $ \phi \in C_{[0, x_1^{*}]}\setminus\{x_1^{*}\} $. The trivial equilibrium is globally asymptotically stable if one of the following hypotheses holds:

    (i) $ g $ is a nondecreasing function over $ (0, x_1^{*}). $

    (ii) $ f $ is a nondecreasing function over $ (0, x_1^{*}). $

    Proof. Suppose that () holds. Let $ V $ be the Lyapunov functional defined by

    $ V(s)=s+τ0ψ(a)g(ϕ(a))da,
    $
    (2.5)

    where $ \psi(a) = \int_{a}^{\tau}h(\sigma)d\sigma. $ The derivative of $ V $ along the solution of problem (1.1) gives

    $ dV(xt)dt=g(x(t))f(x(t))t>0.
    $

    From condition (2.2) and Lemma 2.4, we have $ dV({x}_{t})/dt < 0 $ and thus, the result is reached by classical Lyapunov theorem (see [6]). Next, suppose that () holds. Let the function $ V $ be defined in (2.5) by replacing $ g(s) $ by $ g^{+}(s): = \max\limits_{\sigma \in [0, s]}g(\sigma). $ Since $ g^{+}(s) < f(s) $ for all $ s\in (0, x^{*}_1), $ we can employ the same argument as above to get $ dV({x}_{t})/dt < 0. $ Finally the result is obtained by applying Theorem 2.1 and Lemma 2.4. This completes the proof.

    Now, suppose that

    $ f(s)>g(s) for all s>0.
    $
    (2.6)

    Using the same proof as in Theorem 2.5, we immediately obtain the following theorem.

    Theorem 2.6. Assume that (T1) and condition (2.6) hold. The trivial equilibrium is globally asymptotically stable for all $ \phi\in C_{+}. $

    The following theorem concerns the global stability of $ x^{*}_2 $ in the case where $ g $ is a nondecreasing function.

    Theorem 3.1. Suppose that $ \phi\in C_{[x^{*}_1, \sup\limits_{s\in[-\tau, 0]}\phi]}\setminus\{x^{*}_1\} $ and $ g $ is a nondecreasing function. Assume also that (T1) and (T4) hold. Then, the positive equilibrium $ x^{*}_2 $ is globally asymptotically stable.

    Proof. Without loss of generality, suppose that $ \phi(0) > x^{*}_1. $ We first claim that $ \liminf_{t\rightarrow \infty}x(t) > x^{*}_1. $ For this, let $ x_{\epsilon}(t): = x_{\epsilon}(t; \phi) $ be the solution of problem (1.1) when replacing $ f $ by $ f-\epsilon. $ To reach the claim, we begin by proving that $ x_{\epsilon}(t) > x^{*}_1 $ for all $ t\geq 0. $ Otherwise, there exists $ t_1 > 0 $ such that $ x_{\epsilon}(t_1) = x^{*}_1, $ $ x_{\epsilon}(t)\geq x^{*}_1 $ for all $ t\leq t_1 $ and $ x'_{\epsilon}(t_1) \leq 0. $ Then, the equation of $ x_{\epsilon}(t_1) $ satisfies

    $ 0xϵ(t1)=f(xϵ(t1))+ϵ+τ0h(a)g(xϵ(t1a))da>f(x1)+g(x1)=0.
    $

    This reaches a contradiction and thus $ x_{\epsilon}(t) > x^{*}_1 $ for all $ t > 0. $ This result, together with Lemma 2.3, gives $ x(t)\geq x_1^{*} $ for all $ t\geq 0. $

    Next, for $ X(t) = x(t)-x_1^{*} $ and since $ f(x^{*}_1) = g(x^{*}_1), $ the equation of $ X(t) $ satisfies

    $ X(t)=f(x1)f(x(t))+τ0h(a)(g(x(ta))g(x1))da,
    $

    this leads to

    $ X(t)LX(t),
    $

    where $ L $ is the Lipschitz constant of $ f $. Consequently $ x(t) > x^{*}_1 $ for all $ t > 0. $

    Now, suppose that there exist an increasing sequence $ (t_n)_n, $ $ t_n\rightarrow \infty, $ $ t_0\geq \tau $ and a nonincreasing sequence $ (x(t_n))_n, $ such that $ x(t_n)\rightarrow x_1^{*} $ as $ t_n\rightarrow \infty, $ $ x(t_n) > x^{*}_1 $ for some $ n $ and $ x(t_n) = \min\limits_{t\in[0, t_n]}x(t). $ In view of (T4), the equation of $ x(t_n) $ satisfies

    $ 0x(tn)=f(x(tn))+τ0h(a)g(x(tna))da,f(x(tn))+g(x(tn))>0,
    $

    which is a contradiction. The claim is proved.

    To prove that $ x^{*}_2 $ is globally asymptotically stable, we consider the following Lyapunov functional

    $ V(ϕ)=ϕ(0)x2[g(s)g(x2)]ds+12τ0ψ(a)[g(ϕ(a))g(x2)]2da,
    $

    with $ \psi(a) = \int_{a}^{\tau}h(\sigma)d\sigma. $ By a straightforward computation, the derivative of $ V $ along the solution of problem (1.1) gives, for all $ t > 0 $,

    $ dV(xt)dt=[g(x(t))g(x2)]x(t)12τ0ψ(a)a[g(x(ta))g(x2)]2da=[g(x(t))g(x2)][f(x(t))+τ0h(a)g(x(ta))da]12{ψ(τ)[g(x(tτ))g(x2)]2ψ(0)[g(x(t))g(x2)]2τ0ψ(a)[g(x(ta))g(x2)]2da}=[g(x(t))g(x2)][f(x(t))+g(x(t))]+[g(x(t))g(x2)][g(x(t))+τ0h(a)g(x(ta))da]+12τ0h(a)da[g(x(t))g(x2)]212τ0h(a)[g(x(ta))g(x2)]2da=[g(x(t))g(x2)][f(x(t))+g(x(t))]+12τ0h(a){2[g(x(t))g(x2)][g(x(t))+g(x(ta))]+[g(x(t))g(x2)]2[g(x(ta))g(x2)]2}da=[g(x(t))g(x2)][f(x(t))+g(x(t))]12τ0h(a)[g(x(t))g(x(ta))]2da.
    $

    Note that $ \psi(\tau) = 0 $. In view of (T4), we have $ dV({x}_{t})/dt \leq 0. $ If $ g $ is an increasing function, then the result is reached by using a classical Lyapunov theorem (see, e.g., [30]). If $ g $ is a nondecreasing function, then the result is proved by using the same argument as in the proof of Theorem 2.6 in [31]. This completes the proof.

    We focus now on the case where $ g $ is non-monotone. Suppose that there exists $ \hat{G}(x) $ such that $ \hat{G}(x) = \hat{g}^{-1}og(x), $ where $ \hat{g}(.) $ denotes the restriction of $ g $ to the interval $ [M, \infty). $ Then, $ \hat{G}(x) = x $ for $ x\in [M, \infty) $ and $ \hat{G}(x) > M > x $ for $ x\in[0, M). $

    Lemma 3.2. Assume that (T1)–(T4) hold. For a given $ \phi\in C_{[x^{*}_1, \hat{G}(x_1^{*})]}\setminus\{x_1^{*}\}, $ let $ x $ be the solution of problem (1.1). Then, the following assertions hold:

    (i) if $ x^{*}_2 < M $, then $ x^{*}_1 < x(t) < \hat{G}(x^{*}_{1}) $ for all $ t > 0. $

    (ii) if $ x^{*}_2\geq M $ and $ f(\hat{G}(x^{*}_{1})) > g(M) $, then $ x^{*}_1 < x(t) < \hat{G}(x^{*}_{1}) $ for all $ t > 0. $

    Proof. Without loss of generality, suppose that $ x^{*}_1 < \phi(0)\leq\hat{G}(x^{*}_1). $ First, observe that, for a given $ \phi\in C_{[x^{*}_1, \hat{G}(x_1^{*})]}\setminus\{x_1^{*}\}, $ we have $ f(\hat{G}(x_1^{*})) > f(x^{*}_1) = g(x^{*}_1) = g(\hat{G}(x_1^{*})) $, and thus, there exists $ \epsilon > 0 $ such that $ f(\hat{G}(x_1^{*}))-\epsilon > g(\hat{G}(x_1^{*})). $ We begin by proving that $ x_1^{*}\leq x(t)\leq \hat{G}(x_1^{*}) $ for all $ t > 0. $ To this end, in view of Lemma 2.3, we only need to prove that $ x_1^{*} < x_{\epsilon}(t): = x_{\epsilon}(t; \phi)\leq \hat{G}(x_1^{*}) $ for all $ t > 0, $ where $ x_{\epsilon}(t): = x_{\epsilon}(t; \phi) $ is the solution of problem (1.1) when replacing $ f $ by $ f-\epsilon $. Let $ y_{\epsilon}: = y_{\epsilon}(\phi) $ be the solution of

    $ {yϵ(t)=f(yϵ(t))+ϵ+τ0h(a)g+(yϵ(ta))da,t>0,yϵ(t)=ϕ(t),τt0.
    $
    (3.1)

    with $ g^{+}(s) = \max\limits_{\sigma\in[0, s]}g(\sigma). $ Since $ f $ is an increasing function, we have $ f(\hat{G}(x_1^{*}))-\epsilon > g^{+}(\hat{G}(x_1^{*})) $. Accordingly, the function $ \hat{G}(x_1^{*}) $ is a super-solution of problem (3.1). Finally, in view of Theorem 2.1, we obtain $ x_{\epsilon}(t)\leq y_{\epsilon}(t)\leq\hat{G}(x_1^{*}) $ for all $ t\geq 0. $

    We now prove that $ x_{\epsilon}(t) > x^{*}_1 $. Suppose, on the contrary, that there exists $ t_1 > 0 $ such that $ x_{\epsilon}(t_1) = x^{*}_1, $ $ x_{\epsilon}(t)\geq x^{*}_1 $ for all $ t\leq t_1 $, and thus, $ x_{\epsilon}'(t_1)\leq 0 $. Then, the equation of $ x_{\epsilon}(t_1) $ satisfies

    $ xϵ(t1)=f(xϵ(t1))+ϵ+τ0h(a)g(xϵ(t1a))da>f(x1)+g(x1)=0,
    $

    since $ g(s)\geq g(x^{*}_1) $ for all $ s\in[x^{*}_1, \hat{G}(x^{*}_1)]. $ This reaches a contradiction. Further, from Lemma 2.3, we obtain $ x(t)\geq x_1^{*} $. The claim is proved.

    Next, let $ X(t) = x(t)-x_1^{*} $. Since $ f(x^{*}_1) = g(x^{*}_1) $, the equation of $ X(t) $ satisfies

    $ X(t)=f(x1)f(x(t))+τ0h(a)(g(x(ta))g(x1))da.
    $

    We know that $ g(s)\geq g(x_1^{*}) $ for all $ s\in[x^{*}_1, \hat{G}(x^{*}_1)] $. We then have

    $ X(t)LX(t),
    $

    where $ L $ is the Lipschitz constant of $ f $. Consequently $ x(t) > x^{*}_1 $ for all $ t > 0. $

    Next, we prove that $ x(t) < \hat{G}(x_1^{*}) $ for all $ t > 0. $ Suppose, on the contrary, that there exists $ t_1 > 0 $ such that $ x(t_1) = \hat{G}(x_1^{*}) $, $ x(t)\leq \hat{G}(x_1^{*}) $ for all $ t\leq t_1 $ and $ x'(t_1) \geq 0 $. Then

    $ 0x(t1)=f(x(t1))+τ0h(a)g(x(t1a))da,f(ˆG(x1))+g(M).
    $
    (3.2)

    Since $ f $ is an increasing function and $ \hat{G}(x_1^{*}) > M $, we have

    $ 0x(t1)f(M)+g(M).
    $
    (3.3)

    Now, the assertion $ x^{*}_2 < M $ implies that $ g(M) < f(M) $, which leads to a contradiction.

    When $ x^{*}_2\geq M $, inequality (3.2) gives a contradiction by hypothesis. The Lemma is proved.

    Using Lemma 3.2, we next prove the following lemma.

    Lemma 3.3. Suppose that $ \phi\in C_{[x^{*}_1, \hat{G}(x_1^{*})]}\setminus\{x^{*}_1\}. $ Assume also that (T1)–(T4) hold. Let $ x $ be the solution of problem (1.1). Then, we have

    $ lim inftx(t)>x1,
    $

    provided that one of the following assertions holds:

    (i) $ x^{*}_2 < M. $

    (ii) $ x^{*}_2\geq M $ and $ f(\hat{G}(x_1^{*})) > g(M). $

    Proof. Firstly, from Lemma 3.2, both assertions imply that $ x^{*}_1 < x(t) < \hat{G}(x^{*}_{1}) $ for all $ t\geq 0. $ Next, observe that there exists $ \epsilon > 0 $ such that

    $ g(s)>f(x1+ϵ)for alls[x1+ϵ,θϵ],
    $

    with $ \theta_{\epsilon}\in(M, \hat{G}(x^{*}_1)) $ and $ g(\theta_{\epsilon}) = g(x_1^{*}+\epsilon). $ Indeed, in view of (T3), $ \min\limits_{\sigma\in[x_1^{*}+\epsilon, \theta_{\epsilon}]}g(\sigma) = g(\theta_{\epsilon}) = g(x_{1}^{*}+\epsilon) $ and from (T4), we have $ g(x_1^{*}+\epsilon) > f(x_1^{*}+\epsilon). $

    Now, consider the following nondecreasing function:

    $ g_(s)={g(s),for 0<s<ˉm,f(x1+ϵ),for ˉm<s<ˆG(x1),
    $
    (3.4)

    where $ x^{*}_1 < \bar{m} < x^{*}_1+\epsilon $, which is a constant satisfying $ g(\bar{m}) = f(x^{*}_1+\epsilon). $ From (T2) and (T4), we get $ \underline{g}(s) > f(s) $ for $ x^{*}_1 < s < x^{*}_1+\epsilon $ and $ \underline{g}(s) < f(s) $ for $ s > x^{*}_1+\epsilon $. Let $ y(\phi) $ be the solution of problem (1.1) when replacing $ g $ by $ \underline{g}. $ Then, according to Theorem 2.1, we have $ y(t; \phi)\leq x(t; \phi). $ In addition, using Theorem 3.1, we obtain

    $ x^{*}_{1} \lt \lim\limits_{t\rightarrow \infty}y(t;\phi) = x^{*}_1+\epsilon\leq \liminf\limits_{t\rightarrow \infty} x(t;\phi). $

    The lemma is proved.

    Under Lemma 3.3, we prove the following theorem on the global asymptotic stability of the positive equilibrium $ x_2^* < M $.

    Theorem 3.4. Suppose that $ \phi\in C_{[x^{*}_1, \hat{G}(x_1^{*})]}\setminus\{x_1^{*}\} $ and $ x_2^{*} < M $. Assume also that (T1)–(T4) hold. Then, the positive equilibrium $ x^{*}_2 $ is globally asymptotically stable.

    Proof. We first claim that there exists $ T > 0 $ such that $ x(t)\leq M $ for all $ t\geq T. $ Indeed, let $ x_{\epsilon}: = x_{\epsilon}(\phi) $ be the solution of problem (1.1) when replacing $ f $ by $ f+\epsilon $. First, suppose that there exists $ T > 0 $ such that $ x_{\epsilon}(t)\geq M $ for all $ t\geq T $. So, since $ x_2^{*} < M $, we have from (T4) that $ g(M) < f(M). $ Combining this with (T2), the equation of $ x_{\epsilon} $ satisfies

    $ xϵ(t)f(M)ϵ+g(M)ϵ,
    $

    which contradicts with $ x_{\epsilon}(t)\geq M. $ Hence there exists $ T > 0 $ such that $ x_{\epsilon}(T) < M. $ We show that $ x_{\epsilon}(t) < M $ for all $ t\geq T. $ In fact, at the contrary, if there exists $ t_1 > T $ such that $ x_{\epsilon}(t_1) = M $ and so $ x_{\epsilon}'(t_1)\geq 0 $ then,

    $ xϵ(t1)=f(M)ϵ+g(M)<0,
    $

    which is a contradiction. Further, according to Lemma 2.3, there exists $ T > 0 $ such that $ x(t)\leq M $ for all $ t\geq T $ and the claim is proved. Finally, since $ g $ is a nondecreasing function over $ (0, M) $, the global asymptotic stability of $ x^{*}_2 $ is proved by applying Theorem 3.1.

    Remark 3.5. In the case where $ g(s) > g(x^{*}_1) $ for all $ s > x^{*}_1 $, the above theorem holds true. In fact, it suffices to replace $ \hat{G}(x^{*}_1) $ in $ C_{[x^{*}_1, \hat{G}(x_1^{*})]}\setminus\{x^{*}_1\} $ by $ \sup\limits_{s\in[-\tau, 0]}\phi(s) $.

    We focus now on the case where $ x^{*}_2\geq M. $ To this end, suppose that there exists a unique constant $ A $ such that

    $ AM and g(A)=f(M).
    $
    (3.5)

    Lemma 3.6. Assume that (T1)–(T4) hold. Suppose also that $ x^{*}_2\geq M $ and $ f(A)\geq g(M). $ For a given $ \phi \in C_{[x^{*}_1, \hat{G}(x_1^{*})]}\setminus\{x^{*}_1\} $ and the solution $ x: = x(\phi) $ of problem (1.1), there exists $ T > 0 $ such that

    $ Mx(t)A for all tT.
    $

    Proof. We begin by claiming that $ x_2^{*}\leq A $. On the contrary, suppose that $ x_2^{*} > A\geq M $. Then, due to (T2) and (T3), we have $ g(x^{*}_2) < g(A) = f(M) < f(x^{*}_2) = g(x^{*}_2) $, which is a contradiction. The claim is proved.

    Next, for a given $ \phi \in C_{[x^{*}_1, \hat{G}(x_1^{*})]}\setminus\{x^{*}_1\}, $ let $ x_{\epsilon}: = x_{\epsilon}(\phi) $ be the solution of problem (1.1) when replacing $ f $ by $ f+\epsilon. $ Since $ x_{\epsilon} $ converges to $ x $ as $ \epsilon $ tends to zero, we only need to prove that there exists $ T > 0 $ such that $ x_{\epsilon}(t) < A $ for all $ t\geq T $. To this end, let $ y_{\epsilon}: = y_{\epsilon}(\phi) $ be the solution of problem (1.1), when replacing $ f $ by $ f+\epsilon $ and $ g $ by $ g^{+} $ with $ g^{+}(s) = \max\limits_{\sigma\in[0, s]}g(\sigma) $. By Theorem 2.1, we have $ x_{\epsilon}(t)\leq y_{\epsilon}(t) $ for all $ t\geq 0 $, and thus, we only need to show that $ y_{\epsilon}(t) < A $ for all $ t\geq T $. On the contrary, we suppose that $ y_{\epsilon}(t)\geq A $ for all $ t > 0 $. Then, combining the equation of $ y_{\epsilon} $ and the fact that $ g^{+}(s) = g(M) $ for all $ s\geq M $, we obtain

    $ yϵ(t)g(M)f(A)ϵ<0,
    $

    which is a contradiction. Then, there exists $ T > 0 $ such that $ y_{\epsilon}(T) < A. $ We further claim that $ y_{\epsilon}(t) < A $ for all $ t\geq T. $ Otherwise, there exists $ t_1 > T $ such that $ y_{\epsilon}(t_1) = A $ and $ y'_{\epsilon}(t_1)\geq 0. $ Substituting $ y_{\epsilon}(t_1) $ in Eq (1.1), we get

    $ 0yϵ(t1)=f(yϵ(t1))ϵ+τ0h(a)g+(yϵ(t1a))da,<f(A)+g(M)0,
    $

    which is a contradiction. Consequently, by passing to the limit in $ \epsilon, $ we obtain that $ x(t)\leq A $ for all $ t\geq T. $

    We focus now on the lower bound of $ x. $ First, define the function

    $ g_(s)={g(s),for 0<s<ˉm,f(M),for ˉm<sA,
    $
    (3.6)

    where $ x_1^{*} < \bar{m} < M $, which is the constant satisfying $ g(\bar{m}) = f(M) $. Note that, due to (T2)–(T4) and condition (3.5), the function $ \underline{g} $ is nondecreasing over $ (0, A) $ and satisfies

    $ {g_(s)g(s),0sA,g_(s)>f(s),x1<s<M,g_(s)<f(s),M<sA.
    $

    Let $ y(\phi) $ be the solution of problem (1.1) when replacing $ g $ by $ \underline{g} $. From Theorem 2.1, we have $ y(t; \phi)\leq x(t; \phi) $ for all $ t > 0 $, and from Theorem 3.1, we have $ \lim\limits_{t\rightarrow \infty}y(t; \phi) = M $. Consequently, $ \liminf\limits_{t\rightarrow \infty}x(t)\geq M $. In addition, if, for all $ T > 0 $, there exists $ (t_n)_n $ such that $ t_n > T, $ $ y(t_n) = M, $ $ \bar{m} < y(s)\leq A $ for all $ 0 < s\leq t_n $ and $ y'(t_n) < 0 $, then, for $ t_n > T+\tau $,

    $ y(tn)=f(M)+f(M)=0,
    $

    which is a contradiction. The lemma is established.

    Denote $ \bar{f} = f|_{[M, A]} $ the restriction function of $ f $ over $ [M, A] $ and $ G(s): = \bar{f}^{-1}(g(s)) $ for $ s\in[M, A] $. Now, we are ready to state our main theorem related to $ x^{*}_2\geq M $.

    Theorem 3.7. Under the assumptions of Lemma 3.6, the positive equilibrium $ x_2^{*} $ of problem (1.1) is globally asymptotically stable, provided that one of the following conditions holds:

    (H1) $ fg $ is a nondecreasing function on $ [M, A] $.

    (H2) $ f+g $ is a nondecreasing function over $ [M, A] $.

    (H3) $ \dfrac{(GoG)(s)}{s} $ is a nonincreasing function over $ [M, x_2^*], $

    (H4) $ \dfrac{(GoG)(s)}{s} $ is a nonincreasing function over $ [x_2^*, A], $

    Proof. Denote $ x_{\infty}: = \liminf_{t\rightarrow \infty}x(t) $ and $ x^{\infty}: = \limsup_{t\rightarrow \infty}x(t) $. First, suppose that either $ x^{\infty}\leq x_2^{*} $ or $ x_{\infty}\geq x_2^{*} $. For $ x^{\infty}\leq x_2^{*} $, we introduce the following function:

    $ g_(s)={minσ[s,x2]g(σ)forx1<s<x2,g(x2)forx2sA.
    $

    Let $ y(\phi) $ be the solution of problem (1.1) when replacing $ g $ by $ \underline{g}. $ Since $ \underline{g}(s)\leq g(s) $ for all $ x_1^{*}\leq s\leq x_2^{*} $, we have $ y(t)\leq x(t) $ for all $ t > 0. $ Further, in view of Theorem 3.1, we obtain

    $ \lim\limits_{t\rightarrow\infty}y(t) = x_2^{*}\leq \limsup\limits_{t \to \infty} x(t) = x^{\infty}\leq x_2^{*}. $

    The local stability is obtained by using the same idea as in the proof of Theorem 2.6 in [31].

    Now, for $ x_{\infty}\geq x_2^{*} $, we introduce the function

    $ ˉg(s)={minσ[s,x2]g(σ)forx1<sx2,maxσ[x2,s]g(σ)forx2<sA,
    $
    (3.7)

    and let $ y(\phi) $ be the solution of problem (1.1) when replacing $ g $ by $ \bar{g}. $ As above, we have $ x(t)\leq y(t) $ for all $ t > 0 $ and $ y(t) $ converges to $ x_2^{*} $ as $ t $ goes to infinity. Next, we suppose that $ x_{\infty} < x_2^{*} < x^{\infty} $ and we prove that it is impossible. Indeed, according to Lemma 3.6, we know that, for every solution $ x $ of problem (1.1), we have $ M\leq x_{\infty}\leq x^{\infty}\leq A $.

    Now, using the fluctuation method (see [28,32]), there exist two sequences $ t_n\rightarrow \infty $ and $ s_n\rightarrow \infty $ such that

    $ limnx(tn)=x, x(tn)=0, n1,
    $

    and

    $ limnx(sn)=x, x(sn)=0, n1.
    $

    Substituting $ x(t_n) $ in problem (1.1), it follows that

    $ 0=f(x(tn))+τ0h(a)g(x(tna))da.
    $
    (3.8)

    Since $ g $ is nonincreasing over $ [M, A] $, we obtain, by passing to the limit in Eq (3.8), that

    $ f(x)g(x).
    $
    (3.9)

    Similarly, we obtain

    $ f(x)g(x).
    $
    (3.10)

    Multiplying the expression (3.9) by $ g(x^{\infty}) $ and combining with inequality (3.10), we get

    $ f(x)g(x)f(x)g(x).
    $

    This fact, together with the hypothesis $ (H1) $, gives $ x^{\infty}\leq x_{\infty} $, which is a contradiction. In a similar way, we can conclude the contradiction for $ (H2) $. Now, suppose that $ (H3) $ holds. First, notice that $ G $ makes sense, that is, for all $ s\in[M, A] $, the range of $ g $ is contained in $ [\bar{f}(M), \bar{f}(A)] $ since $ \bar{f} $ is strictly increasing over $ [M, A]. $ In fact, for all $ s\in[M, A] $ and since $ g $ is non-increasing over $ [M, A] $, we have $ g(A)\leq g(s)\leq g(M). $ Now, using the fact that $ f(A)\geq f(M) $, we show that

    $ ˉf(M)g(s)ˉf(A)for alls[M,A].
    $

    Therefore, the function $ G $ is nonincreasing and maps $ [M, A] $ to $ [M, A] $. In view of inequalities (3.9) and (3.10) and the monotonicity of $ \bar{f} $, we arrive at

    $ xG(x),
    $
    (3.11)

    and

    $ xG(x),
    $
    (3.12)

    with $ G(s) = \bar{f}^{-1}(g(s)). $ Now, applying the function $ G $ to inequalities (3.11) and (3.12), we find

    $ xG(x)(GoG)(x),
    $

    which gives

    $ (GoG)(x)x1=(GoG)(x2)x2.
    $
    (3.13)

    Due to $ (H3) $, it ensures that $ x_2^{*}\leq x_{\infty} $, which is impossible. Using the same arguments as above, we obtain a contradiction for $ (H4). $ The theorem is proved.

    Remark 3.8. In the case where $ g(s) > g(A) $ for all $ s > M, $ the two above results hold true. In fact, it suffices to replace $ A $ in Lemma 3.6 and Theorem 3.7 by $ B $ defined in (T1).

    For the tangential case where two positive equilibria $ x^{*}_1 $ and $ x^{*}_2 $ are equal, we have the following theorem

    Theorem 3.9. Suppose that (T1)–(T3) hold. Suppose that, in addition to the trivial equilibrium, problem (1.1) has a unique positive equilibrium $ x^{*}_1 $. Then

    (i) for $ \phi\in C_{+}, $ there exists $ T > 0 $ such that $ 0\leq x(t)\leq M $ for all $ t\geq T. $

    (ii) $ \phi\in C_{[x^{*}_1, \hat{G}(x_1^{*})]}\setminus\{x_1^{*}\} $ implies that $ x^{*}_1 < x(t)\leq M $ for all $ t\geq T. $

    (iii) if $ \phi\in C_{[x^{*}_1, \hat{G}(x_1^{*})]} $, then $ x^{*}_1 $ attracts every solution of problem (1.1) and $ x^{*}_1 $ is unstable.

    Proof. The uniqueness of the positive equilibrium implies that $ x^{*}_1\leq M $ and $ g(x) < f(x) $ for all $ x\neq x^{*}_1 $. For (), suppose that there exists $ t_0 > 0 $ such that $ x(t)\geq M $ for all $ t\geq t_0. $ Then, by substituting $ x $ in Eq (1.1), we get

    $ x(t)f(M)+g(M)<0.
    $

    This is impossible and then there exists $ T > 0 $ such that $ x(T) < M $. Next, if there exists $ t_1 > T $ such that $ x(t_1) = M $ and $ x(t)\leq M $ for all $ t\leq t_1 $, then

    $ 0x(t1)f(M)+g(M)<0.
    $

    Consequently () holds. We argue as in the proof of Lemma 3.2 (ⅰ), to show (). Concerning (), we consider the following Lyapunov functional

    $ V(ϕ)=ϕ(0)x1(g(s)g(x1))ds+12τ0ψ(a)(g(ϕ(a))g(x1))2da,
    $

    where $ \psi(a) = \int_{a}^{\tau}h(\sigma)d\sigma $. As in the proof of Theorem 3.1, the derivative of $ V $ along the solution of problem (1.1) gives

    $ dV(xt)dt=12τ0h(a)[g(x(t))g(x(ta))]2da+[g(x(t))g(x1)][g(x(t))f(x(t))],t>0.
    $

    Since $ g(s) < f(s) $ for all $ s\neq x^{*}_1 $ and $ g(s)\geq g(x^{*}_1) $ for all $ s\in [x^{*}_1, M] $, we have $ dV(x_t)/dt \leq 0 $. By LaSalle invariance theorem, $ x^{*}_1 $ attracts every solution $ x(\phi) $ of problem (1.1) with $ \phi \in C_{[x^{*}_1, \hat{G}(x_1^{*})]}. $ From Theorems 2.5 and 3.4, we easily show that $ x_1 $ is unstable.

    In this section, we apply our results to the following distributed delay differential equation:

    $ x(t)=μx(t)+τ0h(a)kx2(ta)1+2x3(ta)da, for t0,
    $
    (4.1)

    where $ \mu, $ $ k $ are positive constants. The variable $ x(t) $ stands for the maturated population at time $ t $ and $ \tau > 0 $ is the maximal maturation time of the species under consideration. $ h(a) $ is the maturity rate at age $ a $. In this model, the death function $ f(x) = \mu x $ and the birth function $ g(x) = kx^{2}/(1+2x^3) $ reflect the so called Allee effect. Obviously, the functions $ f $ and $ g $ satisfy the assumptions (T1)–(T3) and $ g $ reaches the maximum value $ k/3 $ at the point $ M = 1. $ The equilibria of Eq (4.1) satisfies the following equation:

    $ μx=kx21+2x3.
    $
    (4.2)

    Analyzing Eq (4.2), we obtain the following proposition.

    Proposition 4.1. Equation (4.1) has a trivial equilibrium $ x = 0 $. In addition

    (i) if $ \mu > \dfrac{2^{\frac{1}{3}}}{3}k $, then Eq (4.1) has no positive equilibrium;

    (ii) if $ \mu = \dfrac{2^{\frac{1}{3}}}{3}k $, then Eq (4.1) has exactly one positive equilibrium $ x_1^{*} $;

    (iii) if $ 0 < \mu < \dfrac{2^{\frac{1}{3}}}{3}k $, then Eq (4.1) has exactly two positive equilibria $ x^{*}_1 < x^{*}_2 $. Moreover,

    (iii)-a if $ \dfrac{k}{3} < \mu < \dfrac{2^{\frac{1}{3}}}{3}k, $ then $ 0 < x^{*}_1 < x_2^{*} < 1; $

    (iii)-b if $ 0 < \mu\leq \dfrac{k}{3}, $ then $ 0 < x^{*}_1 < 1\leq x^{*}_2. $

    Using Theorem 2.6, we obtain

    Theorem 4.2. If $ \mu > \dfrac{2^{\frac{1}{3}}}{3}k, $ then the trivial equilibrium of Eq (4.1) is globally asymptotically stable for all $ \phi \in C_{+}. $

    For the case (ⅲ)-a in Proposition 4.1 we have the following result

    Theorem 4.3. Suppose that $ \dfrac{k}{3} < \mu < \dfrac{2^{\frac{1}{3}}}{3}k. $ Then

    (i) The trivial equilibrium of Eq (4.1) is globally asymptotically stable for all $ \phi \in C_{[0, x^{*}_1]}\setminus\{x^{*}_1\}. $

    (ii) The positive equilibrium $ x_1^{*} $ is unstable and the positive equilibrium $ x^{*}_2 $ is globally asymptotically stable for all $ \phi \in C_{[x^{*}_1, \hat{G}(x^{*}_1)]}\setminus\{x^{*}_1\} $, where $ \hat{G}(x^{*}_1)\in [1, \infty) $ satisfies $ g(\hat{G}(x^{*}_1)) = g(x^{*}_1). $

    (iii) There exists two heteroclinic orbits $ X^{(1)} $ and $ X^{(2)} $ connecting $ 0 $ to $ x^{*}_1 $ and $ x^{*}_1 $ to $ x^{*}_2 $, respectively.

    Proof. (ⅰ) and (ⅱ) directly follow from Proposition 4.1, (ⅲ)-a and Theorems 2.5 and 3.4.

    For (ⅲ), we follow the same proof as in Theorem 4.2 in [5]. See also [18]. For the sake of completeness, we rewrite it. Let $ K = \{x^{*}_1\}. $ Clearly, $ K $ is an isolated and unstable compact invariant set in $ C_{[0, x^{*}_1]} $ and $ C_{[x^{*}_1, \hat{G}(x^{*}_1)]}. $

    By applying Corollary 2.9 in [33] to $ \Phi_{|{\bf{R}}^{+}\times C[0, x^{*}_1]} $ and $ \Phi_{|{\bf{R}}^{+}\times C[x^{*}_1, \hat{G}(x^{*}_1)]}, $ respectively, there exist two pre-compact full orbits $ X^{(1)}:{\bf{R}}\rightarrow C_{[0, x^{*}_1]}\setminus\{0\} $ and $ X^{(2)}:{\bf{R}}\rightarrow C_{[x^{*}_1, \hat{G}(x^{*}_1)]}\setminus\{0\} $ such that $ \alpha(X^{1}) = \alpha(X^{2}) = K. $ This together with statements (i) and (ii) gives $ \omega{(X^{(1)})} = \{0\} $ and $ \omega{(X^{(2)})} = \{x^{*}_2\} $. In other words, there exist two heteroclinic orbits $ X^{(1)} $ and $ X^{(2)} $, which connect $ 0 $ to $ x^{*}_1 $ and $ x^{*}_1 $ to $ x^{*}_2 $, respectively. This completes the proof.

    For the case (ⅲ)-b in Proposition 4.1, we first show that

    $ f(A)g(M) with g(A)=f(M) and AM.
    $
    (4.3)

    Lemma 4.4. Suppose that $ f(s) = \mu s $. Condition (4.3) holds if and only if $ M\leq \dfrac{1}{\mu}g(\dfrac{1}{\mu}g(M)). $

    Proof. It follows that $ f(A)\geq g(M) $ if and only if $ A\geq f^{-1}(g(M))\geq M $. Since $ g $ is a decreasing function over $ [M, \infty) $, we have $ g(A)\leq g(f^{-1}(g(M))) = g(\dfrac{1}{\mu}(g(M))) $. Moreover, since $ g(A) = f(M) $, we have $ M\leq \dfrac{1}{\mu}g(\dfrac{1}{\mu}g(M)) $. The lemma is proved.

    Lemma 4.5. For Eq (4.1), condition (4.3) holds if and only if

    $ 0<μk3.
    $
    (4.4)

    Proof. By a straightforward computation, we have $ f^{-1}(x) = x/\mu $. For $ G(x) = g(x)/\mu $, we obtain

    $ (GoG)(x)=x(2px6+px3)8x9+(12+2p)x6+6x3+1,
    $

    where $ p = k^{3}/\mu^{3}. $ By applying Lemma 4.4, it is readily to see that $ 1\leq (GoG)(1) $ holds if and only if

    $ 13p2p+27,
    $

    and thus, $ 0 < \mu\leq k/3. $

    Theorem 4.6. Suppose that $ 0 < \mu \leq \dfrac{k}{3}. $ Then, the positive equilibrium $ x^{*}_2 $ of Eq (4.1) is globally asymptotically stable for all $ \phi \in C_{[x^{*}_1, \hat{G}(x^{*}_1)]}\setminus\{x^{*}_1\} $, where $ \hat{G}(x^{*}_1)\in [1, \infty) $ satisfies $ g(\hat{G}(x^{*}_1)) = g(x^{*}_1). $

    Proof. Observe that, in view of Lemmas 4.4 and 4.5, all hypotheses of Lemma 3.6 are satisfied. Now, in order to apply Theorem 3.7, we only show that $ \dfrac{(GoG)(x)}{x} $ is nonincreasing over $ [M, A]. $ Indeed, by a simple computation, we have

    $ ((GoG)(x)x)=48px1448px116p2x8+12px5+3px2[8x9+(12+2p)x6+6x3+1]2,
    $

    where $ p = k^{3}/\mu^{3}. $ Finally, observe that

    $ ((GoG)(x)x)<0,
    $

    for $ x\geq 1. $ In this case, both of (H3) and (H4) in Theorem 3.7 hold. This completes the proof.

    Finally, for the tangential case, we have

    Theorem 4.7. Suppose that $ \mu = \dfrac{2^{\frac{1}{3}}}{3}k. $ Then

    (i) The trivial equilibrium of Eq (4.1) is globally asymptotically stable for all $ \phi \in C_{[0, x^{*}_1]}\setminus\{x^{*}_1\}. $

    (ii) If $ \phi \in C_{[x^{*}_1, \hat{G}(x^{*}_1)]}\setminus\{x^{*}_1\} $, then the unique positive equilibrium $ x_1^{*} $ is unstable and attracts every solution of Eq (4.1).

    Proof. The proof of this theorem follows immediately from Theorems 2.5 and 3.9.

    In this section, we perform numerical simulation that supports our theoretical results. As in Section 4, we assume that

    $ f(x) = \mu x, \quad g(x) = \frac{kx^2}{1+2x^3}, $

    and confirm the validity of Theorems 4.2, 4.3, 4.6 and 4.7. In what follows, we fix

    $ τ=1,k=1,h(a)=e(a0.5τ)2×102τ0e(σ0.5τ)2×102dσ
    $
    (5.1)

    and change $ \mu $ and $ \phi $. Note that $ \frac{2^{\frac{1}{3}}}{3}k \approx 0.42 $ and $ h $ is a Gaussian-like distribution as shown in Figure 1.

    Figure 1.  Function $ h $ in definition (5.1).

    First, let $ \mu = 0.5 $. In this case, $ \mu > \dfrac{2^{\frac{1}{3}}}{3} k $ and thus, by Theorem 4.2, the trivial equilibrium is globally asymptotically stable. In fact, Figure 2 shows that $ x(t) $ converges to $ 0 $ as $ t $ increases for different initial data.

    Figure 2.  Time variation of function $ x $ for $ \mu = 0.5 > \dfrac{2^{\frac{1}{3}}}{3} k \approx 0.42 $.

    Next, let $ \mu = 0.37 $. In this case, $ \dfrac{k}{3} < \mu < \dfrac{2^{\frac{1}{3}}}{3}k $ and $ x_1^* \approx 0.43 $, $ x_2^* \approx 0.89 $ and $ \hat{G}(x_1^*) \approx 3.09 $ (Figure 3). Hence, by Theorem 4.3, we see that the trivial equilibrium is globally asymptotically stable for $ \phi \in C_{[0, x_1^*]} \setminus \{ x_1^* \} $, whereas the positive equilibrium $ x_2^* $ is so for $ \phi \in C_{[x_1^*, \hat{G}(x_1^*)]} \setminus \{ x_1^* \} $. In fact, Figure 4 shows such a bistable situation. Moreover, heteroclinic orbits $ X^{(1)} $ and $ X^{(2)} $, which were stated in Theorem 4.3 (ⅲ), are shown in Figure 5.

    Figure 3.  Functions $ f $ and $ g $ for $ \mu = 0.37 $.
    Figure 4.  Time variation of function $ x $ for $ \mu = 0.37 \in \left(\dfrac{k}{3}, \dfrac{2^{\frac{1}{3}}}{3} k \right) \approx (0.33, 0.42) $.
    Figure 5.  Heteroclinic orbits $ X^{(1)} $ and $ X^{(2)} $ in the $ x $-$ x' $ plane for $ \mu = 0.37 $.

    Thirdly, let $ \mu = 0.27 < \dfrac{k}{3} \approx 0.33 $. In this case, we have $ x_1^* \approx 0.28 $, $ x_2^* \approx 1.2 $ and $ \hat{G}(x_1^*) \approx 6.52 $ (Figure 6). Thus, by Theorem 4.6, we see that the positive equilibrium $ x_2^* $ is globally asymptotically stable for $ \phi \in C_{[x_1^*, \hat{G}(x_1^*)]} \setminus \{ x_1^* \} $. In fact, Figure 7 shows that $ x(t) $ converges to $ x_2^* $ as $ t $ increases for different initial data.

    Figure 6.  Functions $ f $ and $ g $ for $ \mu = 0.27 $.
    Figure 7.  Time variation of function $ x $ for $ \mu = 0.27 < \dfrac{k}{3} \approx 0.33 $.

    Finally, let $ \mu = \dfrac{2^{\frac{1}{3}}}{3}k \approx 0.42 $. In this case, we have $ x_1^* \approx 0.63 $ and $ \hat{G}(x_1^*) \approx 1.72 $ (Figure 8). By Theorem 4.7, we see that the trivial equilibrium is globally asymptotically stable for $ \phi \in C_{[0, x_1^*]} \setminus \{ x_1^* \} $, whereas $ x_1^* $ is unstable and attracts all solutions for $ \phi \in C_{[x_1^*, \hat{G}(x_1^*)]} \setminus \{ x_1^* \} $. In fact, Figure 9 shows such two situations.

    Figure 8.  Functions $ f $ and $ g $ for $ \mu = \dfrac{2^{\frac{1}{3}}}{3}k \approx 0.42 $.
    Figure 9.  Time variation of function $ x $ for $ \mu = \dfrac{2^{\frac{1}{3}}}{3}k \approx 0.42 $.

    In this paper, we studied the bistable nonlinearity problem for a general class of functional differential equations with distributed delay, which includes many mathematical models in biology and ecology. In contrast to the previous work [5], we considered both cases $ x_2^* < M $ and $ x_2^* \geq M $, and obtained sufficient conditions for the global asymptotic stability of each equilibrium. The general results were applied to a model with Allee effect in Section 4, and numerical simulation was performed in Section 5. It should be pointed out that our theoretical results are robust for the variation of the form of the distribution function $ h $. This might suggest us that the distributed delay is not essential for the dynamical system of our model. We conjecture that our results still hold for $ \tau = \infty $, and we leave it for a future study. Extension of our results to a reaction-diffusion equation could also be an interesting future problem.

    We deeply appreciate the editor and the anonymous reviewers for their helpful comments to the earlier version of our manuscript. The first author is partially supported by the JSPS Grant-in-Aid for Early-Career Scientists (No.19K14594). The second author is partially supported by the DGRSDT, ALGERIA.

    All authors declare no conflicts of interest in this paper.

    [1] Behar M, Hao N, Dohlman HG, et al. (2008) Dose to duration encoding and signaling beyond saturation in intracellular signaling networks. PLoS Computat Biol 4: 1-11. doi: 10.1371/journal.pcbi.0040001
    [2] Brent R (2009) Cell signaling : What is the signal and what information does it carry? Federation of European Biochemical Societies 583: 4019-4024. doi: 10.1016/j.febslet.2009.11.029
    [3] Cai L, Dalal CK, Elowitz MB (2008) Frequency-modulated nuclear localization bursts coordinate gene regulation. Nature 455: 485-491. doi: 10.1038/nature07292
    [4] Domletsch RE, Xu K, Lewis RS (1998) Calcium oscillations increase the efficiency and specificity of gene expression. Nature 392: 933-936. doi: 10.1038/31960
    [5] Zhu X, Si G, Deng N, et al. (2012) Frequency-dependent Escherichia coli chemotaxis behavior. Phys Rev Lett 108: 128101. doi: 10.1103/PhysRevLett.108.128101
    [6] Kennedy RT, Kauri LM, Dahlgren GM, et al. (2002) Metabolic oscillations in β-cells. Diabetes 51: S152-S161. doi: 10.2337/diabetes.51.2007.S152
    [7] Iqbal J, Li S, Zaidi M (2010) Complexity in signal transduction. Ann N Y Acad Sci 1192: 238-244. doi: 10.1111/j.1749-6632.2010.05388.x
    [8] Godin J, Chen C-H, Cho SH, et al. (2008) Microfluidic and photonics for Bio-System-an-a-chip : A review of advancements in technology towards a microfluidic flow cytometry chip. J Biophotonics 5: 355-376.
    [9] Mampallil D, George DS (2012) Microfluidics- A lab in your palm. Resonance 682-690.
    [10] Zhang X, Roper MG (2009) Microfluidic perfusion system for automated delivery of temporal gradients to Islets of Langerhans. Anal Chem 81: 1162-1168. doi: 10.1021/ac802579z
    [11] Zhang X, Grimley A, Bertram R et al. (2010) Microfluidic system for generation of sinusoidal glucose waveforms for entrainment of Islets Langerhans. Anal Chem 82: 6704-6711. doi: 10.1021/ac101461x
    [12] Zhang X, Dhumpa R, Roper MG et al. (2013) Maintaining stimulant waveforms in large-volume microfluidic cell chambers. Microfluid Nanofluid 15: 65-71. doi: 10.1007/s10404-012-1129-x
    [13] Schafer D, Gibson EA, Amir W, et al. (2007) Three-dimensional chemical concentration maps in a microfluidic device using two-photon absorption fluorescence imaging. Opt Lett 32: 2568-2570. doi: 10.1364/OL.32.002568
    [14] Cooksey GA, Sip CG, Folch A (2009) A multi-purpose microfluidic perfusion system with combinatorial choice of inputs, mixtures, gradient patterns, and flow rates. Lab Chip 9: 417-426. doi: 10.1039/B806803H
    [15] Elder AD, Mattews SM, Swartling J, et al. (2006) The application of frequency-domain Fluorescence Lifetime Imaging Microscopy as a quantitative analytical tool for microfluidic devices. Opt Express 14.
    [16] Zeng Y, Jiang L, Zheng W, et al. (2011) Quantitative imaging of mixing dynamics in microfluidic droplets using two-photon fluorescence lifetime imaging. Opt Lett 36: 2236-2238. doi: 10.1364/OL.36.002236
    [17] Lakowitz JR (2006) Principles of Fluorescence Spectroscopy, 3rd ed., New York: Springer Science+Business Media, LLC.
    [18] Magennis SW, Graham EM, Jones AC (2005) Quantitative spatial mapping of mixing in microfludic system. Angewandte Chemie International Edition 44: 6512-6516. doi: 10.1002/anie.200500558
    [19] Robinson T, Valluri P, Manning HB, et al. (2008) Three-dimensional molecular mapping in a microfluidic device using fluorescence lifetime imaging. Opt Lett 33: 1887-1889. doi: 10.1364/OL.33.001887
    [20] Hung PJ, Lee PJ, Sabounchi P, et al. (2005) Continuous perfusion microfluidic cell culture array for high-throughput cell-based assays. Biotechnol Bioeng 89: 1-8. doi: 10.1002/bit.20289
  • This article has been cited by:

    1. Arda Işıldar, Eric D. van Hullebusch, Markus Lenz, Gijs Du Laing, Alessandra Marra, Alessandra Cesaro, Sandeep Panda, Ata Akcil, Mehmet Ali Kucuker, Kerstin Kuchta, Biotechnological strategies for the recovery of valuable and critical raw materials from waste electrical and electronic equipment (WEEE) – A review, 2019, 362, 03043894, 467, 10.1016/j.jhazmat.2018.08.050
    2. Mária Čížková, Pauline Mezricky, Dana Mezricky, Marian Rucki, Vilém Zachleder, Milada Vítová, Bioaccumulation of Rare Earth Elements from Waste Luminophores in the Red Algae, Galdieria phlegrea, 2020, 1877-2641, 10.1007/s12649-020-01182-3
    3. Xia Kang, Laszlo Csetenyi, Geoffrey Michael Gadd, Monazite transformation into Ce‐ and La‐containing oxalates by Aspergillus niger , 2020, 22, 1462-2912, 1635, 10.1111/1462-2920.14964
    4. Melissa K Corbett, Elizabeth LJ Watkin, Microbial cooperation improves bioleaching recovery rates, 2018, 39, 1324-4272, 50, 10.1071/MA18013
    5. Yang Qu, Hui Li, Xiaoqing Wang, Wenjie Tian, Ben Shi, Minjie Yao, Ying Zhang, Bioleaching of Major, Rare Earth, and Radioactive Elements from Red Mud by using Indigenous Chemoheterotrophic Bacterium Acetobacter sp., 2019, 9, 2075-163X, 67, 10.3390/min9020067
    6. Alexander M. Panichev, Ivan V. Seryodkin, Yuri N. Kalinkin, Raisa A. Makarevich, Tatiana A. Stolyarova, Alexander A. Sergievich, Pavel P. Khoroshikh, Development of the “rare-earth” hypothesis to explain the reasons of geophagy in Teletskoye Lake are kudurs (Gorny Altai, Russia), 2018, 40, 0269-4042, 1299, 10.1007/s10653-017-0056-x
    7. Norma Cecilia Martinez-Gomez, Huong N. Vu, Elizabeth Skovran, Lanthanide Chemistry: From Coordination in Chemical Complexes Shaping Our Technology to Coordination in Enzymes Shaping Bacterial Metabolism, 2016, 55, 0020-1669, 10083, 10.1021/acs.inorgchem.6b00919
    8. Marcos Y. Voutsinos, Jillian F. Banfield, John W. Moreau, Secondary lanthanide phosphate mineralisation in weathering profiles of I-, S- and A-type granites, 2021, 85, 0026-461X, 82, 10.1180/mgm.2020.90
    9. Matthias Wehrmann, Patrick Billard, Audrey Martin-Meriadec, Asfaw Zegeye, Janosch Klebensberger, Xinning Zhang, Dianne K. Newman, Functional Role of Lanthanides in Enzymatic Activity and Transcriptional Regulation of Pyrroloquinoline Quinone-Dependent Alcohol Dehydrogenases in Pseudomonas putida KT2440, 2017, 8, 2150-7511, 10.1128/mBio.00570-17
    10. Ata Akcil, Nazym Akhmadiyeva, Rinat Abdulvaliyev, Pratima Meshram, Overview On Extraction and Separation of Rare Earth Elements from Red Mud: Focus on Scandium, 2018, 39, 0882-7508, 145, 10.1080/08827508.2017.1288116
    11. Romy Auerbach, Katrin Bokelmann, Stefan Ratering, Rudolf Stauber, Sylvia Schnell, Jörg Zimmermann, Recycling of Florescent Phosphor Powder Y2O3:Eu by Leaching Experiments, 2017, 262, 1662-9779, 596, 10.4028/www.scientific.net/SSP.262.596
    12. Limin Zhang, Hailiang Dong, Yan Liu, Liang Bian, Xi Wang, Ziqi Zhou, Ying Huang, Bioleaching of rare earth elements from bastnaesite-bearing rock by actinobacteria, 2018, 483, 00092541, 544, 10.1016/j.chemgeo.2018.03.023
    13. Vesna Vukojević, Slađana Đurđić, Violeta Stefanović, Jelena Trifković, Dragan Čakmak, Veljko Perović, Jelena Mutić, Scandium, yttrium, and lanthanide contents in soil from Serbia and their accumulation in the mushroom Macrolepiota procera (Scop.) Singer, 2019, 26, 0944-1344, 5422, 10.1007/s11356-018-3982-y
    14. Mariele Canal Bonfante, Jéssica Prats Raspini, Ivan Belo Fernandes, Suélen Fernandes, Lucila M.S. Campos, Orestes Estevam Alarcon, Achieving Sustainable Development Goals in rare earth magnets production: A review on state of the art and SWOT analysis, 2021, 137, 13640321, 110616, 10.1016/j.rser.2020.110616
    15. Yehia Osman, Ahmed Gebreil, Amr M. Mowafy, Tarek I. Anan, Samar M. Hamed, Characterization of Aspergillus niger siderophore that mediates bioleaching of rare earth elements from phosphorites, 2019, 35, 0959-3993, 10.1007/s11274-019-2666-1
    16. Yang Qu, Hui Li, Xiaoqing Wang, Wenjie Tian, Ben Shi, Minjie Yao, Lina Cao, Lingfan Yue, Selective Parameters and Bioleaching Kinetics for Leaching Vanadium from Red Mud Using Aspergillus niger and Penicillium tricolor, 2019, 9, 2075-163X, 697, 10.3390/min9110697
    17. Xia Kang, Laszlo Csetenyi, Geoffrey Michael Gadd, Biotransformation of lanthanum by Aspergillus niger, 2019, 103, 0175-7598, 981, 10.1007/s00253-018-9489-0
    18. Subhabrata Dev, Ankur Sachan, Fahimeh Dehghani, Tathagata Ghosh, Brandon R. Briggs, Srijan Aggarwal, Mechanisms of biological recovery of rare-earth elements from industrial and electronic wastes: A review, 2020, 397, 13858947, 124596, 10.1016/j.cej.2020.124596
    19. Stefanie Hopfe, Katrin Flemming, Falk Lehmann, Robert Möckel, Sabine Kutschke, Katrin Pollmann, Leaching of rare earth elements from fluorescent powder using the tea fungus Kombucha, 2017, 62, 0956053X, 211, 10.1016/j.wasman.2017.02.005
    20. Marja Salo, Oleg Knauf, Jarno Mäkinen, Xiaosheng Yang, Pertti Koukkari, Integrated acid leaching and biological sulfate reduction of phosphogypsum for REE recovery, 2020, 155, 08926875, 106408, 10.1016/j.mineng.2020.106408
    21. Charles S. Cockell, Rosa Santomartino, Kai Finster, Annemiek C. Waajen, Lorna J. Eades, Ralf Moeller, Petra Rettberg, Felix M. Fuchs, Rob Van Houdt, Natalie Leys, Ilse Coninx, Jason Hatton, Luca Parmitano, Jutta Krause, Andrea Koehler, Nicol Caplin, Lobke Zuijderduijn, Alessandro Mariani, Stefano S. Pellari, Fabrizio Carubia, Giacomo Luciani, Michele Balsamo, Valfredo Zolesi, Natasha Nicholson, Claire-Marie Loudon, Jeannine Doswald-Winkler, Magdalena Herová, Bernd Rattenbacher, Jennifer Wadsworth, R. Craig Everroad, René Demets, Space station biomining experiment demonstrates rare earth element extraction in microgravity and Mars gravity, 2020, 11, 2041-1723, 10.1038/s41467-020-19276-w
    22. Alessandra Marra, Alessandra Cesaro, Eldon R. Rene, Vincenzo Belgiorno, Piet N.L. Lens, Bioleaching of metals from WEEE shredding dust, 2018, 210, 03014797, 180, 10.1016/j.jenvman.2017.12.066
    23. Leonid Plyatsuk, Magdalena Balintova, Yelizaveta Chernysh, Iryna Ablieieva, Oleksiy Ablieiev, 2020, Chapter 84, 978-3-030-22364-9, 843, 10.1007/978-3-030-22365-6_84
    24. Milada Vítová, Mária Čížková, Vilém Zachleder, 2019, Chapter 6, 978-1-78985-009-3, 10.5772/intechopen.80260
    25. Homayoun Fathollahzadeh, Jacques J. Eksteen, Anna H. Kaksonen, Elizabeth L. J. Watkin, Role of microorganisms in bioleaching of rare earth elements from primary and secondary resources, 2019, 103, 0175-7598, 1043, 10.1007/s00253-018-9526-z
    26. Saskia Bindschedler, Thi Quynh Trang Vu Bouquet, Daniel Job, Edith Joseph, Pilar Junier, 2017, 99, 9780128120507, 53, 10.1016/bs.aambs.2017.02.002
    27. Hongyue Jin, David W. Reed, Vicki S. Thompson, Yoshiko Fujita, Yongqin Jiao, Michael Crain-Zamora, Jacob Fisher, Katherine Scalzone, Mike Griffel, Damon Hartley, John W. Sutherland, Sustainable Bioleaching of Rare Earth Elements from Industrial Waste Materials Using Agricultural Wastes, 2019, 7, 2168-0485, 15311, 10.1021/acssuschemeng.9b02584
    28. K.A. Natarajan, 2018, 9780128040225, 305, 10.1016/B978-0-12-804022-5.00011-6
    29. Romy Auerbach, Katrin Bokelmann, Rudolf Stauber, Sylvia Schnell, Stefan Ratering, Arite Werner, Roland Haseneder, Radek Vostal, Martin Bertau, Carsten Gellermann, Bioleaching zum Recycling von Sekundärrohstoffen, 2018, 52, 00092851, 330, 10.1002/ciuz.201800829
    30. Xia Kang, Laszlo Csetenyi, Geoffrey Michael Gadd, Colonization and bioweathering of monazite by Aspergillus niger : solubilization and precipitation of rare earth elements , 2021, 1462-2912, 10.1111/1462-2920.15402
    31. Megan Barnett, Barbara Palumbo-Roe, Simon Gregory, Comparison of Heterotrophic Bioleaching and Ammonium Sulfate Ion Exchange Leaching of Rare Earth Elements from a Madagascan Ion-Adsorption Clay, 2018, 8, 2075-163X, 236, 10.3390/min8060236
    32. Payam Rasoulnia, Robert Barthen, Aino-Maija Lakaniemi, A critical review of bioleaching of rare earth elements: The mechanisms and effect of process parameters, 2021, 51, 1064-3389, 378, 10.1080/10643389.2020.1727718
    33. Romy Auerbach, Stefan Ratering, Katrin Bokelmann, Carsten Gellermann, Thilo Brämer, Renate Baumann, Sylvia Schnell, Bioleaching of valuable and hazardous metals from dry discharged incineration slag. An approach for metal recycling and pollutant elimination, 2019, 232, 03014797, 428, 10.1016/j.jenvman.2018.11.028
    34. Ludmila Chistoserdova, Applications of methylotrophs: can single carbon be harnessed for biotechnology?, 2018, 50, 09581669, 189, 10.1016/j.copbio.2018.01.012
    35. Yilin He, Lingya Ma, Xurui Li, Heng Wang, Xiaoliang Liang, Jianxi Zhu, Hongping He, Mobilization and fractionation of rare earth elements during experimental bio-weathering of granites, 2023, 343, 00167037, 384, 10.1016/j.gca.2022.12.027
    36. Alexander Panichev, Nataly Baranovskaya, Ivan Seryodkin, Igor Chekryzhov, Elena Vakh, Tatyana Lutsenko, Olga Patrusheva, Raisa Makarevich, Alexey Kholodov, Kirill Golokhvast, Kudurs (mineral licks) in the Belukha Mountain area, Altai Mountains, Russia, 2022, 15, 1866-7511, 10.1007/s12517-022-10478-8
    37. Jean-Luc Mukaba, Chuks Paul Eze, Omoniyi Pereao, Leslie Felicia Petrik, Rare Earths’ Recovery from Phosphogypsum: An Overview on Direct and Indirect Leaching Techniques, 2021, 11, 2075-163X, 1051, 10.3390/min11101051
    38. A. M. Panichev, N. V. Baranovskaya, I. V. Seryodkin, I. Yu. Chekryzhov, E. A. Vakh, B. R. Soktoev, A. I. Belyanovskaya, R. A. Makarevich, T. N. Lutsenko, N. Yu. Popov, A. V. Ruslan, D. S. Ostapenko, A. V. Vetoshkina, V. V. Aramilev, A. S. Kholodov, K. S. Golokhvast, Landscape REE anomalies and the cause of geophagy in wild animals at kudurs (mineral salt licks) in the Sikhote-Alin (Primorsky Krai, Russia), 2022, 44, 0269-4042, 1137, 10.1007/s10653-021-01014-w
    39. Ayoub Bounaga, Anwar Alsanea, Karim Lyamlouli, Chen Zhou, Youssef Zeroual, Rachid Boulif, Bruce E. Rittmann, Microbial transformations by sulfur bacteria can recover value from phosphogypsum: A global problem and a possible solution, 2022, 57, 07349750, 107949, 10.1016/j.biotechadv.2022.107949
    40. Camino García‐Balboa, Paloma Martínez‐Alesón García, Victoria López‐Rodas, Eduardo Costas, Beatriz Baselga‐Cervera, Microbial biominers: Sequential bioleaching and biouptake of metals from electronic scraps, 2022, 11, 2045-8827, 10.1002/mbo3.1265
    41. Rashmi Upadhyay, Perumalla Janaki Ramayya, 2023, Chapter 20, 978-3-031-25677-6, 319, 10.1007/978-3-031-25678-3_20
    42. Emmanuel Yaw Owusu-Fordjour, Xinbo Yang, Bioleaching of rare earth elements challenges and opportunities: A critical review, 2023, 11, 22133437, 110413, 10.1016/j.jece.2023.110413
    43. Alessandra Cesaro, 2024, Chapter 4, 978-3-031-43624-6, 67, 10.1007/978-3-031-43625-3_4
    44. S Cebekhulu, A. Gómez-Arias, A. Matu, J Alom, A. Valverde, M. Caraballo, O. Ololade, P. Schneider, J Castillo, Role of indigenous microbial communities in the mobilization of potentially toxic elements and rare-earth elements from alkaline mine waste, 2024, 03043894, 133504, 10.1016/j.jhazmat.2024.133504
    45. Sabrina Hedrich, Anja Breuker, Mirko Martin, Axel Schippers, Rare earth elements (bio)leaching from zircon and eudialyte concentrates, 2023, 219, 0304386X, 106068, 10.1016/j.hydromet.2023.106068
    46. Xu Zhang, Ningjie Tan, Seyed Omid Rastegar, Tingyue Gu, 2024, 9781119894339, 321, 10.1002/9781119894360.ch13
    47. Yoshiko Fujita, Dan Park, Margaret Lencka, Andre Anderko, David Reed, Vicki Thompson, Gaurav Das, Ali Eslamimanesh, Yongqin Jiao, 2024, 9781119515036, 251, 10.1002/9781119515005.ch8
    48. Helena Singer, Robin Steudtner, Ignacio Sottorff, Björn Drobot, Arjan Pol, Huub J. M. Op den Camp, Lena J. Daumann, Learning from nature: recovery of rare earth elements by the extremophilic bacterium Methylacidiphilum fumariolicum, 2023, 59, 1359-7345, 9066, 10.1039/D3CC01341C
    49. Tingting Yue, Yuankun Yang, Lunzhen Li, Mingyue Su, Maosheng Wang, Yucheng Liao, Liang Jia, Shu Chen, Application Prospect of Anaerobic Reduction Pathways in Acidithiobacillus ferrooxidans for Mine Tailings Disposal: A Review, 2023, 13, 2075-163X, 1192, 10.3390/min13091192
    50. Khyati Joshi, Sara Magdouli, Satinder Kaur Brar, Bioleaching for the recovery of rare earth elements from industrial waste: A sustainable approach, 2025, 215, 09213449, 108129, 10.1016/j.resconrec.2025.108129
    51. Yujian Liang, Zuotan Huang, Qiudong Xiao, Xuan Guan, Xinman Xu, Hongmin Jiang, Yijian Zhong, Zhihong Tu, Dissolution and mechanism of bastnaesite mediated by Acidithiobacillus ferrooxidans, 2025, 10020721, 10.1016/j.jre.2025.03.025
    52. Alexander Paul Fritz, Lena Josefine Daumann, Stefan Schwarzer, Bioleaching of Rare Earth Fluorescent Lamp Phosphors Using Kombucha, 2025, 0021-9584, 10.1021/acs.jchemed.4c01532
  • Reader Comments
  • © 2015 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5709) PDF downloads(1103) Cited by(2)

Figures and Tables

Figures(9)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog