Citation: Julian Braun, Bernd Schmidt. On the passage from atomistic systems to nonlinear elasticity theory for general multi-body potentials with p-growth[J]. Networks and Heterogeneous Media, 2013, 8(4): 879-912. doi: 10.3934/nhm.2013.8.879
[1] | Julian Braun, Bernd Schmidt . On the passage from atomistic systems to nonlinear elasticity theory for general multi-body potentials with p-growth. Networks and Heterogeneous Media, 2013, 8(4): 879-912. doi: 10.3934/nhm.2013.8.879 |
[2] | Andrea Braides, Margherita Solci, Enrico Vitali . A derivation of linear elastic energies from pair-interaction atomistic systems. Networks and Heterogeneous Media, 2007, 2(3): 551-567. doi: 10.3934/nhm.2007.2.551 |
[3] | Mathias Schäffner, Anja Schlömerkemper . On Lennard-Jones systems with finite range interactions and their asymptotic analysis. Networks and Heterogeneous Media, 2018, 13(1): 95-118. doi: 10.3934/nhm.2018005 |
[4] | Bernd Schmidt . On the derivation of linear elasticity from atomistic models. Networks and Heterogeneous Media, 2009, 4(4): 789-812. doi: 10.3934/nhm.2009.4.789 |
[5] | Xavier Blanc, Claude Le Bris, Pierre-Louis Lions . From the Newton equation to the wave equation in some simple cases. Networks and Heterogeneous Media, 2012, 7(1): 1-41. doi: 10.3934/nhm.2012.7.1 |
[6] | Phoebus Rosakis . Continuum surface energy from a lattice model. Networks and Heterogeneous Media, 2014, 9(3): 453-476. doi: 10.3934/nhm.2014.9.453 |
[7] | Jose Manuel Torres Espino, Emilio Barchiesi . Computational study of a homogenized nonlinear generalization of Timoshenko beam proposed by Turco et al.. Networks and Heterogeneous Media, 2024, 19(3): 1133-1155. doi: 10.3934/nhm.2024050 |
[8] | Manuel Friedrich, Bernd Schmidt . On a discrete-to-continuum convergence result for a two dimensional brittle material in the small displacement regime. Networks and Heterogeneous Media, 2015, 10(2): 321-342. doi: 10.3934/nhm.2015.10.321 |
[9] | Marco Cicalese, Antonio DeSimone, Caterina Ida Zeppieri . Discrete-to-continuum limits for strain-alignment-coupled systems: Magnetostrictive solids, ferroelectric crystals and nematic elastomers. Networks and Heterogeneous Media, 2009, 4(4): 667-708. doi: 10.3934/nhm.2009.4.667 |
[10] | Victor A. Eremeyev . Anti-plane interfacial waves in a square lattice. Networks and Heterogeneous Media, 2025, 20(1): 52-64. doi: 10.3934/nhm.2025004 |
[1] |
R. Alicandro and M. Cicalese, A general integral representation result for continuum limits of discrete energies with superlinear growth, SIAM J. Math. Anal., 36 (2004), 1-37. doi: 10.1137/S0036141003426471
![]() |
[2] |
R. Alicandro, M. Cicalese and A. Gloria, Integral representation results for energies defined on stochastic lattices and application to nonlinear elasticity, Arch. Rational Mech. Anal., 200 (2011), 881-943. doi: 10.1007/s00205-010-0378-7
![]() |
[3] | R. Alicandro, M. Focardi and M. S. Gelli, Finite-difference approximation of energies in fracture mechanics, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 29 (2000), 671-709. |
[4] |
X. Blanc, C. L. and P.-L. Lions, From molecular models to continuum mechanics, Arch. Rational Mech. Anal., 164 (2002), 341-381. doi: 10.1007/s00205-002-0218-5
![]() |
[5] |
X. Blanc, C. L. and P.-L. Lions, Atomistic to continuum limits for computational materials science, Math. Model. Numer. Anal., 41 (2007), 391-426. doi: 10.1051/m2an:2007018
![]() |
[6] | A. Braides, Homogenization of some almost periodic coercive functional, Rend. Accad. Naz. Sci. XL Mem. Mat., 9 (1985), 313-321. |
[7] | A. Braides and A. Defranceschi, Homogenization of Multiple Integrals, Oxford University Press, New York, 1998. |
[8] |
S. Conti, G. Dolzmann, B. Kirchheim and S. Müller, Sufficient conditions for the validity of the Cauchy-Born rule close to $SO(n)$, J. Eur. Math. Soc. (JEMS), 8 (2006), 515-539. doi: 10.4171/JEMS/65
![]() |
[9] | B. Dacorogna, Direct Methods in the Calculus of Variation, $2^{nd}$ edition, Springer, New York, 2008. |
[10] |
G. Dal Maso, An Introduction to $\Gamma$-Convergence, Birkhäuser, Boston, 1993. doi: 10.1007/978-1-4612-0327-8
![]() |
[11] | I. Fonseca and G. Leoni, Modern Methods in the Calculus of Variations: $L^p$-Spaces, Springer, New York, 2007. |
[12] |
G. Friesecke and F. Theil, Validity and failure of the Cauchy-Born hypothesis in a two-dimensional mass-spring lattice, J. Nonlinear Sci., 12 (2002), 445-478. doi: 10.1007/s00332-002-0495-z
![]() |
[13] | S. Haussühl, Die Abweichungen von den Cauchy-Relationen, Phys. kondens. Materie, 6 (1967), 181-192. |
[14] |
N. Meunier, O. Pantz and A. Raoult, Elastic limit of square lattices with three-point interactions, Math. Models Methods Appl. Sci., 22 (2012), 21pp. doi: 10.1142/S0218202512500327
![]() |
[15] |
S. Müller, Homogenization of nonconvex integral functionals and cellular elastic materials, Arch. Rational Mech. Anal., 99 (1987), 189-212. doi: 10.1007/BF00284506
![]() |
[16] |
B. Schmidt, On the derivation of linear elasticity from atomistic models, Networks and Heterogeneous Media, 4 (2009), 789-812. doi: 10.3934/nhm.2009.4.789
![]() |
[17] |
B. Schmidt, On the passage from atomic to continuum theory for thin films, Arch. Rational Mech. Anal., 190 (2008), 1-55. doi: 10.1007/s00205-008-0138-0
![]() |
1. | Barbora Benešová, Martin Kružík, Weak Lower Semicontinuity of Integral Functionals and Applications, 2017, 59, 0036-1445, 703, 10.1137/16M1060947 | |
2. | Hervé Le Dret, Annie Raoult, Hexagonal lattices with three-point interactions, 2017, 108, 00217824, 613, 10.1016/j.matpur.2017.05.008 | |
3. | Manuel Friedrich, Leonard Kreutz, Konstantinos Zemas, From atomistic systems to linearized continuum models for elastic materials with voids, 2023, 36, 0951-7715, 679, 10.1088/1361-6544/aca5de | |
4. | Annika Bach, Andrea Braides, Marco Cicalese, Discrete-to-Continuum Limits of Multibody Systems with Bulk and Surface Long-Range Interactions, 2020, 52, 0036-1410, 3600, 10.1137/19M1289212 | |
5. | Julian Braun, Bernd Schmidt, Existence and convergence of solutions of the boundary value problem in atomistic and continuum nonlinear elasticity theory, 2016, 55, 0944-2669, 10.1007/s00526-016-1048-x | |
6. | Peter Gladbach, Heiner Olbermann, Approximation of the Willmore energy by a discrete geometry model, 2023, 16, 1864-8258, 403, 10.1515/acv-2020-0094 | |
7. | Georgy Kitavtsev, Stephan Luckhaus, Angkana Rüland, Surface energies arising in microscopic modeling of martensitic transformations, 2015, 25, 0218-2025, 647, 10.1142/S0218202515500153 | |
8. | Stefan Neukamm, Mathias Schäffner, Anja Schlömerkemper, Stochastic Homogenization of Nonconvex Discrete Energies with Degenerate Growth, 2017, 49, 0036-1410, 1761, 10.1137/16M1097705 | |
9. | Marco Cicalese, Antoine Gloria, Matthias Ruf, From Statistical Polymer Physics to Nonlinear Elasticity, 2020, 236, 0003-9527, 1127, 10.1007/s00205-019-01487-1 | |
10. | Julian Braun, Bernd Schmidt, An atomistic derivation of von-Kármán plate theory, 2022, 17, 1556-1801, 613, 10.3934/nhm.2022019 | |
11. | Bernd Schmidt, Jiří Zeman, A Bending-Torsion Theory for Thin and Ultrathin Rods as a Γ-Limit of Atomistic Models, 2023, 21, 1540-3459, 1717, 10.1137/22M1517640 | |
12. |
Bernd Schmidt, Jiří Zeman,
A continuum model for brittle nanowires derived from an atomistic description by Γ -convergence,
2023,
62,
0944-2669,
10.1007/s00526-023-02562-y
|