Typesetting math: 100%

A singular limit problem for conservation laws related to the Kawahara-Korteweg-de Vries equation

  • Received: 01 April 2015 Revised: 01 October 2015
  • Primary: 35G25, 35L65; Secondary: 35L05.

  • We consider the Kawahara-Korteweg-de Vries equation, which contains nonlinear dispersive effects. We prove that as the dispersion parameter tends to zero, the solutions of the dispersive equation converge to discontinuous weak solutions of the Burgers equation. The proof relies on deriving suitable a priori estimates together with an application of the compensated compactness method in the Lp setting.

    Citation: Giuseppe Maria Coclite, Lorenzo di Ruvo. A singular limit problem for conservation laws related to the Kawahara-Korteweg-de Vries equation[J]. Networks and Heterogeneous Media, 2016, 11(2): 281-300. doi: 10.3934/nhm.2016.11.281

    Related Papers:

    [1] Giuseppe Maria Coclite, Lorenzo di Ruvo . A singular limit problem for conservation laws related to the Kawahara-Korteweg-de Vries equation. Networks and Heterogeneous Media, 2016, 11(2): 281-300. doi: 10.3934/nhm.2016.11.281
    [2] Giuseppe Maria Coclite, Lorenzo di Ruvo . H1 solutions for a modified Korteweg-de Vries-Burgers type equation. Networks and Heterogeneous Media, 2024, 19(2): 724-739. doi: 10.3934/nhm.2024032
    [3] Frederike Kissling, Christian Rohde . The computation of nonclassical shock waves with a heterogeneous multiscale method. Networks and Heterogeneous Media, 2010, 5(3): 661-674. doi: 10.3934/nhm.2010.5.661
    [4] John D. Towers . The Lax-Friedrichs scheme for interaction between the inviscid Burgers equation and multiple particles. Networks and Heterogeneous Media, 2020, 15(1): 143-169. doi: 10.3934/nhm.2020007
    [5] . Adimurthi, Siddhartha Mishra, G.D. Veerappa Gowda . Existence and stability of entropy solutions for a conservation law with discontinuous non-convex fluxes. Networks and Heterogeneous Media, 2007, 2(1): 127-157. doi: 10.3934/nhm.2007.2.127
    [6] Danielle Hilhorst, Hideki Murakawa . Singular limit analysis of a reaction-diffusion system with precipitation and dissolution in a porous medium. Networks and Heterogeneous Media, 2014, 9(4): 669-682. doi: 10.3934/nhm.2014.9.669
    [7] Antonin Chambolle, Gilles Thouroude . Homogenization of interfacial energies and construction of plane-like minimizers in periodic media through a cell problem. Networks and Heterogeneous Media, 2009, 4(1): 127-152. doi: 10.3934/nhm.2009.4.127
    [8] Markus Musch, Ulrik Skre Fjordholm, Nils Henrik Risebro . Well-posedness theory for nonlinear scalar conservation laws on networks. Networks and Heterogeneous Media, 2022, 17(1): 101-128. doi: 10.3934/nhm.2021025
    [9] Marie Henry . Singular limit of an activator-inhibitor type model. Networks and Heterogeneous Media, 2012, 7(4): 781-803. doi: 10.3934/nhm.2012.7.781
    [10] Raimund Bürger, Kenneth H. Karlsen, John D. Towers . On some difference schemes and entropy conditions for a class of multi-species kinematic flow models with discontinuous flux. Networks and Heterogeneous Media, 2010, 5(3): 461-485. doi: 10.3934/nhm.2010.5.461
  • We consider the Kawahara-Korteweg-de Vries equation, which contains nonlinear dispersive effects. We prove that as the dispersion parameter tends to zero, the solutions of the dispersive equation converge to discontinuous weak solutions of the Burgers equation. The proof relies on deriving suitable a priori estimates together with an application of the compensated compactness method in the Lp setting.


    [1] A. H. Badali, M. S. Hashemi and M. Ghahremani, Lie symmetry analysis for Kawahara-KdV equations, Computational Methods for Differential Equations, 1 (2013), 135-145.
    [2] D. J. Benney, Long waves on liquid films, J. Math. and Phys., 45 (1966), 150-155. doi: 10.1002/sapm1966451150
    [3] J. Boyd, Ostrovsky and Hunter's generic wave equation for weakly dispersive waves: matched asymptotic and pseudospectral study of the paraboloidal travelling waves (corner and near-corner waves), Euro. Jnl. of Appl. Math., 16 (2005), 65-81. doi: 10.1017/S0956792504005625
    [4] Bull. Sci. Math., to appear. doi: 10.1016/j.bulsci.2015.12.003
    [5] submitted.
    [6] submitted.
    [7] submitted.
    [8] ZAMM Z. Angew. Math. Mech., to appear.
    [9] G. M. Coclite and L. di Ruvo, Oleinik type estimate for the Ostrovsky-Hunter equation, J. Math. Anal. Appl., 423 (2015), 162-190. doi: 10.1016/j.jmaa.2014.09.033
    [10] G. M. Coclite and L. di Ruvo, Convergence of the Ostrovsky equation to the Ostrovsky-Hunter one, J. Differential Equations, 256 (2014), 3245-3277. doi: 10.1016/j.jde.2014.02.001
    [11] G. M. Coclite, L. di Ruvo, J. Ernest and S. Mishra, Convergence of vanishing capillarity approximations for scalar conservation laws with discontinuous fluxes, Netw. Heterog. Media, 8 (2013), 969-984. doi: 10.3934/nhm.2013.8.969
    [12] G. M. Coclite, L. di Ruvo and K. H. Karlsen, Some wellposedness results for the Ostrovsky-Hunter Equation, in Hyperbolic conservation laws and related analysis with applications, Springer Proc. Math. Stat., Springer, Heidelberg, 49 (2014), 143-159. doi: 10.1007/978-3-642-39007-4_7
    [13] G. M. Coclite and K. H. Karlsen, A singular limit problem for conservation laws related to the Camassa-Holm shallow water equation, Comm. Partial Differential Equations, 31 (2006), 1253-1272. doi: 10.1080/03605300600781600
    [14] A. Corli, C. Rohde and V. Schleper, Parabolic approximations of diffusive-dispersive equations, J. Math. Anal. Appl., 414 (2014), 773-798. doi: 10.1016/j.jmaa.2014.01.049
    [15] L. di Ruvo, Discontinuous Solutions for the Ostrovsky-Hunter Equation and Two Phase Flows, Ph.D. thesis, University of Bari, 2013.
    [16] T. Kawahara, Oscillatory solitary waves in dispersive media, J. Phys. Soc. Japan, 33 (1972), 260-264. doi: 10.1143/JPSJ.33.260
    [17] T. Kakutani and H. Ono, Weak non-linear hydromagnetic waves in a cold collision free plasma, J. Phys. Soc. Japan, 26 (1969), 1305-1318. doi: 10.1143/JPSJ.26.1305
    [18] C. M. Khalique and K. R. Adem, Exact solution of the (2+1)dimensional Zakharov-Kuznetsov modified Equal width equation using Lie group analysis, Computer modelling, 54 (2011), 184-189. doi: 10.1016/j.mcm.2011.01.049
    [19] P. G. LeFloch and R. Natalini, Conservation laws with vanishing nonlinear diffusion and dispersion, Nonlinear Anal. Ser. A: Theory Methods, 36 (1992), 212-230. doi: 10.1016/S0362-546X(98)00012-1
    [20] E. Mahdavi, Exp-function method for finding some exact solutions of Rosenau Kawahara and Rosenau Korteweg-de Vries equations, International Journal of Mathematical, Computational, Physical and Quantum Engineering, 8 (2014), 993-999.
    [21] L. Molinet and Y. Wang, Dispersive limit from the Kawahara to the KdV equation, J. Differential Equations, 255 (2013), 2196-2219. doi: 10.1016/j.jde.2013.06.012
    [22] F. Murat, L'injection du cône positif de H1 dans W1,q est compacte pour tout q<2, J. Math. Pures Appl. (9), 60 (1981), 309-322.
    [23] F. Natali, A Note on the Stability for Kawahara-KdV Type Equations, Appl. Math. Lett. 23 (2010), 591-596. doi: 10.1016/j.aml.2010.01.017
    [24] L. A. Ostrovsky, Nonlinear internal waves in a rotating ocean, Okeanologia, 18 (1978), 181-191.
    [25] M. E. Schonbek, Convergence of solutions to nonlinear dispersive equations, Comm. Partial Differential Equations, 7 (1982), 959-1000. doi: 10.1080/03605308208820242
  • This article has been cited by:

    1. Giuseppe Maria Coclite, Lorenzo di Ruvo, A Singular Limit Problem for the Rosenau–Korteweg-de Vries-Regularized Long Wave and Rosenau-regularized Long Wave Equations, 2016, 16, 1536-1365, 421, 10.1515/ans-2015-5034
    2. Giuseppe Maria Coclite, Lorenzo Di Ruvo, Global H4 solution for the fifth-order Kudryashov–Sinelshchikov–Olver equation, 2022, 19, 0219-8916, 227, 10.1142/S0219891622500060
    3. Giuseppe Maria Coclite, Lorenzo di Ruvo, On the Solutions for a Fifth Order Kudryashov–Sinelshchikov Type Equation, 2022, 14, 2073-8994, 1535, 10.3390/sym14081535
    4. Giuseppe Maria Coclite, Lorenzo di Ruvo, On the solutions for a Benney-Lin type equation, 2022, 27, 1531-3492, 6865, 10.3934/dcdsb.2022024
    5. Ali Başhan, An Efficient Approximation to Numerical Solutions for the Kawahara Equation Via Modified Cubic B-Spline Differential Quadrature Method, 2019, 16, 1660-5446, 10.1007/s00009-018-1291-9
    6. Giuseppe Maria Coclite, Lorenzo di Ruvo, On the classical solutions for a Rosenau–Korteweg-deVries–Kawahara type equation, 2022, 129, 18758576, 51, 10.3233/ASY-211721
    7. Giuseppe Maria Coclite, Lorenzo di Ruvo, On the convergence of the modified Rosenau and the modified Benjamin–Bona–Mahony equations, 2017, 74, 08981221, 899, 10.1016/j.camwa.2016.02.016
    8. Giuseppe Maria Coclite, Lorenzo di Ruvo, Well-posedness of the classical solutions for a Kawahara–Korteweg–de Vries-type equation, 2021, 21, 1424-3199, 625, 10.1007/s00028-020-00594-x
    9. Ben Wongsaijai, Phakdi Charoensawan, Tanadon Chaobankoh, Kanyuta Poochinapan, Advance in compact structure‐preserving manner to the Rosenau–Kawahara model of shallow‐water wave, 2021, 44, 0170-4214, 7048, 10.1002/mma.7240
    10. Giuseppe Maria Coclite, Lorenzo di Ruvo, Convergence of the Kuramoto–Sinelshchikov Equation to the Burgers One, 2016, 145, 0167-8019, 89, 10.1007/s10440-016-0049-2
    11. Giuseppe Maria Coclite, Lorenzo Di Ruvo, A note on the convergence of the solution of the high order Camassa-Holm equation to the entropy ones of a scalar conservation law, 2017, 37, 1553-5231, 1247, 10.3934/dcds.2017052
    12. Giuseppe Maria Coclite, Lorenzo di Ruvo, Wave propagation in dilatant granular materials, 2024, 18758576, 1, 10.3233/ASY-241920
  • Reader Comments
  • © 2016 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3651) PDF downloads(183) Cited by(12)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog