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Abstract. The purpose of this paper is to study asymptotic behaviors of the

Green function of the linearized compressible Navier-Stokes equation. Liu, T.-
P. and Zeng, Y. obtained a point-wise estimate for the Green function of the

linearized compressible Navier-Stokes equation in [Comm. Pure Appl. Math.

47, 1053–1082 (1994)] and [Mem. Amer. Math. Soc. 125 (1997), no. 599].
In this paper, we propose a new methodology to investigate point-wise behav-

ior of the Green function of the compressible Navier-Stokes equation. This

methodology consists of complex analysis method and weighted energy esti-
mate which was originally proposed by Liu, T.-P. and Yu, S.-H. in [Comm.

Pure Appl. Math., 57, 1543–1608 (2004)] for the Boltzmann equation. We

will apply this methodology to get a point-wise estimate of the Green function
for large t > 0.

1. Introduction. In this paper, we will study a new scheme to obtain the large-
time behavior of the Green function of the p-system which is the linearized com-
pressible Navier-Stokes equation. This scheme was originally proposed by Liu, T.-P.
and Yu, S.-H. for kinetic theory (See [6]). This method consists of complex analysis
and weighted energy estimate. We will obtain a point-wise estimate of the Green
function for the p-system by using this method.

The p-system is a linearized equation of the compressible Navier-Stokes equa-
tion. To derive the p-system, consider the one-dimensional, isentropic compressible
Navier-Stokes equation:

ρt + (ρu)x = 0, x ∈ R, t > 0,

(ρu)t + (ρu2 + p(ρ))x = (µux)x,

where ρ(x, t) is the density, u(x, t) is flow velocity and p(ρ) is pressure. For nota-

tional convenience, we normalize the viscosity µ and the sound speed
√
p′(ρ0) to

be unity, and take a constant state (ρ0, u0) = (1, 0). Then we can linearize the
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Navier-Stokes equations around a constant state (ρ0, u0) to obtain the linearized
system:

ρt + ux = 0, ut + ρx = uxx, (p-system) (1)

where x ∈ R and t ∈ R+∪{0} are spatial and time variable respectively. The Green
function G is a unique solution to the p-system (1) which is a matrix valued function
and initial data is matrix valued measure δ(x)I where I is the 2× 2 identity matrix
and δ(x) is the dirac delta measure.

The main result of this paper is as follows:

Theorem 1.1. Let G(x, t) be the 2× 2 matrix valued solution to the p-system (1)
with initial data δ(x)I here δ(x) is the dirac delta measure. For a sufficiently large
t > 0, we have a point-wise estimate for the Green function G(x, t) as follows:∣∣∣∣G(x, t)− e−tδ(x)

(
1 0
0 0

)∣∣∣∣ ≤ O(1)√
t
e−

(x−t)2

2ct +
O(1)√
t
e−

(x+t)2

2ct + Ce−(|x|+t)/c,

where C and c are positive constants.

The rest of this paper is organized as follows. In Section 2, we will survey
the previous results related to the large-time behavior of the Green function G
to the p-system (1) and provide an explicit formula by the Fourier transform and
an inverse Fourier transform formula. To investigate the large-time behavior of
the Green function G, we will have to calculate this inverse Fourier transform. In
Section 3 and 4, we get an estimate of this inverse Fourier transform. The key idea
to calculate the inverse Fourier transform is to subtract dirac delta distribution
from the Green function G. Then we can observe the exponential structure of the
remainder part. We will divide a time-spatial variable plane (x, t) into two parts
which are the finite Mach number region and the outside finite Mach number region.
On the finite Mach number region, we will consider the long-wave component and
the short-wave component respectively. For the long-wave component, we adopt
the complex analysis via analytic property of Ĝ(ξ, t) at ξ = 0, here Ĝ is the Fourier
transform of G. For the short-wave component, we will use a property of the
Fourier transform and substraction of low-order term in the Taylor series of Ĝ to
obtain the exponential structure. For the outside finite Mach number region, the
weighted energy estimate allows us to obtain a point-wise estimate with the Sobolev
embedding theorem. Finally, we will complete the proof of Theorem 1.1 in Section
5.

Notation. Throughout this paper, we will use simplified notation as follows:

||f ||Lp(R) :=

(∫
R
|f(x, t)|pdx

)1/p

, 1 ≤ p <∞,

||f ||L∞(R) := sup
R
|f(x, t)|,

||f ||H1(R) :=

(∫
R
|f(x, t)|2 +

∣∣∣ d
dx
f(x, t)

∣∣∣2dx)1/2

.
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2. Preliminary.

2.1. Review of previous results. In this section, we provide brief review of
previous results related to large-time behaviors of the Green function G for the
p-system (1).

In [3], the author presented an L2-decay rate of the Green function G for the
p-system (1). In [9], authors obtain large-time behavior of solutions to a 3 × 3
hyperbolic-parabolic system in L1-scheme. In [7] and [10], authors obtain a point-
wise estimate for the Green function G of the p-system (1). In these papers, to
obtain a point-wise estimate, they divide x-t plane into two parts which are the
finite Mach number region and the outside finite Mach number region. For the
finite Mach number region, they consider the Green function G∗ of a computative
equation as follows:

ρt + ux =
ρxx
2
, ut + ρx =

uxx
2

and they calculate an estimate of (G−G∗)∧ for the long-wave component by using

complex analysis because Ĝ has analytic property. For the short-wave component,
they calculate estimate of

G− e−tδ(x)

(
1 0
0 0

)
(2)

by using direct calculation. For the outside finite Mach number region, they calcu-
late an estimate of the above equation (2) by using the Cauchy theorem in complex
analysis. For other related results for the Green function G of the p-system (1), we
refer to [1, 2, 4, 5, 8].

2.2. The explicit formula for the Green function G. In this part, we will
obtain an explicit formula for the Green function G. It is the first step to observe
the asymptotic behavior of the Green functionG of the p-system (1) by using Fourier
analysis. Because this step is a well-known fact, we just provide the sketch. For a
detailed computation, see [7, 10].

Consider f(x) which is an L2(R)-function. Then the Fourier transform is defined
as follows:

Ff (ξ) = f̂(ξ) =
1

2π

∫ ∞
−∞

f(x)e−iξxdx.

For this Fourier operator F as the above, we have an inverse operator F−1 in
L2(R)-function space, i.e., the inverse Fourier transform defined by

F−1f (x) = f̌(x) =

∫ ∞
−∞

f(ξ)eiξxdξ.

Since the p-system (1) is a linear system, we can obtain a linear system for the

transformed Green function Ĝ of the p-system (1) by using the Fourier transform
as follows:

ρ̂t + iξû = 0, ût + iξρ̂ = −ξ2û. (3)

Initial data δ(x)I of the Green function G corresponds to a constant 2 × 2 matrix
I, i.e., identity matrix.

We can easily solve (3) by using linear algebra. The solution matrix is as follows:

Ĝ(ξ, t) = eλ+(ξ)tP+(ξ) + eλ−(ξ)tP−(ξ) (4)
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where

λ±(ξ) = −1

2
ξ(ξ ±

√
ξ2 − 4) (5)

and

P±(ξ) =

 1
2 ∓

ξ

2
√
ξ2−4

± i√
ξ2−4

± i√
ξ2−4

1
2 ±

ξ

2
√
ξ2−4

 .

The function Ĝ has differentiable property as follows. The following lemma will be
used in next section.

Lemma 2.1. ([7, 10]) Let Ĝ be a Fourier transformed function of the Green function

G and λ± is defined by equation (5). Then Ĝ(ξ, t) is an entire function of complex
variable ξ and for nonzero real number ξ, Re{λ±(ξ)t} has a negative value.

Proof. For the detailed proof of this lemma, see [7, 10].

By the inverse Fourier transform F−1, we have an explicit formula for the Green
function G as follows:

G(x, t) =

∫
R
Ĝ(ξ, t)eixξdξ, (6)

where Ĝ is the explicitly defined function in (4).
In the sequel, we will produce a point-wise estimate for the Green function G of

(6). For the estimate of G(x, t) in (6), we will apply two kinds of different methods,
i.e., complex analysis and weighed energy method. Let us divide (x, t) ∈ R×R+ into
the finite Mach number region {|x| < 2t} and the outside finite Mach number region
{|x| ≥ 2t}. For the finite Mach number region, we will use the long wave-short wave
decomposition to use complex analysis. For the outside finite Mach number region,
we will adapt the weighted energy estimate method to obtain a point-wise estimate
of the Green function G.

3. A point-wise estimate in the finite Mach number region. In this section,
we will focus on a point-wise estimate for the Green function G in the finite Mach
number region {|x| < 2t}. The strategy to obtain the estimate is to divide the
Fourier variable region into two parts which are the long-wave component {|ξ| < ε}
and the short-wave component {|ξ| ≥ ε}, i.e.,

G(x, t) =

∫
R
Ĝ(ξ, t)eixξdξ =

∫
|ξ|<ε

Ĝ(ξ, t)eixξdξ +

∫
|ξ|≥ε

Ĝ(ξ, t)eixξdξ.

For the long-wave component, we can use analytic property of Ĝ, i.e., Ĝ(ξ) is
analytic on |ξ| < ε, if ε > 0 is sufficiently small. Therefore, we will use complex
analysis, i.e., the Cauchy Theorem to calculate directly (see Section 3.1). For the
short-wave part, we will obtain the point-wise estimate of G by using a property of
the Fourier Transform (see Section 3.2).

3.1. The long-wave component. The crucial idea for the long-wave component
region is to use complex analysis. The following lemma plays a key role to obtain a
point-wise estimate for the Green function G of the p-system (1).

Lemma 3.1. Assume that (x, t) is on the finite Mach number region {|x| < 2t}.
For a sufficiently small ε > 0, we have the following estimate:∣∣∣∣ ∫

|ξ|<ε
Ĝ(ξ, t)eiξxdξ

∣∣∣∣ ≤ O(1)√
t
e−

(x−t)2

2ct +
O(1)√
t
e−

(x+t)2

2ct + Ce−t/c,
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where C and c are positive constants.

Proof. We now consider ξ as a complex variable. Since
√
ξ2 − 4 is analytic at ξ = 0,

the follows are also analytic at ξ = 0:

eiξx−
1
2 ξ(ξ+

√
ξ2−4)tP+(ξ) = O(1)eiξx−

1
2 ξ

2t−iξt+O(1)ξ3t

= O(1)e−
(x−t)2

2t − t
2 (ξ−i

x−t
t )2+O(1)ξ3t.

(7)

Finite Mach number assumption implies
∣∣∣x− t

t

∣∣∣ < 3. This inequality and the

analytic property of the above function (7) allow us to use the Cauchy theorem to
obtain the following change of integral path:∫

|ξ|<ε
eiξx−

1
2 ξ(ξ+

√
ξ2−4)tP+(ξ)dξ

=

{∫ ε+iα x−t
t

−ε+iα x−t
t

+

∫
c1

+

∫
c2

}
eiξx−

1
2 ξ(ξ+

√
ξ2−4)tP+(ξ)dξ

=: I1 + I2 + I3,

where c1 = {ξ = −ε+ iω : 0 < ω < α
x− t
t

for x > t, α
x− t
t

< ω < 0 for x < t}

and c2 = {ξ = ε + iω : 0 < ω < α
x− t
t

for x > t, α
x− t
t

< ω < 0 for x < t}.
Here α is sufficiently small that will be determined later.

We use the Taylor series expansion (7) to obtain the following for the I1 case.∫ ε+iα x−t
t

−ε+iα x−t
t

eiξx−
1
2 ξ(ξ+

√
ξ2−4)tP+(ξ)dξ

=

∫ ε+iα x−t
t

−ε+iα x−t
t

O(1)e−
(x−t)2

2t − t
2 (ξ−i

x−t
t )2+O(1)ξ3tdξ

=

∫ ε

−ε
O(1)e−

(x−t)2

2t − t
2 (ξ−i(1−α)

x−t
t )2+O(1)(ξ+iα x−t

t )3tdξ.

(8)

We have the following estimate by (8):∣∣∣∣ ∫ ε+iα x−t
t

−ε+iα x−t
t

eiξx−
1
2 ξ(ξ+

√
ξ2−4)tP+(ξ)dξ

∣∣∣∣
= O(1)e−

(x−t)2

2t

∣∣∣∣ ∫ ε

−ε
e−

t
2 (ξ−i(1−α)

x−t
t )2+O(1)(ξ+iα x−t

t )3tdξ

∣∣∣∣
≤ O(1)e−

(x−t)2

2t

∫ ε

−ε

∣∣∣∣e− t
2 (ξ−i(1−α)

x−t
t )2+O(1)(ξ+iα x−t

t )3t

∣∣∣∣dξ.
(9)

Since we will take α, ε > 0 sufficiently small and
∣∣∣x− t

t

∣∣∣ < 3, we can obtain the

following estimate for the right hand side of (9):

O(1)e−
(x−t)2

2t e
t
2 ((1−α)

x−t
t )2

∫ ε

−ε

∣∣∣∣e− t
2 ξ

2+O(1)(ξ+iα x−t
t )3t

∣∣∣∣dξ
≤ O(1)e−(1−(1−α)

2)
(x−t)2

2t

∫ ε

−ε
e−

t
2 ξ

2+O(1)(|ξ|+α |x−t|
t )3tdξ
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≤ O(1)e−(1−(1−α)
2)

(x−t)2

2t

∫ ε

−ε
e−

t
4 ξ

2+O(1)(|ξ|α2 |x−t|2
t +α3 |x−t|3

t2
)dξ

≤ O(1)e−(1−(1−α)
2)

(x−t)2

2t +O(1)(εα2 |x−t|2
t +3α3 |x−t|2

t )

∫ ε

−ε
e−

t
4 ξ

2

dξ

≤ O(1)√
t
e−

(x−t)2

2ct .

To estimate I2 and I3 term, we will use the Taylor series expansion (7) and smallness
assumption of α, ε > 0. Because I3 case is exactly same as in I2 case, we just show
for the I2 case.

We assume that x > t. x ≤ t case is exactly the same as x > t case. Therefore,
we will omit its proof. The above argument and x > t lead to the following:∫

c1

eiξx−
1
2 ξ(ξ+

√
ξ2−4)tP+(ξ)dξ

=

∫
c1

O(1)eiξx−
1
2 ξ

2t−iξt+O(1)ξ3tdξ

=

∫ α x−t
t

0

O(1)ei(−ε+iω)(x−t)−
1
2 (−ε+iω)

2t+O(1)(−ε+iω)3tdω.

Therefore, we can obtain the estimate for I2 term as follows:∣∣∣∣ ∫
c1

eiξx−
1
2 ξ(ξ+

√
ξ2−4)tP+(ξ)dξ

∣∣∣∣
=

∣∣∣∣ ∫ α x−t
t

0

O(1)ei(−ε+iω)(x−t)−
1
2 (−ε+iω)

2t+O(1)(−ε+iω)3tdω

∣∣∣∣
≤ C

∫ α x−t
t

0

∣∣ei(−ε+iω)(x−t)− 1
2 (−ε+iω)

2t+O(1)(−ε+iω)3t∣∣dω
≤ C

∫ α x−t
t

0

e−ω(x−t)−
1
2 (ε

2−ω2)t+O(1)(|ε|+|ω|)3tdω.

(10)

We can obtain an estimate for the right hand side of the inequality (10) by direct
calculation as follows:

C

∫ α x−t
t

0

e−
t
2 ε

2−ω(x−t)+ t
2ω

2+O(1)(|ε|+|ω|)3tdω ≤ C
∫ α x−t

t

0

e−
t
2 ε

2+O(1)(|ε|+|ω|)3tdω

≤ C
∫ α x−t

t

0

e−
t
4 ε

2

dω ≤ Cαx− t
t

e−
t
4 ε

2

≤ Ce−t/c.

As mentioned above, for x ≤ t case, we also obtain the same result by the same
method as in x > t case. In summary, we have the following:∣∣∣∣ ∫

|ξ|<ε
eiξx−

1
2 ξ(ξ+

√
ξ2−4)tP+(ξ)dξ

∣∣∣∣ ≤ O(1)√
t
e−

(x−t)2

2ct + Ce−t/c. (11)

We can also establish the same estimate for the P−(ξ) part by the same method as
in the P+(ξ) case and we can obtain the following result for P−(ξ):∣∣∣∣ ∫

|ξ|<ε
eiξx−

1
2 ξ(ξ−

√
ξ2−4)tP−(ξ)dξ

∣∣∣∣ ≤ O(1)√
t
e−

(x+t)2

2ct + Ce−t/c. (12)

Therefore, we prove this lemma with the above two estimates (11) and (12).
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In the rest of this section, we will establish a point-wise estimate of the Green
function G for the compact interval {ε < |ξ| < N} on the finite Mach number region
{|x| < 2t}.
Lemma 3.2. For a sufficiently small number ε > 0 and a large number N > 0, we
have ∣∣∣∣ ∫

ε<|ξ|<N
Ĝ(ξ, t)eixξdξ

∣∣∣∣ ≤ Ce−t/c,
where positive constants C and c depend on ε and N .

Proof. In Lemma 2.1, we observed that Re{− 1
2ξ(ξ±

√
ξ2 − 4)} < 0 and Ĝ is entire

function. Because {ε < |ξ| < N} is compact, by the above properties, we have the
following:

Re{− t
2
ξ(ξ ±

√
ξ2 − 4)} ≤ −t/C,

where C is a positive constant. By the above property, we can verify this lemma.

We are ready to obtain a point-wise estimate for the long-wave component. The
following is the main result of this section.

Proposition 1. On the finite Mach number region {|x| < 2t}, we can obtain a
point-wise estimate of G for the long-wave component as follows:∣∣∣∣ ∫

|ξ|<N
Ĝ(ξ, t)eixξdξ

∣∣∣∣ ≤ O(1)√
t
e−

(x−t)2

2ct +
O(1)√
t
e−

(x+t)2

2ct + Ce−t/c

where N > 0 is a sufficiently large number, C and c are positive constants depending
on N .

Proof. The proof is straightforward by Lemma 3.1 and 3.2.

To derive the similar result for derivatives of G, we will consider (iξ)kĜ(ξ, t)

in place of Ĝ(ξ, t). It suffices because of a property of the Fourier transform, i.e.,

(∂kxG)∧ = (iξ)kĜ. We summarize this in the following corollary, and its result will
be used in next section.

Corollary 1. For the finite Mach number region {|x| < 2t} and k ∈ N, we can
obtain the similar result to Proposition 1 as follows:∣∣∣∣ ∫

|ξ|<N
(iξ)kĜeixξdξ

∣∣∣∣ ≤ O(1)√
t
e−

(x−t)2

2ct +
O(1)√
t
e−

(x+t)2

2ct + Ce−t/c

where N > 0 is a sufficiently large number, C and c are positive constants.

Proof. Because of compactness of interval |ξ| < N , (iξ)k term does not have influ-
ence on the proof of Lemma 3.2 case. For the proof of Lemma 3.1 case, we also
easily verify that the method in Lemma 3.1 works well in (iξ)kĜ case.

3.2. The short-wave component. In this part, we will obtain an estimate of the
Green function G for the short-wave component. Since etĜ converges to matrix(

1 0
0 0

)
as |ξ| → ∞, it is natural to consider the following term:

etĜ−
(

1 0
0 0

)
−
(
ξ−1 order term of etĜ

)
.

We will obtain an H1(R)-bound for the above expression by using a property of the
Fourier transform (See Lemma 3.3). The following lemma is a key step in this part
to produce an H1(R)-bound for the Green function G.
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Lemma 3.3. Let f(x) be a function with a well-defined Fourier transformed func-

tion f̂(ξ) for a complex variable ξ = η + iα with |α| < ε and ε > 0 be any fixed

number, where if f̂(ξ) has weighed L2(R)-bound for the complex variable ξ as follow:∫
R
(|ξ|2 + 1)|f̂(ξ)|2dη ≤ K for all |α| < ε. (13)

Then f(x) satisfies |f(x)| ≤ Ce−|x|/c where C and c are positive constants depend
on K.

Proof. For notational convenience, we denote that F (x) = f(x)eαx. Since a Fourier

transformed function f̂ is well defineding on complex variable ξ = η + iα with
|α| < ε, we have∫

R
f(x)e−i(η+iα)xdx = f̂(η + iα) =

∫
R
f(x)eαxe−iηxdx =: F̂ (η).

The Plancherel theorem implies the following:∫
R
|f̂(η + iα)|2dη =

∫
R
|F̂ (η)|2dη =

∫
R
|F (x)|2dx :=

∫
R
|f(x)eαx|2dx.

Similarly, we can easily verify that∫
R
|iη + α|2|F̂ (η)|2dη =

∫
R
|iη + α|2|f̂(η + iα)|2dη =

∫
R
|f ′(x)eαx|2dx

and ∫
R
|f ′(x)eαx|2dx =

∫
R
|(f(x)eαx)′ − f(x)αeαx|2dx

≤
∫
R
|η|2|F̂ (η)|2dη + α

∫
R
|F (x)|2dx

These above two relations and assumption (13) imply the following inequality:∫
R
|f(x)eαx|2 + |f ′(x)eαx|2dx ≤ K,

for any α satisfying |α| < ε. Therefore, by the Sobolev embedding theorem, we have

|f(x)| < Ce−|x|/c for some positive constants C and c.

Remark 1. Lemma 3.3 allows us to control the O(1/ξ2)-term. As mentioned
before, we can control zero-order term by subtraction of Dirac delta distribution.

In the next lemma, we can calculate a bound for the 1/ξ order term, i.e.,

F−1
(χ{|ξ|>N}

ξ

)
(x).

Lemma 3.4. Let F−1 be the inverse Fourier transform operator, and χ be a char-
acteristic function. Then the following estimate holds for any non-zero real number
N : ∣∣∣∣F−1(χ{|ξ|>N}ξ

)
(x)

∣∣∣∣ ≤ C, (14)

where C > 0 is a constant.

Proof. Obviously, (14) holds for x = 0 case. Consider the x 6= 0 case. Because we
take any non-zero x, we have the following equality:∫ ∞

0

sinxξ

ξ
dξ =

π

2
.
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Therefore, we can obtain the following relation for any non-zero x:

F−1
(χ{|ξ|>N}

ξ

)
=

∫
|ξ|>N

eixξ
1

ξ
dξ = −2

∫ ∞
N

i sinxξ

ξ
dξ = 2i

∫ N

0

sinxξ

ξ
dξ − πi.

Therefore, the inverse Fourier transformed function is bounded, i.e.,∣∣∣∣F−1(χ{|ξ|>N}ξ

)
(x)

∣∣∣∣ ≤ C,
where C > 0 is a generic constant.

We will close this section with the following proposition and corollary, which de-
scribe a point-wise estimate of the Green function G for the short-wave component.

Proposition 2. For sufficiently large number N > 0, we have a point-wise estimate
of the Green function G for the short-wave component as follows:∣∣∣∣ ∫

|ξ|>N

(
Ĝ− e−t

(
1 0
0 0

))
eiξxdξ

∣∣∣∣ ≤ Ce−t + Ce−|x|/c−t

where C and c are positive constants and Ĝ is the Fourier transform of the Green
function G for the p-system (1).

Proof. For any complex variable ξ, we have

etĜ−
(

1 0
0 0

)
=

(
0 − i

ξ

− i
ξ 0

)
+O

(
1

ξ2

)
.

For any real number N > 0,
χ|ξ|>N

ξ2
satisfies the following relation:∫

R
(|ξ|2 + 1)

∣∣∣∣χ|ξ|>Nξ2

∣∣∣∣2dη =

∫
|ξ|>N

(|ξ|2 + 1)

∣∣∣∣ 1

ξ2

∣∣∣∣2dη < C. (15)

By Lemma 3.3 and the above equation (15), we obtain the following estimate:∣∣∣∣ ∫
|ξ|>N

(
etĜ−

(
1 0
0 0

)
+

(
0 i

ξ
i
ξ 0

))
eixξdξ

∣∣∣∣ ≤ Ce−|x|/c.
Therefore, by Lemma 3.4, we have that∣∣∣∣ ∫

|ξ|>N

(
etĜ−

(
1 0
0 0

))
eixξdξ

∣∣∣∣ ≤ ∣∣∣∣ ∫
|ξ|>N

(
0 i

ξ
i
ξ 0

)
eixξdξ

∣∣∣∣+ Ce−|x|/c

≤ C + Ce−|x|/c.

This yields the proof for Proposition 2.

We next use the higher order Taylor series expansion to obtain the same result
for the derivatives of G, i.e., (iη)kĜ(η, t).

Corollary 2. For dkG/dxk with k = 1, 2, we can obtain point-wise estimate for
the short-wave component as follows:∣∣∣∣ ∫

|ξ|>N

[
(iξ)kĜ− e−t(iξ)k

(
1 + 1−t

ξ2 − i
ξ + i(t−2)

ξ3

− i
ξ + i(t−2)

ξ3 − 1
ξ2

)]
eiξxdξ

∣∣∣∣
≤ Ce−t + Ce−|x|/c−t

for some constants C and c.
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Proof. We have series expansion of (iξ)kĜ:

et(iξ)kĜ = (iξ)k

(
1 + 1−t

ξ2 − i
ξ + i(t−2)

ξ3

− i
ξ + i(t−2)

ξ3 − 1
ξ2

)
+O

(
(iξ)k

ξ4

)
.

By the same method as in Proposition 2, we have∣∣∣∣ ∫
|ξ|>N

[
(iξ)kĜ− e−t(iξ)k

(
1 + 1−t

ξ − i
ξ + i(t−2)

ξ3

− i
ξ + i(t−2)

ξ3 − 1
ξ2

)]
eiξxdξ

∣∣∣∣ ≤ Ce−|x|/c
for some constants C and c. Therefore, by Lemma 3.4, we complete the proof of
this corollary.

4. Weighed energy estimate in the outside finite Mach number region.
In this section, we will obtain the weighted energy estimate for the Green function
G to the p-system (1) in the outside finite Mach number region {|x| ≥ 2t}. By
the weighted energy estimate, we will obtain a point-wise estimate of the Green
function G in the outside finite Mach number region.

Initial data of the Green function G is δ(x)I where I is the 2× 2 identity matrix
and δ(x) is Dirac delta measure and the Green function G is matrix valued. How-
ever, the weighted energy estimate is a scalar relation related to the vector (ρ, u).
Therefore, to obtain the weighted energy estimate for the Green function G, we
have to consider two cases which is divided into initial data (ρ0, u0) = (δ(x), 0)
case and initial data (ρ0, u0) = (0, δ(x)) case. We first deal with initial data
(ρ0, u0) = (δ(x), 0) case. For other case, i.e, (ρ0, u0) = (0, δ(x)), we can apply the
same method as in (ρ0, u0) = (δ(x), 0) case to obtain the same result. Therefore,
we will omit the second case for the conciseness of this paper.

To avoid singularity of the Green function G, we define ρ̄ = ρ − e−tδ(x) and
ū = u. Then (ρ̄, ū) satisfy the following two equations:

ρ̄t + ūx = e−tδ(x), ūt + ρ̄x −∆ū = −e−tδ′(x). (16)

The source terms in (16) have no effect to calculate the weighted energy because
we will consider integration on interval {|x| > 5

4 t}.
We multiply each side of the first and the second of (16) by eα(|x|−

3
2 t)ρ̄ and

eα(|x|−
3
2 t)ū respectively and integrate with respect to x on {|x| > 5

4 t} to obtain as
follows: ∫

|x|> 5
4 t

ρ̄tρ̄e
α(|x|− 3

2 t) + ūxρ̄e
α(|x|− 3

2 t)dx = 0,∫
|x|> 5

4 t

ūtūe
α(|x|− 3

2 t) + ρ̄xūe
α(|x|− 3

2 t) −∆ūūeα(|x|−
3
2 t)dx = 0.

(17)

We next add the above two equations of (17) to get the following equation:∫
|x|> 5

4 t

(ρ̄tρ̄+ ūtū)eα(|x|−
3
2 t)dx

+

∫
|x|> 5

4 t

(ūxρ̄+ ρ̄xū)eα(|x|−
3
2 t)dx−

∫
|x|> 5

4 t

∆ūūeα(|x|−
3
2 t)dx = 0.

(18)

We will modify three terms in (18) to get the weighted energy estimate by using
the integration-by-part. To get this energy estimate, we first define the weighted
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energy as follow:

Ew,0
ρ,u (t) =:

∫
|x|> 5

4 t

eα(|x|−
3
2 t)
ρ̄2 + ū2

2
dx.

For the first term in (18), we will use the integration-by-part with respect to
t > 0 to form the weighed energy defined as in the above:∫

|x|> 5
4 t

(ρ̄tρ̄+ ūtū)eα(|x|−
3
2 t)dx =

∫
|x|> 5

4 t

eα(|x|−
3
2 t)
( ρ̄2 + ū2

2

)
t
dx

=

∫
|x|> 5

4 t

d

dt

[
eα(|x|−

3
2 t)
ρ̄2 + ū2

2

]
dx−

∫
|x|> 5

4 t

(
eα(|x|−

3
2 t)
)
t

ρ̄2 + ū2

2
dx

=
5

4
eα(|x|−

3
2 t)
ρ̄2 + ū2

2

∣∣∣∣
x=− 5

4 t

+
5

4
eα(|x|−

3
2 t)
ρ̄2 + ū2

2

∣∣∣∣
x= 5

4 t

+
d

dt

∫
|x|> 5

4 t

eα(|x|−
3
2 t)
ρ̄2 + ū2

2
dx+

3α

2

∫
|x|> 5

4 t

eα(|x|−
3
2 t)
ρ̄2 + ū2

2
dx

=
d

dt
Ew,0
ρ,u (t) +

3α

2
Ew,0
ρ,u (t)

+
5

4
eα(|x|−

3
2 t)
ρ̄2 + ū2

2

∣∣∣∣
x=− 5

4 t

+
5

4
eα(|x|−

3
2 t)
ρ̄2 + ū2

2

∣∣∣∣
x= 5

4 t

.

For the second term of (18), we have the following equality:∫
|x|> 5

4 t

(ūxρ̄+ ρ̄xū)eα(|x|−
3
2 t)dx

=

∫
|x|> 5

4 t

eα(|x|−
3
2 t)(ūρ̄)xdx

=

∫
|x|> 5

4 t

d

dx

(
eα(|x|−

3
2 t)ūρ̄

)
dx−

∫
|x|> 5

4 t

(
eα(|x|−

3
2 t)
)
x
ūρ̄dx

= eα(|x|−
3
2 t)ūρ̄

∣∣∣x=− 5
4 t

x= 5
4 t
−
∫
|x|> 5

4 t

αx

|x|
eα(|x|−

3
2 t)ūρ̄dx.

For this term, we will make an estimate for the weighed energy estimate by using
the inequality of arithmetic and geometric means later.

For the last term, by using the integration-by-part, we can obtain

−
∫
|x|> 5

4 t

∆ūūeα(|x|−
3
2 t)dx

=

∫
|x|> 5

4 t

ū2xe
α(|x|− 3

2 t) + ūxū(eα(|x|−
3
2 t))x −

d

dx

(
ūxūe

α(|x|− 3
2 t)
)
dx

=

∫
|x|> 5

4 t

ū2xe
α(|x|− 3

2 t) + ūxū
αx

|x|
eα(|x|−

3
2 t)dx+ ūxūe

α(|x|− 3
2 t)
∣∣∣x= 5

4 t

x=− 5
4 t
.

(19)

In the above equation (19), we will apply the integration-by-part for the second
term ∫

|x|> 5
4 t

ūxū
αx

|x|
eα(|x|−

3
2 t)dx
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to obtain as follows:

∫
|x|> 5

4 t

ūxū
αx

|x|
eα(|x|−

3
2 t)dx

= ū2
αx

|x|
eα(|x|−

3
2 t)

∣∣∣∣x=− 5
4 t

x= 5
4 t

−
∫
|x|> 5

4 t

ūūx
αx

|x|
eα(|x|−

3
2 t)

+ū2
d

dx

(αx
|x|
eα(|x|−

3
2 t)
)
dx.

The above equation implies the following:

∫
|x|> 5

4 t

ūxū
αx

|x|
eα(|x|−

3
2 t)dx =

ū2

2

αx

|x|
eα(|x|−

3
2 t)

∣∣∣∣x=− 5
4 t

x= 5
4 t

− α2

2

∫
|x|> 5

4 t

ū2eα(|x|−
3
2 t)dx.

Therefore, we have the following equality for the third term:

−
∫
|x|> 5

4 t

∆ūūeα(|x|−
3
2 t)dx

= −
∫
|x|> 5

4 t

ūūx
αx

|x|
eα(|x|−

3
2 t)dx−

∫
|x|> 5

4 t

ū2
d

dx

(αx
|x|
eα(|x|−

3
2 t)
)
dx

+

∫
|x|> 5

4 t

ū2xe
α(|x|− 3

2 t)dx+ ū2
αx

|x|
eα(|x|−

3
2 t)

∣∣∣∣x=− 5
4 t

x= 5
4 t

+ ūxūe
α(|x|− 3

2 t)
∣∣∣x= 5

4 t

x=− 5
4 t
.

In summary, we can modify (18) into the following form by the above calculation.
For computational convenience, we now classify each term into two groups according
to the integration part(I part) and the boundary part(B part) as follows:

0 =
d

dt
Ew,0
ρ,u (t) +

3α

2
Ew,0
ρ,u (t)−

∫
|x|> 5

4 t

αx

|x|
eα(|x|−

3
2 t)ūρ̄

+

∫
|x|> 5

4 t

ū2xe
α(|x|− 3

2 t)dx− α2

2

∫
|x|> 5

4 t

ū2eα(|x|−
3
2 t)dx

 (I)

+
5

4
eα(|x|−

3
2 t)
ρ̄2 + ū2

2

∣∣∣∣
x=− 5

4 t

+
5

4
eα(|x|−

3
2 t)
ρ̄2 + ū2

2

∣∣∣∣
x= 5

4 t

+eα(|x|−
3
2 t)ūρ̄

∣∣∣x=− 5
4 t

x= 5
4 t

+
ū2

2

αx

|x|
eα(|x|−

3
2 t)

∣∣∣∣x=− 5
4 t

x= 5
4 t

−ūxūeα(|x|−
3
2 t)
∣∣∣x=− 5

4 t

x= 5
4 t

.


(B)

(20)
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For the integration part, we can easily obtain the following inequality by using the
inequality of arithmetic and geometric means as mentioned before:

−
∫
|x|> 5

4 t

αx

|x|
eα(|x|−

3
2 t)ūρ̄dx+

∫
|x|> 5

4 t

ū2xe
α(|x|− 3

2 t)dx

− α2

2

∫
|x|> 5

4 t

ū2eα(|x|−
3
2 t)dx

≥ −α
∫
|x|> 5

4 t

eα(|x|−
3
2 t)
ū2 + ρ̄2

2
dx− α2

∫
|x|> 5

4 t

eα(|x|−
3
2 t)
ū2 + ρ̄2

2
dx

= −(α+ α2)Ew,0
ρ,u (t)

(21)

and for the boundary part, we can obtain the following estimate by the same in-
equality and smallness assumption for a real number α > 0:

5

4
eα(|x|−

3
2 t)
ρ̄2 + ū2

2

∣∣∣∣
x=− 5

4 t

+
5

4
eα(|x|−

3
2 t)
ρ̄2 + ū2

2

∣∣∣∣
x= 5

4 t

+ eα(|x|−
3
2 t)ūρ̄

∣∣∣
x=− 5

4 t
− eα(|x|− 3

2 t)ūρ̄
∣∣∣
x= 5

4 t
+
ū2

2

αx

|x|
eα(|x|−

3
2 t)

∣∣∣∣x=− 5
4 t

x= 5
4 t

≥ eα(|x|−
3
2 t)

4

ρ̄2 + ū2

2

∣∣∣∣
x=− 5

4 t

+
eα(|x|−

3
2 t)

4

ρ̄2 + ū2

2

∣∣∣∣
x= 5

4 t

+
ū2

2

αx

|x|
eα(|x|−

3
2 t)

∣∣∣∣x=− 5
4 t

x= 5
4 t

≥ 0.

(22)

Finally, by the inequalities (21) and (22) and equality (20), we have the following
inequality:

d

dt
Ew,0
ρ,u (t) +

(α
2
− α2

)
Ew,0
ρ,u (t) ≤ −ūxūeα(|x|−

3
2 t)
∣∣∣
x=− 5

4 t
+ ūxūe

α(|x|− 3
2 t)
∣∣∣
x= 5

4 t
.

We can apply the same method as in the above for ρ̄x, ūx with higher order energy:

Ew,1
ρ,u (t) =:

∫
|x|> 5

4 t

eα(|x|−
3
2 t)
ρ̄2x + ū2x

2
dx

and we can easily obtain the following inequality for higher order energy:

d

dt
Ew,1
ρ,u (t) +

(α
2
− α2

)
Ew,1
ρ,u (t) ≤ −ūxxūxeα(|x|−

3
2 t)
∣∣∣
x=− 5

4 t
+ ūxxūxe

α(|x|− 3
2 t)
∣∣∣
x= 5

4 t
.

As mentioned above, we can apply the same weighted energy method for initial data
(ρ0, u0) = (0, δ(x)) case. Therefore, we can obtain the weighted energy estimate for
the Green function G of the p-system (1) in the outside finite Mach number region.

5. The proof of Theorem 1.1. We choose a number α > 0 sufficiently small such
that α/2− α2 > 0. By the Corollary 1 and 2, smallness of α > 0 and the weighted
energy estimate for Ew,0

ρ,u and Ew,1
ρ,u in previous section, we can obtain the following

two inequalities:

d

dt

∫
|x|> 5

4 t

eα(|x|−
3
2 t)
ρ̄2 + ū2

2
dx ≤ C√

t
e−

1
4 t
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and

d

dt

∫
|x|> 5

4 t

eα(|x|−
3
2 t)
ρ̄2x + ū2x

2
dx ≤ C

t
e−

1
4 t,

where C > 0 is a constant. The above two inequalities mean that∣∣∣∣∣∣eα(|x|− 3
2 t)
ρ̄2 + ū2

2

∣∣∣∣∣∣
W 1,1(|x|> 5

4 t)
≤ K,

for all sufficiently large time t > 0. This implies the following by the Sobolev
embedding theorem: ∣∣∣∣∣∣eα(|x|− 3

2 t)
ρ̄2 + ū2

2

∣∣∣∣∣∣
L∞(|x|> 5

4 t)
≤ K. (23)

Since inequality (23) also holds on subset {|x| > 2t}, we have the following:

eα(|x|−
3
2 t)
ρ̄2 + ū2

2
≤ K on {|x| > 2t}, (24)

for all large time t > 0.
We have the following relation for x, t:

|x| − 3

2
t >

1

8
|x|+ 7

8
|x| − 3

2
t >

1

8
|x|+ 7

4
t− 3

2
t >

1

8
|x|+ 1

8
t, (25)

because we assume that (x, t) is on the outside finite Mach number region {|x| > 2t}.
The estimate (24) and (25) imply that

ρ̄2 + ū2

2
≤ Ce−(|x|+t)/c on {|x| > 2t},

for all large time t > 0. Therefore, we obtain a point-wise estimate for the Green
function G on the outside finite Mach number region {|x| > 2t}. The following
proposition is the summary of the above argument.

Proposition 3. Let t > 0 be large sufficiently. Then we can obtain a point-wise
estimate for the Green function G(x, t) on the outside finite Mach number region
{|x| > 2t} as the following:

|G(x, t)| ≤ Ce−(|x|+t)/c

where C and c are positive constants.

The proof of Theorem 1.1. We are ready to prove the main theorem of this paper.
We will integrate results in previous sections to produce a point-wise estimate of
the Green function G. For the finite Mach number region {|x| < 2t}, we have the
following estimate by Proposition 1 and 2:∣∣∣∣G(x, t)− e−tδ(x)

(
1 0
0 0

)∣∣∣∣ =

∣∣∣∣ ∫
R

(
Ĝ− e−t

(
1 0
0 0

))
eiξxdξ

∣∣∣∣
≤ Ce−t + Ce−|x|/c−t +

O(1)√
t
e−

(x−t)2

2ct +
O(1)√
t
e−

(x+t)2

2ct

≤ Ce−
|x|+t

c +
O(1)√
t
e−

(x−t)2

2ct +
O(1)√
t
e−

(x+t)2

2ct ,

(26)

where C and c are positive constants. For the outside finite Mach number region
{|x| > 2t}, we have the following by Proposition 3:

|G(x, t)| ≤ Ce−
|x|+t

c , (27)



ASYMPTOTIC BEHAVIOR OF GREEN FUNCTION 479

where C and c are positive constants. (26) and (27) lead to the proof of Theorem
1.1.

6. Conclusion. We studied a new methodology to investigate a large-time behav-
ior of the Green function G of the linearized compressible Navier-Stokes equation,
i.e., p-system (1). We established an explicit formula (4) for the Green function G
by using the Fourier transform and an inverse Fourier transform formula. To calcu-
late this inverse Fourier transformed formula, we subtract dirac delta distribution
from the Green function G and we divided a time-spatial variable plane (x, t) ∈ R2

into the finite Mach number region and the outside finite Mach number region. On
the finite Mach number region, we apply the long wave-short wave analysis. For the
long-wave component, we apply the Cauchy theorem to chage the path of integral
and then we calculate it directly. For the short-wave component, we use the prop-
erty of the Fourier transform, i.e., Lemma 3.3. For the outside finite Mach number
region, we adapt the weighted energy estimate to obtain the estimate of the Green
function G of p-system (1).
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