Citation: Zubaidah Ningsih, James W.M. Chon, Andrew H.A. Clayton. A Microfluidic Device for Spatiotemporal Delivery of Stimuli to Cells[J]. AIMS Biophysics, 2015, 2(2): 58-72. doi: 10.3934/biophy.2015.2.58
[1] | Behar M, Hao N, Dohlman HG, et al. (2008) Dose to duration encoding and signaling beyond saturation in intracellular signaling networks. PLoS Computat Biol 4: 1-11. doi: 10.1371/journal.pcbi.0040001 |
[2] | Brent R (2009) Cell signaling : What is the signal and what information does it carry? Federation of European Biochemical Societies 583: 4019-4024. doi: 10.1016/j.febslet.2009.11.029 |
[3] | Cai L, Dalal CK, Elowitz MB (2008) Frequency-modulated nuclear localization bursts coordinate gene regulation. Nature 455: 485-491. doi: 10.1038/nature07292 |
[4] | Domletsch RE, Xu K, Lewis RS (1998) Calcium oscillations increase the efficiency and specificity of gene expression. Nature 392: 933-936. doi: 10.1038/31960 |
[5] | Zhu X, Si G, Deng N, et al. (2012) Frequency-dependent Escherichia coli chemotaxis behavior. Phys Rev Lett 108: 128101. doi: 10.1103/PhysRevLett.108.128101 |
[6] | Kennedy RT, Kauri LM, Dahlgren GM, et al. (2002) Metabolic oscillations in β-cells. Diabetes 51: S152-S161. doi: 10.2337/diabetes.51.2007.S152 |
[7] | Iqbal J, Li S, Zaidi M (2010) Complexity in signal transduction. Ann N Y Acad Sci 1192: 238-244. doi: 10.1111/j.1749-6632.2010.05388.x |
[8] | Godin J, Chen C-H, Cho SH, et al. (2008) Microfluidic and photonics for Bio-System-an-a-chip : A review of advancements in technology towards a microfluidic flow cytometry chip. J Biophotonics 5: 355-376. |
[9] | Mampallil D, George DS (2012) Microfluidics- A lab in your palm. Resonance 682-690. |
[10] | Zhang X, Roper MG (2009) Microfluidic perfusion system for automated delivery of temporal gradients to Islets of Langerhans. Anal Chem 81: 1162-1168. doi: 10.1021/ac802579z |
[11] | Zhang X, Grimley A, Bertram R et al. (2010) Microfluidic system for generation of sinusoidal glucose waveforms for entrainment of Islets Langerhans. Anal Chem 82: 6704-6711. doi: 10.1021/ac101461x |
[12] | Zhang X, Dhumpa R, Roper MG et al. (2013) Maintaining stimulant waveforms in large-volume microfluidic cell chambers. Microfluid Nanofluid 15: 65-71. doi: 10.1007/s10404-012-1129-x |
[13] | Schafer D, Gibson EA, Amir W, et al. (2007) Three-dimensional chemical concentration maps in a microfluidic device using two-photon absorption fluorescence imaging. Opt Lett 32: 2568-2570. doi: 10.1364/OL.32.002568 |
[14] | Cooksey GA, Sip CG, Folch A (2009) A multi-purpose microfluidic perfusion system with combinatorial choice of inputs, mixtures, gradient patterns, and flow rates. Lab Chip 9: 417-426. doi: 10.1039/B806803H |
[15] | Elder AD, Mattews SM, Swartling J, et al. (2006) The application of frequency-domain Fluorescence Lifetime Imaging Microscopy as a quantitative analytical tool for microfluidic devices. Opt Express 14. |
[16] | Zeng Y, Jiang L, Zheng W, et al. (2011) Quantitative imaging of mixing dynamics in microfluidic droplets using two-photon fluorescence lifetime imaging. Opt Lett 36: 2236-2238. doi: 10.1364/OL.36.002236 |
[17] | Lakowitz JR (2006) Principles of Fluorescence Spectroscopy, 3rd ed., New York: Springer Science+Business Media, LLC. |
[18] | Magennis SW, Graham EM, Jones AC (2005) Quantitative spatial mapping of mixing in microfludic system. Angewandte Chemie International Edition 44: 6512-6516. doi: 10.1002/anie.200500558 |
[19] | Robinson T, Valluri P, Manning HB, et al. (2008) Three-dimensional molecular mapping in a microfluidic device using fluorescence lifetime imaging. Opt Lett 33: 1887-1889. doi: 10.1364/OL.33.001887 |
[20] | Hung PJ, Lee PJ, Sabounchi P, et al. (2005) Continuous perfusion microfluidic cell culture array for high-throughput cell-based assays. Biotechnol Bioeng 89: 1-8. doi: 10.1002/bit.20289 |