On the passage from atomistic systems to nonlinear elasticity theory for general multi-body potentials with p-growth

  • Received: 01 November 2012
  • 49J45, 74B20, 74Qxx.

  • We derive continuum limits of atomistic models in the realm of nonlinear elasticity theory rigorously as the interatomic distances tend to zero. In particular we obtain an integral functional acting on the deformation gradient in the continuum theory which depends on the underlying atomistic interaction potentials and the lattice geometry. The interaction potentials to which our theory applies are general finite range models on multilattices which in particular can also account for multi-pole interactions and bond-angle dependent contributions. Furthermore, we discuss the applicability of the Cauchy-Born rule. Our class of limiting energy densities consists of general quasiconvex functions and the class of linearized limiting energies consistent with the Cauchy-Born rule consists of general quadratic forms not restricted by the Cauchy relations.

    Citation: Julian Braun, Bernd Schmidt. On the passage from atomistic systems to nonlinear elasticity theory for general multi-body potentials with p-growth[J]. Networks and Heterogeneous Media, 2013, 8(4): 879-912. doi: 10.3934/nhm.2013.8.879

    Related Papers:

    [1] Julian Braun, Bernd Schmidt . On the passage from atomistic systems to nonlinear elasticity theory for general multi-body potentials with p-growth. Networks and Heterogeneous Media, 2013, 8(4): 879-912. doi: 10.3934/nhm.2013.8.879
    [2] Andrea Braides, Margherita Solci, Enrico Vitali . A derivation of linear elastic energies from pair-interaction atomistic systems. Networks and Heterogeneous Media, 2007, 2(3): 551-567. doi: 10.3934/nhm.2007.2.551
    [3] Mathias Schäffner, Anja Schlömerkemper . On Lennard-Jones systems with finite range interactions and their asymptotic analysis. Networks and Heterogeneous Media, 2018, 13(1): 95-118. doi: 10.3934/nhm.2018005
    [4] Bernd Schmidt . On the derivation of linear elasticity from atomistic models. Networks and Heterogeneous Media, 2009, 4(4): 789-812. doi: 10.3934/nhm.2009.4.789
    [5] Xavier Blanc, Claude Le Bris, Pierre-Louis Lions . From the Newton equation to the wave equation in some simple cases. Networks and Heterogeneous Media, 2012, 7(1): 1-41. doi: 10.3934/nhm.2012.7.1
    [6] Phoebus Rosakis . Continuum surface energy from a lattice model. Networks and Heterogeneous Media, 2014, 9(3): 453-476. doi: 10.3934/nhm.2014.9.453
    [7] Jose Manuel Torres Espino, Emilio Barchiesi . Computational study of a homogenized nonlinear generalization of Timoshenko beam proposed by Turco et al.. Networks and Heterogeneous Media, 2024, 19(3): 1133-1155. doi: 10.3934/nhm.2024050
    [8] Manuel Friedrich, Bernd Schmidt . On a discrete-to-continuum convergence result for a two dimensional brittle material in the small displacement regime. Networks and Heterogeneous Media, 2015, 10(2): 321-342. doi: 10.3934/nhm.2015.10.321
    [9] Marco Cicalese, Antonio DeSimone, Caterina Ida Zeppieri . Discrete-to-continuum limits for strain-alignment-coupled systems: Magnetostrictive solids, ferroelectric crystals and nematic elastomers. Networks and Heterogeneous Media, 2009, 4(4): 667-708. doi: 10.3934/nhm.2009.4.667
    [10] Victor A. Eremeyev . Anti-plane interfacial waves in a square lattice. Networks and Heterogeneous Media, 2025, 20(1): 52-64. doi: 10.3934/nhm.2025004
  • We derive continuum limits of atomistic models in the realm of nonlinear elasticity theory rigorously as the interatomic distances tend to zero. In particular we obtain an integral functional acting on the deformation gradient in the continuum theory which depends on the underlying atomistic interaction potentials and the lattice geometry. The interaction potentials to which our theory applies are general finite range models on multilattices which in particular can also account for multi-pole interactions and bond-angle dependent contributions. Furthermore, we discuss the applicability of the Cauchy-Born rule. Our class of limiting energy densities consists of general quasiconvex functions and the class of linearized limiting energies consistent with the Cauchy-Born rule consists of general quadratic forms not restricted by the Cauchy relations.


    [1] R. Alicandro and M. Cicalese, A general integral representation result for continuum limits of discrete energies with superlinear growth, SIAM J. Math. Anal., 36 (2004), 1-37. doi: 10.1137/S0036141003426471
    [2] R. Alicandro, M. Cicalese and A. Gloria, Integral representation results for energies defined on stochastic lattices and application to nonlinear elasticity, Arch. Rational Mech. Anal., 200 (2011), 881-943. doi: 10.1007/s00205-010-0378-7
    [3] R. Alicandro, M. Focardi and M. S. Gelli, Finite-difference approximation of energies in fracture mechanics, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 29 (2000), 671-709.
    [4] X. Blanc, C. L. and P.-L. Lions, From molecular models to continuum mechanics, Arch. Rational Mech. Anal., 164 (2002), 341-381. doi: 10.1007/s00205-002-0218-5
    [5] X. Blanc, C. L. and P.-L. Lions, Atomistic to continuum limits for computational materials science, Math. Model. Numer. Anal., 41 (2007), 391-426. doi: 10.1051/m2an:2007018
    [6] A. Braides, Homogenization of some almost periodic coercive functional, Rend. Accad. Naz. Sci. XL Mem. Mat., 9 (1985), 313-321.
    [7] A. Braides and A. Defranceschi, Homogenization of Multiple Integrals, Oxford University Press, New York, 1998.
    [8] S. Conti, G. Dolzmann, B. Kirchheim and S. Müller, Sufficient conditions for the validity of the Cauchy-Born rule close to $SO(n)$, J. Eur. Math. Soc. (JEMS), 8 (2006), 515-539. doi: 10.4171/JEMS/65
    [9] B. Dacorogna, Direct Methods in the Calculus of Variation, $2^{nd}$ edition, Springer, New York, 2008.
    [10] G. Dal Maso, An Introduction to $\Gamma$-Convergence, Birkhäuser, Boston, 1993. doi: 10.1007/978-1-4612-0327-8
    [11] I. Fonseca and G. Leoni, Modern Methods in the Calculus of Variations: $L^p$-Spaces, Springer, New York, 2007.
    [12] G. Friesecke and F. Theil, Validity and failure of the Cauchy-Born hypothesis in a two-dimensional mass-spring lattice, J. Nonlinear Sci., 12 (2002), 445-478. doi: 10.1007/s00332-002-0495-z
    [13] S. Haussühl, Die Abweichungen von den Cauchy-Relationen, Phys. kondens. Materie, 6 (1967), 181-192.
    [14] N. Meunier, O. Pantz and A. Raoult, Elastic limit of square lattices with three-point interactions, Math. Models Methods Appl. Sci., 22 (2012), 21pp. doi: 10.1142/S0218202512500327
    [15] S. Müller, Homogenization of nonconvex integral functionals and cellular elastic materials, Arch. Rational Mech. Anal., 99 (1987), 189-212. doi: 10.1007/BF00284506
    [16] B. Schmidt, On the derivation of linear elasticity from atomistic models, Networks and Heterogeneous Media, 4 (2009), 789-812. doi: 10.3934/nhm.2009.4.789
    [17] B. Schmidt, On the passage from atomic to continuum theory for thin films, Arch. Rational Mech. Anal., 190 (2008), 1-55. doi: 10.1007/s00205-008-0138-0
  • This article has been cited by:

    1. Barbora Benešová, Martin Kružík, Weak Lower Semicontinuity of Integral Functionals and Applications, 2017, 59, 0036-1445, 703, 10.1137/16M1060947
    2. Hervé Le Dret, Annie Raoult, Hexagonal lattices with three-point interactions, 2017, 108, 00217824, 613, 10.1016/j.matpur.2017.05.008
    3. Manuel Friedrich, Leonard Kreutz, Konstantinos Zemas, From atomistic systems to linearized continuum models for elastic materials with voids, 2023, 36, 0951-7715, 679, 10.1088/1361-6544/aca5de
    4. Annika Bach, Andrea Braides, Marco Cicalese, Discrete-to-Continuum Limits of Multibody Systems with Bulk and Surface Long-Range Interactions, 2020, 52, 0036-1410, 3600, 10.1137/19M1289212
    5. Julian Braun, Bernd Schmidt, Existence and convergence of solutions of the boundary value problem in atomistic and continuum nonlinear elasticity theory, 2016, 55, 0944-2669, 10.1007/s00526-016-1048-x
    6. Peter Gladbach, Heiner Olbermann, Approximation of the Willmore energy by a discrete geometry model, 2023, 16, 1864-8258, 403, 10.1515/acv-2020-0094
    7. Georgy Kitavtsev, Stephan Luckhaus, Angkana Rüland, Surface energies arising in microscopic modeling of martensitic transformations, 2015, 25, 0218-2025, 647, 10.1142/S0218202515500153
    8. Stefan Neukamm, Mathias Schäffner, Anja Schlömerkemper, Stochastic Homogenization of Nonconvex Discrete Energies with Degenerate Growth, 2017, 49, 0036-1410, 1761, 10.1137/16M1097705
    9. Marco Cicalese, Antoine Gloria, Matthias Ruf, From Statistical Polymer Physics to Nonlinear Elasticity, 2020, 236, 0003-9527, 1127, 10.1007/s00205-019-01487-1
    10. Julian Braun, Bernd Schmidt, An atomistic derivation of von-Kármán plate theory, 2022, 17, 1556-1801, 613, 10.3934/nhm.2022019
    11. Bernd Schmidt, Jiří Zeman, A Bending-Torsion Theory for Thin and Ultrathin Rods as a Γ-Limit of Atomistic Models, 2023, 21, 1540-3459, 1717, 10.1137/22M1517640
    12. Bernd Schmidt, Jiří Zeman, A continuum model for brittle nanowires derived from an atomistic description by Γ
    -convergence, 2023, 62, 0944-2669, 10.1007/s00526-023-02562-y
  • Reader Comments
  • © 2013 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3658) PDF downloads(65) Cited by(12)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog