
Exponential aggregation for
We study emergent behaviors of the Lohe Hermitian sphere(LHS) model with a time-delay for a homogeneous and heterogeneous ensemble. The LHS model is a complex counterpart of the Lohe sphere(LS) aggregation model on the unit sphere in Euclidean space, and it describes the aggregation of particles on the unit Hermitian sphere in
Citation: Seung-Yeal Ha, Gyuyoung Hwang, Hansol Park. Emergent behaviors of Lohe Hermitian sphere particles under time-delayed interactions[J]. Networks and Heterogeneous Media, 2021, 16(3): 459-492. doi: 10.3934/nhm.2021013
[1] | Seung-Yeal Ha, Gyuyoung Hwang, Hansol Park . Emergent behaviors of Lohe Hermitian sphere particles under time-delayed interactions. Networks and Heterogeneous Media, 2021, 16(3): 459-492. doi: 10.3934/nhm.2021013 |
[2] | Young-Pil Choi, Cristina Pignotti . Emergent behavior of Cucker-Smale model with normalized weights and distributed time delays. Networks and Heterogeneous Media, 2019, 14(4): 789-804. doi: 10.3934/nhm.2019032 |
[3] | Tingting Zhu . Synchronization of the generalized Kuramoto model with time delay and frustration. Networks and Heterogeneous Media, 2023, 18(4): 1772-1798. doi: 10.3934/nhm.2023077 |
[4] | Jérôme Fehrenbach, Jacek Narski, Jiale Hua, Samuel Lemercier, Asja Jelić, Cécile Appert-Rolland, Stéphane Donikian, Julien Pettré, Pierre Degond . Time-delayed follow-the-leader model for pedestrians walking in line. Networks and Heterogeneous Media, 2015, 10(3): 579-608. doi: 10.3934/nhm.2015.10.579 |
[5] | Marina Dolfin, Mirosław Lachowicz . Modeling opinion dynamics: How the network enhances consensus. Networks and Heterogeneous Media, 2015, 10(4): 877-896. doi: 10.3934/nhm.2015.10.877 |
[6] | Michael Helmers, Barbara Niethammer, Xiaofeng Ren . Evolution in off-critical diblock copolymer melts. Networks and Heterogeneous Media, 2008, 3(3): 615-632. doi: 10.3934/nhm.2008.3.615 |
[7] | Maksym Berezhnyi, Evgen Khruslov . Non-standard dynamics of elastic composites. Networks and Heterogeneous Media, 2011, 6(1): 89-109. doi: 10.3934/nhm.2011.6.89 |
[8] | Hyeong-Ohk Bae, Seung Yeon Cho, Jane Yoo, Seok-Bae Yun . Effect of time delay on flocking dynamics. Networks and Heterogeneous Media, 2022, 17(5): 803-825. doi: 10.3934/nhm.2022027 |
[9] | Paolo Antonelli, Seung-Yeal Ha, Dohyun Kim, Pierangelo Marcati . The Wigner-Lohe model for quantum synchronization and its emergent dynamics. Networks and Heterogeneous Media, 2017, 12(3): 403-416. doi: 10.3934/nhm.2017018 |
[10] | Junyuan Lin, Timothy A. Lucas . A particle swarm optimization model of emergency airplane evacuations with emotion. Networks and Heterogeneous Media, 2015, 10(3): 631-646. doi: 10.3934/nhm.2015.10.631 |
We study emergent behaviors of the Lohe Hermitian sphere(LHS) model with a time-delay for a homogeneous and heterogeneous ensemble. The LHS model is a complex counterpart of the Lohe sphere(LS) aggregation model on the unit sphere in Euclidean space, and it describes the aggregation of particles on the unit Hermitian sphere in
Emergent dynamics of a many-body system is ubiquitous in classical and quantum systems, e.g., aggregation of bacteria [38, 39], flocking of birds [2], schooling of fish, synchronization of fireflies and neurons [7, 34, 41, 42] and hand clapping of people in a concert hall, etc. For surveys and books, we refer to [1, 2, 4, 16, 19, 35, 36, 40, 42]. In this paper, we continue studies begun in [8, 24] on the emergent dynamics of the LHS model. The LHS model corresponds to the complex counterpart of the Lohe sphere(LS) model which has been extensively studied in previous literature [11, 26, 32, 33, 37, 43]. The LHS model is the first-order aggregation model describing continuous-time dynamics of particle's position on the Hermitian unit sphere
Let
{˙zj=Ωjzj+κ0N∑k≠jajk(⟨zj,zj⟩zτk−⟨zτk,zj⟩zj)+κ1N∑k≠jajk(⟨zj,zτk⟩−⟨zτk,zj⟩)zj,t>0,zj(t)=φj(t)∈HSd−1,−τ≤t≤0,j∈N:={1,⋯,N}, | (1) |
where
⟨w,z⟩:=d∑α=1[ˉw]α[z]α,‖z‖:=√⟨z,z⟩,ˉw=(¯[w]1,⋯,¯[w]d). |
A global well-posedness of system (1) can be done by combining a local well-posedness from the standard Cauchy-Lipschitz theory in [25, 28] and a priori uniform bound in Lemma 2.1. In the absence of time-delay with
"Under what conditions on system parameters
This question has been already addressed for other low-rank aggregation models (rank-1: vectors or rank-2: matrices), to name a few, the Lohe sphere model [9, 10], the Lohe matrix model [18]. Throughout the paper, we set
Z:=(z1,⋯,zN),D(Z):=max1≤i,j≤N‖zi−zj‖. |
Next, we recall several induced concepts on the emergent dynamics of tensors [23, 24] in the following definition.
Definition 1.1. Let
1. Complete aggregation occurs asymptotically if the ensemble diameter
limt→∞D(Z(t))=0. |
2. Practical aggregation (with respect to time-delay) occurs asymptotically if the ensemble diameter
limτ→0+lim supt→∞D(Z(t))=0. |
3. Practical aggregation (with respect to time-delay and coupling strength
limκ0→∞limτ→0+lim supt→∞D(Z(t))=0. |
Then, it is easy to see that complete aggregation implies practical aggregation. In the absence of time-delay
maxi,j:=max1≤i,j≤N,mini,j:=min1≤i,j≤N,∑k≠j:=N∑k,j=1k≠j. |
The main results of this paper are threefold. First, we consider the following setting:
aik≡1,Ωj=0,∀i,k∈N. |
In this case, system (1) becomes
{˙zj=κ0N∑k≠j(⟨zj,zj⟩zτk−⟨zτk,zj⟩zj)+κ1N∑k≠j(⟨zj,zτk⟩−⟨zτk,zj⟩)zj,t>0,zj(t)=φj(t)∈HSd−1,−τ≤t≤0. | (2) |
When the coupling gain pair
˜κ:=κ02+κ1,|˜κ|≪1, |
system (2) can be rewritten as follows (see Section 3):
{˙zj=κ0N∑k≠j(⟨zj,zj⟩zτk−Re(⟨zτk,zj⟩)zj)+˜κN∑k≠j(⟨zj,zτk⟩−⟨zτk,zj⟩)zj,t>0,zj(t)=φj(t)∈HSd−1,−τ≤t≤0. | (3) |
Our first set of results is concerned with the complete aggregation of (3) (see Theorem 3.1 and Theorem 3.6). We assume that system parameters and initial data satisfy
κ0>0,|˜κ|≪κ0,τ≪1,N≥3,sup−τ≤t≤0D(Z(t))≪1. |
For the complete aggregation, we introduce a Lyapunov functional:
Eij(t):=‖zi(t)−zj(t)‖2+γ∫tt−τ‖zi(s)−zj(s)‖2ds, |
where
Eij(t)+β∫t0‖zi(s)−zj(s)‖2ds≤Eij(0),∀t>0, |
for some positive constant
limt→∞‖zi(t)−zj(t)‖=0. |
Now, our second set of result deals with the practical aggregation with respect to time-delay (Theorem 4.1). We assume that system parameters and initial data satisfy
aij=1,Ωj=0,2|κ1|<κ0,maxi,j(1−⟨z0i,z0j⟩)<1−2|κ1|κ0. |
Then, the practical aggregation (with respect to the size of time-delay) emerges:
limτ↘0lim supt→∞maxi,j(1−⟨zi(t),zj(t)⟩)=0. |
Our final set of result is concerned with the practical aggregation with respect to both time-delay and free flow matrix
N∑k=1|aik−ajk|N∑k=1(aik+ajk)<12andmaxi,j|1−⟨z0i,z0j⟩|<1−2N∑k=1|aik−ajk|N∑k=1(aik+ajk). | (4) |
Note that for any unit complex vectors
|1−⟨z0i,z0j⟩|≥12‖z0i−z0j‖2, |
Thus, relations (4) implies restriction on initial diameter and network structure:
D(Z0):=maxi,j∈N|z0j−z0i|≤√2−4N∑k=1|aik−ajk|N∑k=1(aik+ajk). | (5) |
For all-to-all network structure with
D(Z0)≤√2, |
which is true for any initial data. Then, the practical aggregation (with respect to time-delay and coupling strength
limκ0→∞limτ↘0lim supt→∞maxi,j(1−⟨zi(t),zj(t)⟩)=0. |
Note that although we imposed the initial condition on
The rest of paper is organized as follows. In Section 2, we present conservation laws for the LHS model with time-delay, its reduction to other aggregation models, and review previous results on the emergent dynamics for the LHS model without time-delay and LS model with a time-delay. In Section 3, we provide a sufficient framework for the complete aggregation when the coupling gain pair is close to that of SL coupling gain pair. In Section 4, we provide a sufficient framework leading to the practical aggregation under a general setting. Finally, Section 5 is devoted to a brief summary of main results and some open problems.
In this section, we discuss two conservation laws of the LHS model with time-delay and its reduction to other aggregation models, and review previous results on the emergent dynamics for the LHS model.
In this subsection, we study conservation laws associated with (1).
Lemma 2.1. (Conservation of modulus) Let
‖zj(t)‖=1,t≥0,j∈N. |
i.e., the Hermitian sphere
Proof. We use
ddt‖zj‖2=⟨˙zj,zj⟩+⟨zj,˙zj⟩=⟨Ωjzj+κ0N∑k≠jajk(⟨zj,zj⟩zτk−⟨zτk,zj⟩zj)+κ1N∑k≠jajk(⟨zj,zτk⟩−⟨zτk,zj⟩)zj,zj⟩+⟨zj,Ωjzj+κ0N∑k≠jajk(⟨zj,zj⟩zτk−⟨zτk,zj⟩zj)+κ1N∑k≠jajk(⟨zj,zτk⟩−⟨zτk,zj⟩)zj⟩=⟨Ωjzj,zj⟩+⟨zj,Ωjzj⟩+κ0N∑k≠jajk(¯⟨zj,zj⟩⟨zτk,zj⟩−¯⟨zτk,zj⟩⟨zj,zj⟩)+κ0N∑k≠jajk(⟨zj,zj⟩⟨zj,zτk⟩−⟨zτk,zj⟩⟨zj,zj⟩)+κ1N∑k≠jajk(¯⟨zj,zτk⟩⟨zj,zj⟩−¯⟨zτk,zj⟩⟨zj,zj⟩)+κ1N∑k≠jajk(⟨zj,zτk⟩⟨zj,zj⟩−⟨zτk,zj⟩⟨zj,zj⟩)=:6∑i=1I1i. | (6) |
Below, we estimate the terms
I11+I12=⟨Ωjzj,zj⟩+⟨zj,Ωjzj⟩=⟨Ωjzj,zj⟩+⟨Ω†jzj,zj⟩=⟨Ωjzj,zj⟩−⟨Ωjzj,zj⟩=0. |
I13+I14=0. |
I15+I16=0. |
Finally we combine all the estimates in Cases A, B, and C to obtain
ddt‖zj(t)‖2=0,∀t>0,j∈N. |
This yields
‖zj(t)‖=‖zj(0)‖=‖φj(0)‖=1. |
Remark 1. Note that the symmetry of
Lemma 2.2. (Propagation of real-valuedness) Suppose that
Ωj∈Rd×d,ΩTj=−Ωj,φj(t)∈Rd,‖φj(t)‖=1 |
for all
Im([zj(t)]α)=0,∀t≥0,α∈{1,⋯,d},j∈N. |
Proof. This follows from the standard uniqueness theory of time-delayed ordinary differential equations [25, 28]
In this subsection, we discuss the reductions of (1) to the Lohe sphere model and the Kuramoto model. Suppose that initial data set
φj(t)∈Rd,‖φj(t)‖=1, |
for all
zj(t)∈Sd−1⊂Rd. |
In this case, the coupling terms in the R.H.S. of (1) become
⟨zj,zj⟩zτk−⟨zτk,zj⟩zj=‖zj‖2zτk−⟨zτk,zj⟩zj,(⟨zj,zτk⟩−⟨zτk,zj⟩)zj=0. |
We set
xj(t):=zj(t),j∈N,t≥0. |
Then the real-valued state
{˙xj=Ωjxj+κ0N∑k≠j(‖xj‖2xτk−⟨xτk,xj⟩xj),xj(t)=φj(t)∈Sd−1⊂Rd,−τ≤t≤0, | (7) |
where
d=2,xj:=[cosθjsinθj],φj:=[cosαjsinαj],Ωj:=[0−νjνj0],κ0=κ. | (8) |
Again, we substitute the ansatz (8) into (6) to derive the Kuramoto model with time-delay [21, 22]:
{˙θj=νj+κN∑k≠jsin(θτk−θj),t>0,θj(t)=αj(t),−τ≤t≤0,j∈N. | (9) |
The emergent dynamics of (9) has been extensively studied in literature, for example, complete synchronization for the mean-field model [5], complete synchronization [12, 15, 29], critical coupling strength for complete synchronization [17]. In summary, one has the following diagram:
LHSmodelrealinitialdata→z0j∈Sd−1Lohespheremodeldimensionreduction→d=2Kuramotomodel. |
On the other hand, the emergent dynamics of Lohe type matrix models has also been investigated in literature, e.g., sufficient conditions for complete aggregations [6, 14], mean-field approach for quaternion's collective dynamics [13], generalized Lohe sphere model on Riemannian manifolds [20], a gradient flow approach for the Lohe matrix model [27], conserved quantities and non-abelian generalization of the Kuramoto model [30, 31, 32] etc.
In this subsection, we present two results on the emergent dynamics of the LHS model without a time-delay and the Lohe sphere model with time-delay which correspond to the special cases for (1).
First, we consider the LHS model with zero time-delay case with
{˙zj=Ωjzj+κ0NN∑k=1(⟨zj,zj⟩zk−⟨zk,zj⟩zj)+κ1NN∑k=1(⟨zj,zk⟩−⟨zk,zj⟩)zj,t>0,zj(0)=zinj∈HSd−1,j∈N. | (10) |
For emergent dynamics of (10), we introduce an order parameter as a modulus of
ρ:=‖zc‖,D(Z):=maxi,j‖zi−zj‖, | (11) |
where
zc:=1NN∑k=1zk. |
On the other hand, we consider (11) with a zero free flow:
{˙wj=κ0(wc⟨wj,wj⟩−wj⟨wc.wj⟩)+κ1(⟨wj,wc⟩−⟨wc,wj⟩)wj,t>0,wj(0)=zinj∈HSd−1,j∈N, | (12) |
where
Then the emergence of complete aggregation and solution splitting property of (10) can be summarized in the following proposition.
Proposition 1. [24] Suppose that coupling gains, free flows and initial data satisfy
N≥3,0<κ1<14κ0,ρin>N−2N,Ωj≡Ω,j=1,⋯,N, |
where
1. Complete aggregation emerges asymptotically:
limt→∞D(Z(t))=0. |
2. Solution splitting property holds:
zj=eΩtwj,j∈N, |
where
Proof. For a detailed proof, we refer to Theorem 4.1 of [24].
Second, we consider the Lohe sphere model on the unit sphere in
{˙xj=Ωxj+κN∑k≠j(‖xj‖2xτk−⟨xτk,xj⟩xj),t>0,j∈N,xj(t)=φj(t)∈Sd−1,−τ≤t≤0,j∈N, | (13) |
Proposition 2. [10] Suppose that the system parameters and initial data satisfy
N≥3,κ>0,τ<18(d‖Ω‖∞+2κ),‖φj(t)‖=1,j∈N,t∈[−τ,0],sup−τ≤t≤0D(φ(t))<18, |
where
limt→∞D(X(t))=0. |
Proof. For a proof, we refer to Theorem 3.1 of [10].
In this section, we provide an emergent dynamics of (1) under the following setting:
aik≡1,i,k∈NandΩ=0. |
Note that this case corresponds to the same free flow and complete network topology. Then system (1) becomes
{˙zj=κ0N∑k≠j(⟨zj,zj⟩zτk−⟨zτk,zj⟩zj)+κ1N∑k≠j(⟨zj,zτk⟩−⟨zτk,zj⟩)zj,zj(t)=φj(t)∈HSd−1,−τ≤t≤0. | (14) |
In the following two subsections, we study complete aggregation in which coupling gains satisfy the following relations:
κ1+κ02=0(Stuart−Landau(SL)couplinggainpair),0<|κ1+κ02|≪1(Close−to−SLcouplinggainpair). |
In Section 2.3 of [8], the authors reduced the vector version of the Stuart-Landau model to the LHS model with the special pair of coupling gains. From this process, Stuart-Landau(SL) coupling gain pair and close-to SL coupling gain pair were naturally obtained. For the convenience of the reader who wants to know how the SL coupling appears from the generalized Stuart-Landau model in
In this subsection, we consider the emergent behavior of (14) for the Stuart-Landau gain pair. In this case, the coupling term can be simplified as follows: on
κ0(⟨zj,zj⟩zτk−⟨zτk,zj⟩zj)+κ1(⟨zj,zτk⟩−⟨zτk,zj⟩)zj=κ0[zτk−⟨zτk,zj⟩zj−12(⟨zj,zτk⟩−⟨zτk,zj⟩)zj]=κ0[zτk−12(⟨zτk,zj⟩+⟨zj,zτk⟩)zj]=κ0(zτk−Re(⟨zτk,zj⟩)zj). | (15) |
Finally, we combine (14) and (15) to get
{˙zj=κ0N∑k≠j(zτk−Re(⟨zτk,zj⟩)zj),t>0,zj(t)=φj(t)∈Cd,−τ≤t≤0. | (16) |
Theorem 3.1. Suppose system parameters and initial data set
κ0>0,N≥3,j∈N,τ<116κ0,‖φj‖=1,D(φ(t))<18,t∈[−τ,0], |
and let
limt→∞D(Z(t))=0. |
Proof. We leave its proof in Section 3.1.2.
Remark 2. (1) The SL coupling gain pair case can be reduced to the Lohe sphere model with time-delay treated in [9, 10].
(2) Due to technical difficulties, we can not obtain analytical results for the exponential decay of the LHS model with
In the part, we provide four lemmas for the emergent dynamics of (16) following the strategy in [10].
Lemma 3.2. Let
ddt‖zi−zsj‖2≤2κ0Re⟨zτc−zτ+sc,zi−zsj⟩−κ0‖zi−zsj‖2(Re⟨zτc,zi⟩+Re⟨zτ+sc,zsj⟩)−2κ0N(Re⟨zi−zsj,zτi−zτ+sj⟩−‖zi−zsj‖2), |
for all
Proof. We set
zsj(t)=zj(t−s),j∈N. |
Then, it satisfies
˙zsj=κ0N∑k≠j(zτ+sk−Re(⟨zτ+sk,zsj⟩)zsj). | (17) |
It follows from
ddt(zi−zsj)=κ0N(∑k≠i(zτk−Re(⟨zτk,zi⟩)zi)−∑k≠j(zτ+sk−Re(⟨zτ+sk,zsj⟩)zsj))=κ0((zτc−Re(⟨zτc,zi⟩)zi)−(zτ+sc−Re(⟨zτ+sc,zsj⟩)zsj))−κ0N((zτi−Re(⟨zτi,zi⟩)zi)−(zτ+sj−Re(⟨zτ+sj,zsj⟩)zsj)). | (18) |
This yields
ddt‖zi−zsj‖2=2Re⟨zi−zsj,ddt(zi−zsj)⟩=2κ0Re⟨zi−zsj,zτc−Re(⟨zτc,zi⟩)zi⟩−2κ0Re⟨zi−zsj,zτ+sc−Re(⟨zτ+sc,zsj⟩)zsj⟩−2κ0NRe⟨zi−zsj,zτi−Re(⟨zτi,zi⟩)zi⟩+2κ0NRe⟨zi−zsj,zτ+sj−Re(⟨zτ+sj,zsj⟩)zsj⟩=2κ0Re⟨−zsj,zτc−Re(⟨zτc,zi⟩)zi⟩−2κ0Re⟨zi,zτ+sc−Re(⟨zτ+sc,zsj⟩)zsj⟩−2κ0NRe⟨−zsj,zτi−Re(⟨zτi,zi⟩)zi⟩+2κ0NRe⟨zi,zτ+sj−Re(⟨zτ+sj,zsj⟩)zsj⟩=2κ0(Re⟨zτc,zi⟩Re⟨zsj,zi⟩+Re⟨zτ+sc,zsj⟩Re⟨zi,zsj⟩−Re⟨zsj,zτc⟩−Re⟨zi,zτ+sc⟩)−2κ0N(Re⟨zτi,zi⟩Re⟨zsj,zi⟩+Re⟨zi,zsj⟩Re⟨zτ+sj,zsj⟩−Re⟨zsj,zτi⟩−Re⟨zi,zτ+sj⟩). | (19) |
On the other hand, we have
‖zi−zsj‖2=2(1−Re⟨zi,zsj⟩),i.e.,Re⟨zi,zsj⟩=1−12‖zi−zsj‖2. | (20) |
We combine (19) and (20) to obtain
ddt‖zi−zsj‖2=2κ0(Re⟨zτc,zi⟩+Re⟨zτ+sc,zsj⟩−Re⟨zsj,zτc⟩−Re⟨zi,zτ+sc⟩)−κ0‖zi−zsj‖2(Re⟨zτc,zi⟩+Re⟨zτ+sc,zsj⟩)−2κ0N(Re⟨zτi,zi⟩+Re⟨zτ+sj,zsj⟩−Re⟨zsj,zτi⟩−Re⟨zi,zτ+sj⟩)+κ0N‖zi−zsj‖2(Re⟨zτi,zi⟩+Re⟨zτ+sj,zsj⟩)=2κ0Re⟨zτc−zτ+sc,zi−zsj⟩−κ0‖zi−zsj‖2(Re⟨zτc,zi⟩+Re⟨zτ+sc,zsj⟩)−2κ0NRe⟨zi−zsj,zτi−zτ+sj⟩+κ0N‖zi−zsj‖2(Re⟨zτi,zi⟩+Re⟨zτ+sj,zsj⟩). | (21) |
Finally, relation (21) and
Lemma 3.3. Let
|‖zi(t)−zsj(t)‖2−Re⟨zui(t)−zu+sj(t),zi(t)−zsj(t)⟩|≤2uκ0supt−u<v<t(‖zi(v)−zsj(v)‖+‖zτc(v)−zτ+sc(v)‖)‖zi(t)−zsj(t)‖+2uκ0Nsupt−u<v<t(‖zi(v)−zsj(v)‖+‖zτi(v)−zτ+sj(v)‖)‖zi(t)−zsj(t)‖. |
Proof. Note that
|‖zi(t)−zsj(t)‖2−Re⟨zui(t)−zu+sj(t),zi(t)−zsj(t)⟩|=|Re(‖zi(t)−zsj(t)‖2−⟨zui(t)−zu+sj(t),zi(t)−zsj(t)⟩)|. |
We integrate (18) on the interval
|Re(‖zi(t)−zsj(t)‖2−⟨zui(t)−zu+sj(t),zi(t)−zsj(t)⟩)|≤|‖zi(t)−zsj(t)‖2−⟨zui(t)−zu+sj(t),zi(t)−zsj(t)⟩|≤2uκ0supt−u<v<t(‖zi(v)−zsj(v)‖+‖zτc(v)−zτ+sc(v)‖)‖zi(t)−zsj(t)‖+2uκ0Nsupt−u<v<t(‖zi(v)−zsj(v)‖+‖zτi(v)−zτ+sj(v)‖)‖zi(t)−zsj(t)‖. |
For an emergent dynamics, we introduce a modified ensemble diameter as follows:
D0,τ(t):=maxi,j‖zi(t)−zτj(t)‖. | (22) |
Lemma 3.4. Let
ddtD0,τ(t)≤κ0‖zτc−z2τc‖−κ0D0,τ(t)2(2−D0,τ(t)22−D0,τ(t−τ)22)+4κ20τ(N+1)N2(supt−2τ<v<tD0,τ(v)). |
Proof. In Lemma 3.3, we set
1−Re(⟨zi,zτc⟩)=Re(1−⟨zi,zτc⟩)=1NN∑k=1Re(1−⟨zi,zτk⟩)=1NN∑k=1‖zi−zτk‖22≤D0,τ(t)22. |
We set
Δτzj(t)=‖zj(t)−zτj(t)‖. |
In order to control the term
Lemma 3.5. Let
Δτzj(t)≤2κ0τ(N−1N). |
Proof. Note that
zj(t)−zτj(t)=zj(t)−zj(t−τ)=∫tt−τ˙zj(s)ds, |
This yields
‖∫tt−τ˙zj(s)ds‖=‖∫tt−τ(κ0N∑k≠j(zτk−Re(⟨zτk,zj⟩)zj))ds‖≤∫tt−τκ0N∑k≠j‖(zτk−Re(⟨zτk,zj⟩)zj)‖ds≤∫tt−τκ0N∑k≠j(‖zτk‖+|Re(⟨zτk,zj⟩)|⋅‖zj‖)ds≤∫tt−τκ0N∑k≠j2ds=2κ0τ(N−1N). |
Now we are ready to provide a proof of our first main result.
In this part, we present our first result on the complete aggregation by combining all the estimates in Lemma 3.2 - Lemma 3.5 in two steps. We will briefly sketch the proof, since in the next section, we will provide more general statement and its proof.
D0,τ(t)<12,t≥0. |
Proof. We first estimate
T:={t∈(2τ,∞):D0,τ(t)<12}, |
and proceed the proof using Lipschitz continuity of
Note that
ddtD0,τ(t)≤κ08−κ02D0,τ(t)(2−D0,τ(t)22−D0,τ(t−τ)22)+4κ20τ(N+1)N2supt−2τ<v<tD0,τ(v)<κ08−7κ08D0,τ(t)+κ018<κ04−7κ08D0,τ(t). |
This yields
D0,τ(t)≤max(D0,τ(0),κ047κ08)<12. |
limt→∞‖zi(t)−zj(t)‖=0. |
For this, we define a Lyapunov functional
Eij(t):=‖zi(t)−zj(t)‖2+γ∫tt−τ‖zi(s)−zj(s)‖2ds, |
where
ddtEij(t)=ddt‖zi(t)−zj(t)‖2+γ‖zi(t)−zj(t)‖2−γ‖zτi(t)−zτj(t)‖2≤−7κ04‖zi−zj‖2+2κ0N‖zi−zj‖⋅‖zτi−zτj‖+2κ0N‖zi−zj‖2+γ‖zi(t)−zj(t)‖2−γ‖zτi(t)−zτj(t)‖2. |
Here, for the computation of
By applying Young's inequality, we have
ddtEij(t)≤−7κ04‖zi−zj‖2+κ0N‖zi−zj‖2+κ0N‖zτi−zτj‖2+2κ0N‖zi−zj‖2+γ‖zi(t)−zj(t)‖2−γ‖zτi(t)−zτj(t)‖2. |
Now we set
ddtEij(t)≤[−7κ04+4κ0N]‖zi−zj‖2≤−5κ012‖zi−zj‖2≤0, |
since
5κ012∫∞0‖zi(s)−zj(s)‖2ds≤Eij(0). |
Using the boundedness of
In this subsection, we consider the situation in which the coupling gain pair is close to Stuart-Landau coupling gain pair:
˜κ:=κ02+κ1,|˜κ|≪1. |
Note that
˙zj=κ0N∑k≠j(⟨zj,zj⟩zτk−⟨zτk,zj⟩zj)+κ1N∑k≠j(⟨zj,zτk⟩−⟨zτk,zj⟩)zj=κ0N∑k≠j(⟨zj,zj⟩zτk−⟨zτk,zj⟩zj)+κ1N∑k≠j(⟨zj,zτk⟩−⟨zτk,zj⟩)zj−κ02N∑k≠j(⟨zj,zτk⟩−⟨zτk,zj⟩)zj+κ02N∑k≠j(⟨zj,zτk⟩−⟨zτk,zj⟩)zj=κ0N∑k≠j(zτk−Re(⟨zτk,zj⟩)zj)+˜κN∑k≠j(⟨zj,zτk⟩−⟨zτk,zj⟩)zj. | (23) |
We substitute
{˙zj=κ0N∑k≠j(⟨zj,zj⟩zτk−Re(⟨zτk,zj⟩)zj)+˜κN∑k≠j(⟨zj,zτk⟩−⟨zτk,zj⟩)zj,t>0,zj(t)=φj(t)∈HSd−1,−τ≤t≤0. | (24) |
By straightforward calculation, one has
ddt‖zi−zsj‖2≤⟨˙zi−˙zjs,zi−zsj⟩+⟨zi−zsj,˙zi−˙zjs⟩=2Re⟨˙zi−˙zjs,zi−zsj⟩=2κ0Re⟨zτc−zτ+sc,zi−zsj⟩−κ0‖zi−zsj‖2(Re⟨zτc,zi⟩+Re⟨zτ+sc,zsj⟩)−2κ0N(Re⟨zi−zsj,zτi−zτ+sj⟩−‖zi−zsj‖2(Re⟨zτi,zi⟩+Re⟨zτ+sj,zj⟩)2)+4˜κIm⟨zi,zsj⟩Im(⟨zτc,zi⟩−⟨zτ+sc,zsj⟩)+4˜κNIm⟨zi,zsj⟩Im(⟨zi,zτi⟩−⟨zsj,zτ+sj⟩)≤2κ0Re⟨zτc−zτ+sc,zi−zsj⟩−κ0‖zi−zsj‖2(Re⟨zτc,zi⟩+Re⟨zτ+sc,zsj⟩)−2κ0N(Re⟨zi−zsj,zτi−zτ+sj⟩−‖zi−zsj‖2)+4|˜κ|⋅‖zi−zsj‖(‖zτc−zτ+sc‖+‖zi−zsj‖)+4N|˜κ|⋅‖zi−zsj‖(‖zi−zsj‖+‖zτi−zτ+sj‖). | (25) |
For the second inequality (25), we use the triangle inequality,
‖z‖=‖w‖=1⟹|Im⟨z,w⟩|=|Im(⟨z,w⟩−1)|=|Im⟨z,w−z⟩|≤‖z−w‖, |
and similar arguments in the proof of Lemma 3.3 to derive
|‖zi(t)−zsj(t)‖2−Re⟨zui(t)−zu+sj(t),zi(t)−zsj(t)⟩|≤2uκ0supt−u<v<t(‖zi(v)−zsj(v)‖+‖zτc(v)−zτ+sc(v)‖)‖zi(t)−zsj(t)‖+2uκ0Nsupt−u<v<t(‖zi(v)−zsj(v)‖+‖zτi(v)−zτ+sj(v)‖)‖zi(t)−zsj(t)‖2u|˜κ|supt−u<v<t(2‖zi(v)−zsj(v)‖+‖zτc(v)−zτ+sc(v)‖)‖zi(t)−zsj(t)‖+2u|˜κ|Nsupt−u<v<t(2‖zi(v)−zsj(v)‖+‖zτi(v)−zτ+sj(v)‖)‖zi(t)−zsj(t)‖. | (26) |
Theorem 3.6. Suppose system parameters and initial data satisfy
κ0>0,|˜κ|<9256κ0,C1τ<18,N≥3,‖φj(t)‖=1,sup−τ≤t≤0D(Z(t))<18,Ωj≡0,j∈N, |
where
limt→∞‖zi(t)−zj(t)‖=0,i,j∈N. |
Proof. We leave its detailed proof in Section 3.2.2.
In this part, we provide several a priori estimates.
Lemma 3.7. Let
ddtD0,τ(t)≤κ0‖zτc−z2τc‖−κ02D0,τ(t)(2−D0,τ(t)22−D0,τ(t−τ)22)+2κ0τNsupt−2τ<v<tD0,τ(v)(2κ0(N+1N)+3|˜κ|(N+1N))+4|˜κ|N+1Nsupt−2τ<v<tD0,τ(v). | (27) |
Proof. We set
ddt‖zi−zτj‖2≤2κ0Re⟨zτc−z2τc,zi−zτj⟩−κ0‖zi−zτj‖2(Re⟨zτc,zi⟩+Re⟨z2τc,zτj⟩)−2κ0N(Re⟨zi−zτj,zτi−z2τj⟩−‖zi−zτj‖2)+4|˜κ|‖zi−zτj‖(‖zτc−z2τc‖+‖zi−zτj‖)+4N|˜κ|‖zi−zτj‖(‖zi−zτj‖+‖zτi−z2τj‖). |
In the inequality (26), we set
u=τands=τ |
to get
|‖zi(t)−zτj(t)‖2−Re⟨zτi(t)−z2τj(t),zi(t)−zτj(t)⟩|≤2τκ0supt−τ<v<t(‖zi(v)−zτj(v)‖+‖zτc(v)−z2τc(v)‖)‖zi(t)−zτj(t)‖+2τκ0Nsupt−τ<v<t(‖zi(v)−zτj(v)‖+‖zτi(v)−z2τj(v)‖)‖zi(t)−zτj(t)‖+2τ|˜κ|supt−τ<v<t(2‖zi(v)−zτj(v)‖+‖zτc(v)−z2τc(v)‖)‖zi(t)−zτj(t)‖+2τ|˜κ|Nsupt−τ<v<t(2‖zi(v)−zτj(v)‖+‖zτi(v)−z2τj(v)‖)‖zi(t)−zτj(t)‖. |
For a fixed
D0,τ(t)=‖zit−zτjt‖. |
Then, for
ddtD0,τ(t)2=ddt‖zit−zτjt‖2≤2κ0‖zτc−z2τc‖D0,τ(t)−κ0D0,τ(t)2(Re⟨zτc,zi⟩+Re⟨z2τc,zτj⟩)+2κ0τND0,τ(t)supt−2τ<v<tD0,τ(v)(4κ0+4κ0N+6|˜κ|+6|˜κ|N)+8|˜κ|D0,τ(t)supt−2τ<v<tD0,τ(t)+8|˜κ|ND0,τ(t)supt−2τ<v<tD0,τ(t). |
Hence, one has
ddtD0,τ(t)≤κ0‖zτc−z2τc‖−κ02D0,τ(t)(Re⟨zτc,zi⟩+Re⟨z2τc,zτj⟩)+κ0τNsupt−2τ<v<tD0,τ(v)(4κ0+4κ0N+6|˜κ|+6|˜κ|N)+4|˜κ|(N+1)Nsupt−2τ<v<tD0,τ(t)≤κ0‖zτc−z2τc‖−κ02D0,τ(t)(2−D0,τ(t)22−D0,τ(t−τ)22)+κ0τNsupt−2τ<v<tD0,τ(v)(4κ0+4κ0N+6|˜κ|+6|˜κ|N)+4|˜κ|supt−2τ<v<tD0,τ(v)+4|˜κ|Nsupt−2τ<v<tD0,τ(v)=κ0‖zτc−z2τc‖−κ02D0,τ(t)(2−D0,τ(t)22−D0,τ(t−τ)22)+2κ0τNsupt−2τ<v<tD0,τ(v)(N+1N)(2κ0+3|˜κ|)+4|˜κ|(N+1N)supt−2τ<v<tD0,τ(v). |
Lemma 3.8. Let
‖zi(t)−zτi(t)‖≤C1τ. |
Suppose system parameters and initial data satisfy
κ0>0,|˜κ|<9256κ0,C1τ<18,N≥3,‖φj(t)‖=1,sup−τ≤t≤0D(Z(t))<18,Ωj≡0,j∈N, |
and let
D0,τ(t)<12,t≥0. | (28) |
Proof of (28): We follow the same arguments as in [10]. For this, we divide the estimate into three time intervals:
0≤t≤τ,τ≤t≤2τandt≥2τ. |
‖zi(t)−zτj(t)‖≤‖zi(t)−zτi(t)‖+‖zτi(t)−zτj(t)‖≤C1τ+D(Z(t−τ))<14. |
‖zi(t)−zτj(t)‖≤‖zi(t)−zτi(t)‖+‖zτi(t)−zτj(t)‖≤C1τ+D(Z(t−τ)). |
However, since
‖zi(t)−zj(t)‖≤‖zi(t)−zτi(t)‖+‖zτi(t)−zj(t)‖≤C1τ+14<38, |
one has
D(Z(t−τ))<38. |
Therefore, we give
‖zi(t)−zτj(t)‖<12. |
ddtD0,τ(t)≤κ0‖zτc−z2τc‖−κ02D0,τ(t)(2−D0,τ(t)22−D0,τ(t−τ)22)+2κ0τNsupt−2τ<v<tD0,τ(v)(N+1N)(2κ0+3|˜κ|)+4|˜κ|(N+1N)supt−2τ<v<tD0,τ(v)≤κ08−κ02D0,τ(t)(2−D0,τ(t)22−D0,τ(t−τ)22)+3κ04Nsupt−2τ<v<tD0,τ(v)+4|˜κ|N+1Nsupt−2τ<v<tD0,τ(v). |
Here, we used
‖zτc−z2τc‖≤C1τ<18,(N+1N)(4κ0+6|˜κ|)<6(N+1)N(κ0+|˜κ|)≤3(N+1)N−1C1≤6C1 |
for
Next we claim:
D0,τ(t)<12,∀t≥2τ. |
For a proof, we define a set
T:={t∈(2τ,∞):D0,τ(t)<12}, |
and proceed the proof using Lipschitz continuity of
ddtD0,τ(t)≤κ08−κ02D0,τ(t)(2−D0,τ(t)22−D0,τ(t−τ)22)+3κ04Nsupt−2τ<v<tD0,τ(v)+supt−2τ<v<tD0,τ(v)(4|˜κ|+4|˜κ|N)<κ08−7κ08D0,τ(t)+κ08+83|˜κ|=(κ04+83|˜κ|)−7κ08D0,τ(t). |
Hence, it follows from
κ04+83|˜κ|7κ08<12,D0,τ(t)≤max{D0,τ(0),κ04+83|˜κ|7κ08}<12. |
In this way, we verified claim (28).
limt→∞‖zi(t)−zj(t)‖=0. | (29) |
The proof is similar to Theorem 3.1 of [10] with a slight difference. We present main steps that involve such differences. We put
ddt‖zi−zj‖2≤−κ0‖zi−zj‖2(Re⟨zτc,zi⟩+Re⟨zτc,zj⟩)−2κ0N(Re⟨zi−zj,zτi−zτj⟩−‖zi−zj‖2)+4|˜κ|⋅‖zi−zj‖2+4N|˜κ|⋅‖zi−zj‖(‖zi−zj‖+‖zτi−zτj‖). |
Next, we define a Lyapunov functional
Eij(t):=‖zi(t)−zj(t)‖2+γ∫tt−τ‖zi(s)−zj(s)‖2ds, |
where
ddtEij(t)=ddt‖zi(t)−zj(t)‖2+γ‖zi(t)−zj(t)‖2−γ‖zτi(t)−zτj(t)‖2≤−7κ04‖zi−zj‖2+2κ0N‖zi−zj‖⋅‖zτi−zτj‖+2κ0N‖zi−zj‖2+4|˜κ|⋅‖zi−zj‖2+4N|˜κ|⋅‖zi−zj‖(‖zi−zj‖+‖zτi−zτj‖)+γ‖zi(t)−zj(t)‖2−γ‖zτi(t)−zτj(t)‖2. |
By Young's inequality, we have
ddtEij(t)≤−7κ04‖zi−zj‖2+κ0N‖zi−zj‖2+κ0N‖zτi−zτj‖2+2κ0N‖zi−zj‖2+4|˜κ|‖zi−zj‖2+4|˜κ|N‖zi−zj‖2+2|˜κ|N(‖zi−zj‖2+‖zτi−zτj‖2)+γ‖zi(t)−zj(t)‖2−γ‖zτi(t)−zτj(t)‖2=(−74κ0+κ0N+2κ0N+4|˜κ|+4|˜κ|N+2|˜κ|N+γ)‖zi−zj‖2+(κ0N−γ+2|˜κ|N)‖zτi−zτj‖2. |
Now, we set
γ=κ0N+2|˜κ|N. |
Then, we have
ddtEij(t)≤(−74κ0+κ0N+2κ0N+4|˜κ|+4|˜κ|N+2|˜κ|N+γ)‖zi−zj‖2=(−74κ0+4κ0N+4|˜κ|+8|˜κ|N)‖zi−zj‖2. |
For
−74κ0+4κ0N+4|˜κ|+8|˜κ|N<0. |
Here we set
β=−(−74κ0+4κ0N+4|˜κ|+8|˜κ|N) |
to obtain
ddtEij(t)≤−β‖zi−zj‖2. |
This yields
Eij(t)−Eij(0)≤−β∫t0‖zi(s)−zj(s)‖2ds |
which is equivalent to
Eij(t)+β∫t0‖zi(s)−zj(s)‖2ds≤Eij(0). |
It follows from definition of
Eij≥0. |
Finally, we have
β∫t0‖zi(s)−zj(s)‖2ds≤Eij(0). |
By letting
β∫∞0‖zi(s)−zj(s)‖2ds≤Eij(0). |
It follows from the boundedness of
sup0≤t<∞|ddt‖zi(t)−zj(t)‖2|<∞. |
This means
In this section, we study the practical aggregation of the LHS model.
In this subsection, we set
aij≡1,Ωj≡0,i,j∈N. |
In this case, system (1) becomes
{˙zj=κ0N∑k≠j(⟨zj,zj⟩zτk−⟨zτk,zj⟩zj)+κ1N∑k≠j(⟨zj,zτk⟩−⟨zτk,zj⟩)zj,t>0,zj(t)=φj(t)∈Cd,−τ≤t≤0,j∈N. | (30) |
For handy notation, we set
Gij:=⟨zi,zj⟩,Gτij:=⟨zτi,zj⟩,Lij:=1−Gij,Lτij:=1−Gτij. | (31) |
Our third main result is concerned with the practical aggregation. Recall that
L(t)=maxi,j|1−⟨zi(t),zj(t)⟩|. |
Theorem 4.1. Suppose coupling gains and initial data satisfy
2|κ1|<κ0,L(0)<1−2|κ1|κ0, |
and let
limτ↘0lim supt→∞L(t)=0. |
Proof. We leave its proof in Section 4.1.2.
In this part, we provide several lemmas to be crucially used in the proof of Theorem 4.1.
Lemma 4.2. Let
ddtGij=κ0N∑k≠i(Gτkj−¯GτkiGij)+κ0N∑k≠j(¯Gτki−GτkjGij)+κ1N∑k≠i(Gτki−¯Gτki)Gij+κ1N∑k≠j(¯Gτkj−Gτkj)Gij. |
Proof. By direct calculation, one has
ddtGij=⟨˙zi,zj⟩+⟨zi,˙zj⟩=⟨κ0N∑k≠i(⟨zi,zi⟩zτk−⟨zτk,zi⟩zi)+κ1N∑k≠i(⟨zi,zτk⟩−⟨zτk,zi⟩)zi,zj⟩+⟨zi,κ0N∑k≠j(⟨zj,zj⟩zτk−⟨zτk,zj⟩zj)+κ1N∑k≠j(⟨zj,zτk⟩−⟨zτk,zj⟩)zj⟩=κ0N∑k≠i(⟨zτk,zj⟩−¯⟨zτk,zi⟩⟨zi,zj⟩)+κ1N∑k≠i(¯⟨zi,zτk⟩−¯⟨zτk,zi⟩)⟨zi,zj⟩+κ0N∑k≠j(⟨zi,zτk⟩−⟨zτk,zj⟩⟨zi,zj⟩)+κ1N∑k≠j(⟨zj,zτk⟩−⟨zτk,zj⟩)⟨zi,zj⟩=κ0N∑k≠i(Gτkj−¯GτkiGij)+κ0N∑k≠j(¯Gτki−GτkjGij)+κ1N∑k≠i(Gτki−¯Gτki)Gij+κ1N∑k≠j(¯Gτkj−Gτkj)Gij. |
Lemma 4.3. Let
‖Av‖≤‖A‖F⋅‖v‖, |
where
Proof. We set the componentwise form of
A:=[A]αβandv:=[v]γ, |
where
|[Av]α|=|d∑β=1[A]αβ[v]β|≤√d∑β=1[ˉA]αβ[A]αβ⋅√d∑β=1[ˉv]β[v]β, |
Thus, one has
‖Av‖2=d∑α=1|[Av]α|2≤(d∑α,β=1[ˉA]αβ[A]αβ)⋅(d∑β=1[ˉv]β[v]β)=‖A‖2F⋅‖v‖2, |
and this yields the desired result.
Lemma 4.4. Let
|Lij(t)−Lτij(t)|≤τC2, |
where the positive constant
C2:=2(N−1)N(κ0+|κ1|). |
Proof. By the Cauchy-Schwarz inequality, we have
|Lij(t)−Lτij(t)|=|⟨zi−zτi,zj⟩|≤‖zi−zτi‖⋅‖zj‖. |
Note that
‖zi−zτi‖≤τ(2N−1N(κ0+|κ1|)). |
Lemma 4.5. Let
ddt|Lij|2≤−2κ0NN∑k=1|Lij|2(Re(⟨zτk,zi+zj⟩)+4|κ1|⋅|Lij|⋅(|Lci|+|Lcj|+2C2τ)+|Lij|8C2τN(κ0+|κ1|)+|Lij|24κ0C2τN. |
Proof. We use (30) to get
ddtGij=κ0N∑k≠i(Gτkj−¯GτkiGij)+κ0N∑k≠j(¯Gτki−GτkjGij)+κ1N∑k≠i(GτkiGij−¯GτkiGij)+κ1N∑k≠j(¯GτkjGij−GτkjGij)=κ0NN∑k=1(Gτkj−¯GτkiGij+¯Gτki−GτkjGij)+κ1NN∑k=1(GτkiGij−¯GτkiGij+¯GτkjGij−GτkjGij)−κ0N(Gτij−¯GτiiGij+¯Gτji−GτjjGij)−κ1N(GτiiGij−¯GτiiGij+¯GτjjGij−GτjjGij)=κ0NN∑k=1(2−Lτkj−¯Lτki)Lij+2iκ1NN∑k=1(ImLτkj−ImLτki)(1−Lij)−κ0N(2Lij−Lτij−¯Lτji+Lτjj+¯Lτii−¯LτiiLij−LτjjLij)−2iκ1N(1−Lij)(ImLτjj−ImLτii) |
Thus, we have
ddt|Lij|2=ddt(LijˉLij)=˙Lij¯Lij+Lij˙¯Lij=−ddt⟨zi,zj⟩(1−⟨zj,zi⟩)+(1−⟨zi,zj⟩)(−ddt⟨zj,zi⟩)=−Lji(κ0NN∑k=1(2−Lτkj−¯Lτki)Lij+2iκ1NN∑k=1(ImLτkj−ImLτki)(1−Lij)−κ0N(2Lij−Lτij−¯Lτji+Lτjj+¯Lτii−¯LτiiLij−LτjjLij)−2iκ1N(1−Lij)(ImLτjj−ImLτii))−Lij(κ0NN∑k=1(2−Lτki−¯Lτkj)Lji+2iκ1NN∑k=1(ImLτki−ImLτkj)(1−Lji)−κ0N(2Lji−Lτji−¯Lτij+Lτii+¯Lτjj−¯LτjjLji−LτiiLji)−2iκ1N(1−Lji)(ImLτii−ImLτjj))=κ0NN∑k=1LijLji(Lτkj+¯Lτkj+Lτki+¯Lτki−4)+2iκ1NN∑k=1(Lij−Lji)(ImLτkj−ImLτki)+κ0N(4LijLji+(−Lτij−¯Lτji+Lτjj+¯Lτii)Lji+(−Lτji−¯Lτij+Lτii+¯Lτjj)Lij−(¯Lτii+Lτjj+¯Lτjj+Lτii)LijLji)+2iκ1N(Lij−Lji)(ImLτii−ImLτjj). |
Note that
LijLji=(1−⟨zi,zj⟩)(1−⟨zj,zi⟩)=|Lij|2and¯Lij=Lji. |
So we have
ddt|Lij|2=2κ0NN∑k=1|Lij|2(ReLτki+ReLτkj−2)+4κ1NN∑k=1ImLij(ImLτki−ImLτkj)+κ0N(4|Lij|2+2Re((−Lτji−¯Lτij+Lτii+¯Lτjj)Lij)−2(Re(Lτii+Lτjj)|Lij|2))−4κ1NImLijIm(Lτii−Lτjj). |
Note that the last two terms of the right hand side in above equation goes to zero as
‖zi−zj‖2=|2(1−Re(⟨zi,zj⟩)|≤2|Lij|, |
By Lemma 4.4, we have for any
|Lτii|≤τC2. |
Since
|4κ1NImLijIm(Lτii−Lτjj)|=4|κ1|N|Lij|Im(⟨zi,zτi⟩−⟨zj,zτj⟩)|=4|κ1|N|Lij|Im(⟨zi−zj,zτi⟩+⟨zj,zτi−zτj⟩)|≤4|κ1|N|Lij|(|Lτii|+|Lτjj|)≤8C2|κ1|τN|Lij|. |
A:=κ0N(4|Lij|2+2Re((−Lτji−¯Lτij+Lτii+¯Lτjj)Lij)−2(Re(Lτii+Lτjj)|Lij|2)=κ0N(4|Lij|2+2Re((−LτjiLij−¯LτijLij)⏟=:A1+2Re(LτiiLij+¯LτjjLij)−2(Re(Lτii+Lτjj)|Lij|2⏟=:A2). | (32) |
In the sequel, we estimate
A2≤2|LτiiLij|+2|¯LτjjLij|+2((|Lτii|+|Lτjj|)|Lij|2)≤2|Lij|(|Lτii|+|¯Lτjj|)+2|Lij|2(|Lτii|+|Lτjj|)≤4C2τ|Lij|+4C2τ|Lij|2. | (33) |
On the other hand, note that
|Lij|2−ReLτjiLij=Re|Lij|2−ReLτjiLij=Re((Lji−Lτji)Lij)≤|((Lji−Lτji)Lij)|=|Lji−Lτji||Lij|≤C2τ|Lij| |
|Lij|2−ReLij¯Lτij=Re(|Lij|2−Lij¯Lτij)=Re(LijLji−Lij¯Lτij)≤|Lij||Lji−¯Lτij|≤C2τ|Lij|. |
Thus, we have
A1=4|Lij|2+2Re((−LτjiLij−¯LτijLij)=2(|Lij|2+|Lij|2−ReLτjiLij−Re¯LτijLij)≤4C2τ|Lij|. | (34) |
In (32), we combine all the estimate (33) and (34) to find
A=κ0N(A1+A2)≤4κ0C2τN(2|Lij|+|Lij|2), |
and
κ0N(4|Lij|2+2Re((−Lτji−¯Lτij+Lτii+¯Lτjj)Lij)−2(Re(Lτii+Lτjj)|Lij|2))−4κ1NImLijIm(Lτii−Lτjj)≤|Lij|8C2|κ1|τ+8C2κ0τN+|Lij|24κ0C2τN. |
2κ0NN∑k=1|Lij|2(ReLτki+ReLτkj−2)+4κ1NN∑k=1ImLij(ImLτki−ImLτkj). |
By direct calculation, we have
2κ0NN∑k=1|Lij|2(ReLτki+ReLτkj−2)+4κ1NN∑k=1ImLij(ImLτki−ImLτkj)=2κ0NN∑k=1|1−⟨zi,zj⟩|2(Re(1−⟨zτk,zi⟩+1−⟨zτk,zj⟩−2)+4κ1NN∑k=1Im(1−⟨zi,zj⟩)(Im(1−⟨zτk,zi⟩−1+⟨zτk,zj⟩)=−2κ0NN∑k=1|1−⟨zi,zj⟩|2(Re(⟨zτk,zi+zj⟩)+4κ1NN∑k=1Im(⟨zi,zj⟩)(Im(⟨zτk,zi−zj⟩). |
Note that
4κ1NN∑k=1Im(⟨zi,zj⟩)(Im(⟨zτk,zi−zj⟩)=4κ1Im(⟨zi,zj⟩)(Im(⟨zτc,zi−zj⟩)≤4|κ1|⋅|Lij|⋅(|Lτci|+|Lτcj|)≤4|κ1|⋅|Lij|⋅(|Lci|+|Lcj|+2C2τ), |
and so
−2κ0NN∑k=1|1−⟨zi,zj⟩|2(Re(⟨zτk,zi+zj⟩)+4κ1NN∑k=1Im(⟨zi,zj⟩)(Im(⟨zτk,zi−zj⟩)≤−2κ0NN∑k=1|1−⟨zi,zj⟩|2(Re(⟨zτk,zi+zj⟩)+4|κ1|⋅|Lij|⋅(|Lci|+|Lcj|+2C2τ). |
ddt|Lij|2=2κ0NN∑k=1|Lij|2(ReLτki+ReLτkj−2)+4κ1NN∑k=1ImLij(ImLτki−ImLτkj)+κ0N(4|Lij|2+2Re((−Lτji−¯Lτij+Lτii+¯Lτjj)Lij)−2(Re(Lτii+Lτjj)|Lij|2)−4κ1NImLijIm(Lτii−Lτjj)≤−2κ0NN∑k=1|Lij|2(Re(⟨zτk,zi+zj⟩)+4|κ1|⋅|Lij|⋅(|Lci|+|Lcj|+2C2τ)+|Lij|8C2|κ1|τ+8C2κ0τN+|Lij|24κ0C2τN. |
We set
L(t)=maxi,j|Lij|. |
Then, for each time
L(t)=|1−⟨zit,zjt⟩|. | (35) |
Now we want to obtain the dynamics of
Lemma 4.6. Let
ddtL(t)≤2κ0L(t)2+(−2κ0+2C2κ0τ+4|κ1|+2C2κ0τN)L(t)+(4C2|κ1|τ+4C2τN(κ0+|κ1|)). |
Proof. It follows from Lemma 4.5 and the fact that
ddtL(t)2≤−2κ0L(t)2(Re(⟨zτc,zi+zj⟩)+4|κ1|⋅L(t)⋅(2L(t)+2C2τ)+L(t)8C2|κ1|τ+8C2κ0τN+L(t)24κ0C2τN=(−2κ0Re(⟨zτc,zi+zj⟩)+8|κ1|+4C2κ0τN)L(t)2+(8C2|κ1|τ+8C2|κ1|τ+8C2κ0τN)L(t). |
Note that
Re(⟨zτc,zi+zj⟩)=−Re(Lτci+Lτcj)+2. |
Since
ddtL(t)2≤(−2κ0Re(2−Lτci−Lτcj)+8|κ1|+4C2κ0τN)L(t)2+(8C2|κ1|τ+8C2|κ1|τ+8C2κ0τN)L(t) |
≤4κ0L(t)3+(−4κ0+4C2κ0τ+8|κ1|+4C2κ0τN)L(t)2+(8C2|κ1|τ+8C2|κ1|τ+8C2κ0τN)L(t). |
Hence we obtain the desired estimate:
ddtL(t)≤2κ0L(t)2+(−2κ0+2C2κ0τ+4|κ1|+2C2κ0τN)L(t)+(4C2|κ1|τ+4C2τN(κ0+|κ1|)). |
Consider a quadratic polynomial
f(x)=2κ0x2+(−2κ0+2C2κ0τ+4|κ1|+2C2κ0τN)x+(4C2|κ1|τ+4C2τN(κ0+|κ1|))=2κ0(x2−(1−2|κ1|κ0−C2τ(N+1N))x+C2τ(2|κ1|κ0(1+1N)+2N)). |
Now we study the practical aggregation as
Note that the discriminant
Dτ:==C22(N+1N)2τ2−2C2((1+2|κ1|κ0)N+1N+4N)τ+(1−2|κ1|κ0)2. |
Note that the constant term
D0>0, |
so
L(0)<x+(τ)⇒lim supt→∞L(t)≤x−(τ). |
We also obtain
limτ↘0x−(τ)=0,limτ↘0x+(τ)=1−2|κ1|κ0. |
In this subsection, we will study practical aggregation of the system (1). Here we set network topology as
{˙zj=Ωjzj+κ0N∑k≠jajk(⟨zj,zj⟩zτk−⟨zτk,zj⟩zj)+κ1N∑k≠jajk(⟨zj,zτk⟩−⟨zτk,zj⟩)zj,zj(t)=φj(t)∈Cd,−τ≤t≤0, | (36) |
Theorem 4.7. Let
L(0)<1−2N∑k=1|aik−ajk|N∑k=1(aik+ajk). |
Then, system (36) exhibits the practical aggregation:
limκ0→∞limτ↘0lim supt→∞L(t)=0. |
Proof. We leave its proof in Section 4.2.2
In this part, we provide several a priori estimates to be used in the proof of Theorem 4.7.
Lemma 4.8. Let
ddtGij=⟨(Ωi−Ωj)zi,zj⟩+κ0N∑k≠iaik(Gτkj−¯GτkiGij)+κ0N∑k≠jajk(¯Gτki−GτkjGij)+κ1N∑k≠iaik(Gτki−¯Gτki)Gij+κ1N∑k≠jajk(¯Gτkj−Gτkj)Gij. |
Proof. By definition of
ddtGij=⟨˙zi,zj⟩+⟨zi,˙zj⟩=⟨Ωizi+κ0N∑k≠iaik(zτk−⟨zτk,zi⟩zi)+κ1N∑k≠iaik(⟨zi,zτk⟩−⟨zτk,zi⟩)zi,zj⟩+⟨zi,Ωjzj+κ0N∑k≠jajk(zτk−⟨zτk,zj⟩zj)+κ1N∑k≠jajk(⟨zj,zτk⟩−⟨zτk,zj⟩)zj⟩=⟨Ωizi,zj⟩+κ0N∑k≠iaik(⟨zτk,zj⟩−¯⟨zτk,zi⟩⟨zi,zj⟩)+κ1N∑k≠iaik(¯⟨zi,zτk⟩−¯⟨zτk,zi⟩)⟨zi,zj⟩+⟨zi,Ωjzj⟩+κ0N∑k≠jajk(⟨zi,zτk⟩−⟨zτk,zj⟩⟨zi,zj⟩)+κ1N∑k≠jajk(⟨zj,zτk⟩−⟨zτk,zj⟩)⟨zi,zj⟩=⟨(Ωi−Ωj)zi,zj⟩+κ0N∑k≠iaik(⟨zτk,zj⟩−¯⟨zτk,zi⟩⟨zi,zj⟩)+κ1N∑k≠iaik(¯⟨zi,zτk⟩−¯⟨zτk,zi⟩)⟨zi,zj⟩+κ0N∑k≠jajk(⟨zi,zτk⟩−⟨zτk,zj⟩⟨zi,zj⟩)+κ1N∑k≠jajk(⟨zj,zτk⟩−⟨zτk,zj⟩)⟨zi,zj⟩=⟨(Ωi−Ωj)zi,zj⟩+κ0N∑k≠iaik(Gτkj−¯GτkiGij)+κ0N∑k≠jajk(¯Gτki−GτkjGij)+κ1N∑k≠iaik(Gτki−¯Gτki)Gij+κ1N∑k≠jajk(¯Gτkj−Gτkj)Gij. |
which yields the desired estimate.
Lemma 4.9. Let
|Lij(t)−Lτij(t)|≤τC3, |
where the positive constant
C3:=maxi‖Ωi‖∞+2‖A‖∞(N−1)(κ0+|κ1|)N. |
Proof. By the Cauchy-Schwarz inequality, we have
|Lij(t)−Lτij(t)|=|⟨zi−zτi,zj⟩|≤‖zi−zτi‖⋅‖zj‖=‖zi−zτi‖. |
On the other hand, we have
‖zi(t)−zτi(t)‖=‖∫tt−τ˙zi(s)ds‖≤∫tt−τ‖Ωizi+κ0N∑k≠iaik(⟨zi,zi⟩zτk−⟨zτk,zi⟩zi)+κ1N∑k≠iaik(⟨zi,zτk⟩−⟨zτk,zi⟩)zi‖ds≤τ(‖Ωi‖∞+∑k≠i2aik(κ0+|κ1|)N). |
Now, we set
‖A‖∞:=maxi,jaij. |
Then, we have
|Lij(t)−Lτij(t)|≤τ(maxi‖Ωi‖∞+2‖A‖∞(N−1)(κ0+|κ1|)N). |
We set
D(Ω):=maxi,j‖Ωi−Ωj‖∞. |
Then by direct calculation, we get the following lemma.
Lemma 4.10. Let
ddt|Lij|2≤2|Lij|D(Ω)+2κ0NN∑k=1|aik−ajk|(|Lki|+|Lkj|+2τC3)|Lij|+4C3|κ1|τN(aii+ajj)|Lij|−2κ0NN∑k=1(aik+ajk)|Lij|2+2κ0NN∑k=1(aik(|Lki|+τC3)+ajk(|Lkj|+τC3))|Lij|2+2C3κ0τN(aii+ajj)|Lij|+2C3κ0τN(aii+ajj)(|Lij|2+|Lij|)+4|κ1|NN∑k=1|Lij|(aik(|Lki|+τC3)+ajk(|Lkj|+τC3)). | (37) |
Proof. We use (36) to find
ddt⟨zi,zj⟩=⟨(Ωi−Ωj)zi,zj⟩+κ0N∑k≠iaik(Gτkj−¯GτkiGij)+κ0N∑k≠jajk(¯Gτki−GτkjGij)+κ1N∑k≠iaik(Gτki−¯Gτki)Gij+κ1N∑k≠jajk(¯Gτkj−Gτkj)Gij=⟨(Ωi−Ωj)zi,zj⟩+κ0NN∑k=1(aik(Gτkj−¯GτkiGij)+ajk(¯Gτki−GτkjGij))+κ1NN∑k=1(aik(GτkiGij−¯GτkiGij)+ajk(¯GτkjGij−GτkjGij))−κ0N(aii(Gτij−¯GτiiGij)+ajj(¯Gτji−GτjjGij)) |
−κ1N(aii(GτiiGij−¯GτiiGij)+ajj(¯GτjjGij−GτjjGij))=⟨(Ωi−Ωj)zi,zj⟩+κ0NN∑k=1[(ajk−aik)Lτkj+(aik−ajk)¯Lτki+(aik+ajk−aik¯Lτki−ajkLτkj)Lij]+2iκ1NN∑k=1(ajkImLτkj−aikImLτki)(1−Lij))−2iκ1N(ajjImLτjj−aiiImLτii)(1−Lij)−κ0N(ajjLτjj−aiiLτij+aii¯Lτii−ajj¯Lτji+(aii+ajj)Lij−aii¯LτiiLij−ajjLτjjLij). |
Thus, we have
ddt|Lij|2=ddt(Lij¯Lij)=2Re(˙Lij¯Lij)=−2Re(ddt⟨zi,zj⟩(1−⟨zj,zi⟩))=−2Re(Lji[⟨(Ωi−Ωj)zi,zj⟩+κ0NN∑k=1{(ajk−aik)Lτkj+(aik−ajk)¯Lτki+(aik+ajk−aik¯Lτki−ajkLτkj)Lij}+2iκ1NN∑k=1(ajkImLτkj−aikImLτki)(1−Lij))−2iκ1N(ajjImLτjj−aiiImLτii)(1−Lij)−κ0N(ajjLτjj−aiiLτij+aii¯Lτii−ajj¯Lτji+(aii+ajj)Lij−aii¯LτiiLij−ajjLτjjLij)])≤2|Lij|D(Ω)−2Reκ0NN∑k=1{(aik+ajk−aik¯Lτki−ajkLτkj)|Lij|2+(aik−ajk)(¯Lτki−Lτkj)Lji}+Re2κ0N((aii+ajj−aii¯Lτii−ajjLτjj)|Lij|2+(ajjLτjj−aiiLτij+aii¯Lτii−ajj¯Lτji)Lji)+4κ1NN∑k=1(Im(aikLτki−ajkLτkj)ImLij−4κ1NIm(aiiLτii−ajjLτjj)ImLij. |
In the sequel, we prove each term in the R.H.S. of the above relation.
|4κ1NIm(aiiLτii−ajjLτjj)ImLij|=4|κ1|N|Lij||Im(aiiLτii−ajjLτjj)|≤4|κ1|N|Lij|(aii|Lτii|+ajj|Lτjj|)≤4C3|κ1|τN(aii+ajj)|Lij|. |
A:=2κ0NRe((aii+ajj−aii¯Lτii−ajjLτjj)|Lij|2+(ajjLτjj−aiiLτij+aii¯Lτii−ajj¯Lτji)Lji). |
Then, one has
A≤2κ0NRe(aii(Lij−Lτij)Lji+ajj(Lij−¯Lτji)Lji)+2C3κ0τN(aii+ajj)(|Lij|2+|Lij|)≤2C3κ0τN(aii+ajj)|Lij|+2C3κ0τN(aii+ajj)(|Lij|2+|Lij|). |
B=−2Reκ0NN∑k=1{(aik+ajk−aik¯Lτki−ajkLτkj)|Lij|2+(aik−ajk)(¯Lτki−Lτkj)Lji}≤−2κ0NN∑k=1(aik+ajk)|Lij|2+2κ0NN∑k=1(aik(|Lki|+τC3)+ajk(|Lkj|+τC3))|Lij|2+2κ0NN∑k=1|aik−ajk|(|Lki|+|Lkj|+2τC3)|Lij|. |
4κ1NN∑k=1(Im(aikLτki−ajkLτkj)ImLij≤4|κ1|NN∑k=1|Lij|(aik(|Lki|+τC3)+ajk(|Lkj|+τC3)). |
ddt|Lij|2≤2|Lij|D(Ω)+2κ0NN∑k=1|aik−ajk|(|Lki|+|Lkj|+2τC3)|Lij|+4C3|κ1|τN(aii+ajj)|Lij|−2κ0NN∑k=1(aik+ajk)|Lij|2+2κ0NN∑k=1(aik(|Lki|+τC3)+ajk(|Lkj|+τC3))|Lij|2+2C3κ0τN(aii+ajj)|Lij|+2C3κ0τN(aii+ajj)(|Lij|2+|Lij|)+4|κ1|NN∑k=1|Lij|(aik(|Lki|+τC3)+ajk(|Lkj|+τC3)). |
Recall that
L(t):=maxi,jLij. |
Then, for each time
L(t)=|1−⟨zit,zjt⟩|. |
Then by Lemma 4.10, one has
ddtL(t)2≤2L(t)D(Ω)+4κ0NN∑k=1|aik−ajk|(L(t)+τC3)L(t)+4C3|κ1|τN(aii+ajj)L(t)−2κ0NN∑k=1(aik+ajk)L(t)2+2κ0NN∑k=1(aik(L(t)+τC3)+ajk(L(t)+τC3))L(t)2+2C3κ0τN(aii+ajj)L(t)+2C3κ0τN(aii+ajj)(L(t)2+L(t))+4|κ1|NN∑k=1L(t)(aik(L(t)+τC3)+ajk(L(t)+τC3))≤2κ0NN∑k=1(aik+ajk)L(t)3 |
+(−2κ0NN∑k=1(aik+ajk)+4κ0NN∑k=1|aik−ajk|+4C3κ0τNN∑k=1(aik+ajk)+2C3κ0τN(aii+ajj)+4|κ1|NN∑k=1(aik+ajk))L(t)2+(2D(Ω)+4C3κ0τNN∑k=1|aik−ajk|+(aii+ajj)4C3τN(κ0+|κ1|)+4C3|κ1|τNN∑k=1(aik+ajk))L(t). |
Then, we have
ddtL(t)≤κ0NN∑k=1(aik+ajk)L(t)2+(−κ0NN∑k=1(aik+ajk)+2κ0NN∑k=1|aik−ajk|+2C3κ0τNN∑k=1(aik+ajk)+C3κ0τN(aii+ajj)+2|κ1|NN∑k=1(aik+ajk))L(t)+(D(Ω)+2C3κ0τNN∑k=1|aik−ajk|+2C3τN(aii+ajj)(κ0+|κ1|)+2C3|κ1|τNN∑k=1(aik+ajk)). |
Now, we set
A1:=1NN∑k=1(aik+ajk),A2:=2NN∑k=1|aik−ajk|+2C3τNN∑k=1(aik+ajk)+C3τN(aii+ajj)+2|κ1|Nκ0N∑k=1(aik+ajk),A3:=D(Ω)κ0+2C3τNN∑k=1|aik−ajk|+2C3τN(aii+ajj)(1+|κ1|κ0)+2C3|κ1|τNκ0N∑k=1(aik+ajk). |
This yields
ddtL≤κ0(A1L2−(A1−A2)L+A3). |
If we impose following conditions:
τ↘0andafterthatκ0→∞, | (38) |
we obtain
limκ0→∞limτ↘0A2=2NN∑k=1|aik−ajk|,limκ0→∞limτ↘0A3=0. |
Since the roots of
A1x2−(A1−A2)x+A3=0 |
can be expressed as
x±=A1−A2±√(A1−A2)2−4A1A32A1. |
If we combine this expression, under the condition (38) we have
limκ0→∞limτ↘0x+=1−2N∑k=1|aik−ajk|N∑k=1(aik+ajk),limκ0→∞limτ↘0x−=0. |
By similar arguments with previous result, we have desired estimate.
In this paper, we have proposed several sufficient frameworks leading to complete aggregation and practical aggregation in terms of initial data, coupling gains and size of time-delay for the LHS model with time-delayed interactions. The LHS model is a complex counterpart of the LS model, and it describes the continuous-time dynamics of the Lohe Hermitian sphere particles on the unit Hermitian sphere. For the SL coupling gain pair with
We begin with the generalized Stuart-Landau model on
dzjdt=((1−‖zj‖2)Id+1+Ω)zj+κNN∑k=1(zk−zj), | (39) |
where
into (39) to see
(40) |
Then,
(41) |
where we used the fact that
If we take the real part of (41), one has
(42) |
where we used the relations:
Now, we combine (40) and (42) to get
(43) |
Similarly, we impose
If we put
Exponential aggregation for