Weighted energy method and long wave short wave decomposition on the linearized compressible Navier-Stokes equation

  • Received: 01 October 2012 Revised: 01 November 2012
  • Primary: 35Q30, 35B40; Secondary: 35C15.

  • The purpose of this paper is to study asymptotic behaviors of the Green function of the linearized compressible Navier-Stokes equation. Liu, T.-P. and Zeng, Y. obtained a point-wise estimate for the Green function of the linearized compressible Navier-Stokes equation in [Comm. Pure Appl. Math. 47, 1053--1082 (1994)] and [Mem. Amer. Math. Soc. 125 (1997), no. 599]. In this paper, we propose a new methodology to investigate point-wise behavior of the Green function of the compressible Navier-Stokes equation. This methodology consists of complex analysis method and weighted energy estimate which was originally proposed by Liu, T.-P. and Yu, S.-H. in [Comm. Pure Appl. Math., 57, 1543--1608 (2004)] for the Boltzmann equation. We will apply this methodology to get a point-wise estimate of the Green function for large $t>0$.

    Citation: Sun-Ho Choi. Weighted energy method and long wave short wave decomposition on the linearized compressible Navier-Stokes equation[J]. Networks and Heterogeneous Media, 2013, 8(2): 465-479. doi: 10.3934/nhm.2013.8.465

    Related Papers:

    [1] Sun-Ho Choi . Weighted energy method and long wave short wave decomposition on the linearized compressible Navier-Stokes equation. Networks and Heterogeneous Media, 2013, 8(2): 465-479. doi: 10.3934/nhm.2013.8.465
    [2] Yaru Xie, Genqi Xu . The exponential decay rate of generic tree of 1-d wave equations with boundary feedback controls. Networks and Heterogeneous Media, 2016, 11(3): 527-543. doi: 10.3934/nhm.2016008
    [3] Carlos Conca, Luis Friz, Jaime H. Ortega . Direct integral decomposition for periodic function spaces and application to Bloch waves. Networks and Heterogeneous Media, 2008, 3(3): 555-566. doi: 10.3934/nhm.2008.3.555
    [4] Gung-Min Gie, Makram Hamouda, Roger Temam . Asymptotic analysis of the Navier-Stokes equations in a curved domain with a non-characteristic boundary. Networks and Heterogeneous Media, 2012, 7(4): 741-766. doi: 10.3934/nhm.2012.7.741
    [5] Linglong Du, Min Yang . Pointwise long time behavior for the mixed damped nonlinear wave equation in $ \mathbb{R}^n_+ $. Networks and Heterogeneous Media, 2021, 16(1): 49-67. doi: 10.3934/nhm.2020033
    [6] Dingwen Deng, Jingliang Chen . Explicit Richardson extrapolation methods and their analyses for solving two-dimensional nonlinear wave equation with delays. Networks and Heterogeneous Media, 2023, 18(1): 412-443. doi: 10.3934/nhm.2023017
    [7] Grégoire Allaire, Tuhin Ghosh, Muthusamy Vanninathan . Homogenization of stokes system using bloch waves. Networks and Heterogeneous Media, 2017, 12(4): 525-550. doi: 10.3934/nhm.2017022
    [8] Yinlin Ye, Hongtao Fan, Yajing Li, Ao Huang, Weiheng He . An artificial neural network approach for a class of time-fractional diffusion and diffusion-wave equations. Networks and Heterogeneous Media, 2023, 18(3): 1083-1104. doi: 10.3934/nhm.2023047
    [9] Linglong Du . Long time behavior for the visco-elastic damped wave equation in $\mathbb{R}^n_+$ and the boundary effect. Networks and Heterogeneous Media, 2018, 13(4): 549-565. doi: 10.3934/nhm.2018025
    [10] Yue Tai, Xiuli Wang, Weishi Yin, Pinchao Meng . Weak Galerkin method for the Navier-Stokes equation with nonlinear damping term. Networks and Heterogeneous Media, 2024, 19(2): 475-499. doi: 10.3934/nhm.2024021
  • The purpose of this paper is to study asymptotic behaviors of the Green function of the linearized compressible Navier-Stokes equation. Liu, T.-P. and Zeng, Y. obtained a point-wise estimate for the Green function of the linearized compressible Navier-Stokes equation in [Comm. Pure Appl. Math. 47, 1053--1082 (1994)] and [Mem. Amer. Math. Soc. 125 (1997), no. 599]. In this paper, we propose a new methodology to investigate point-wise behavior of the Green function of the compressible Navier-Stokes equation. This methodology consists of complex analysis method and weighted energy estimate which was originally proposed by Liu, T.-P. and Yu, S.-H. in [Comm. Pure Appl. Math., 57, 1543--1608 (2004)] for the Boltzmann equation. We will apply this methodology to get a point-wise estimate of the Green function for large $t>0$.


    [1] I.-L. Chern and T.-P. Liu, Convergence to diffusion waves of solutions for viscous conservation laws, Comm. Math. Phys., 110 (1987), 503-517. doi: 10.1007/BF01212425
    [2] I.-L. Chern and T.-P. Liu, Erratum: "Convergence to difision waves of solutions for viscous conservation laws," Comm. Math. Phys., 120 (1989), 525-527.
    [3] S. Kawashima, Large-time behaviour of solutions to hyperbolic-parabolic systems of conservation laws and applications, Proc. Roy. SOC. Edinburgh Sect. A, 106 (1987), 169-194. doi: 10.1017/S0308210500018308
    [4] T.-P. Liu, Nonlinear stability of shock waves for viscous conservation laws, Mem. American Mathematical Society, 56 (1985).
    [5] T.-P. Liu, Interactions of nonlinear hyperbolic waves, in "Nonlinear Analysis" (Taipei, 1989), World Sci. Publ., Teaneck, New Jersey, (1991), 171-183.
    [6] T.-P. Liu and S.-H. Yu, The Green's function and large-time behavior of solutions for the one-dimensional Boltzmann equation, Comm. Pure Appl. Math., 57 (2004), 1543-1608. doi: 10.1002/cpa.20011
    [7] T.-P. Liu and Y. Zeng, Large time behavior of solutions for general quasilinear hyperbolic-parabolic systems of conservation laws, Mem. Amer. Math. Soc., 125 (1997).
    [8] T. Umeda, S. Kawashima and Y. Shizuta, On the decay of solutions to the linearized equations of electromagnetofuid dynamics, Japan J. Appl. Math., 1 (1984), 435-457. doi: 10.1007/BF03167068
    [9] S. Zheng and W. Shen, Global solutions to the Cauchy problem of quasilinear hyperbolic parabolic coupled systems, Scientia Sinica Ser. A, 30 (1987), 1133-1149.
    [10] Y. Zeng, $L^1$ asymptotic behavior of compressible, isentropic, viscous 1-D flow, Comm. Pure Appl. Math., 47 (1994), 1053-1082. doi: 10.1002/cpa.3160470804
  • Reader Comments
  • © 2013 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3923) PDF downloads(60) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog