Solutions of the Aw-Rascle-Zhang system with point constraints

  • Received: 01 April 2015 Revised: 01 September 2015
  • Primary: 35L65; Secondary: 90B20.

  • We revisit the entropy formulation and the wave-front tracking construction of physically admissible solutions of the Aw-Rascle and Zhang (ARZ) ``second-order'' model for vehicular traffic. A Kruzhkov-like family of entropies is introduced to select the admissible shocks. This tool allows to define rigorously the appropriate notion of admissible weak solution and to approximate the solutions of the ARZ model with point constraint. Stability of solutions w.r.t. strong convergence is justified. We propose a finite volumes numerical scheme for the constrained ARZ, and we show that it can correctly locate contact discontinuities and take the constraint into account.

    Citation: Boris P. Andreianov, Carlotta Donadello, Ulrich Razafison, Julien Y. Rolland, Massimiliano D. Rosini. Solutions of the Aw-Rascle-Zhang system with point constraints[J]. Networks and Heterogeneous Media, 2016, 11(1): 29-47. doi: 10.3934/nhm.2016.11.29

    Related Papers:

    [1] Boris P. Andreianov, Carlotta Donadello, Ulrich Razafison, Julien Y. Rolland, Massimiliano D. Rosini . Solutions of the Aw-Rascle-Zhang system with point constraints. Networks and Heterogeneous Media, 2016, 11(1): 29-47. doi: 10.3934/nhm.2016.11.29
    [2] Shimao Fan, Michael Herty, Benjamin Seibold . Comparative model accuracy of a data-fitted generalized Aw-Rascle-Zhang model. Networks and Heterogeneous Media, 2014, 9(2): 239-268. doi: 10.3934/nhm.2014.9.239
    [3] Michael Burger, Simone Göttlich, Thomas Jung . Derivation of second order traffic flow models with time delays. Networks and Heterogeneous Media, 2019, 14(2): 265-288. doi: 10.3934/nhm.2019011
    [4] Benjamin Seibold, Morris R. Flynn, Aslan R. Kasimov, Rodolfo R. Rosales . Constructing set-valued fundamental diagrams from Jamiton solutions in second order traffic models. Networks and Heterogeneous Media, 2013, 8(3): 745-772. doi: 10.3934/nhm.2013.8.745
    [5] Mauro Garavello . A review of conservation laws on networks. Networks and Heterogeneous Media, 2010, 5(3): 565-581. doi: 10.3934/nhm.2010.5.565
    [6] Bertrand Haut, Georges Bastin . A second order model of road junctions in fluid models of traffic networks. Networks and Heterogeneous Media, 2007, 2(2): 227-253. doi: 10.3934/nhm.2007.2.227
    [7] Michael Herty, S. Moutari, M. Rascle . Optimization criteria for modelling intersections of vehicular traffic flow. Networks and Heterogeneous Media, 2006, 1(2): 275-294. doi: 10.3934/nhm.2006.1.275
    [8] Michael Herty, Lorenzo Pareschi, Mohammed Seaïd . Enskog-like discrete velocity models for vehicular traffic flow. Networks and Heterogeneous Media, 2007, 2(3): 481-496. doi: 10.3934/nhm.2007.2.481
    [9] Cécile Appert-Rolland, Pierre Degond, Sébastien Motsch . Two-way multi-lane traffic model for pedestrians in corridors. Networks and Heterogeneous Media, 2011, 6(3): 351-381. doi: 10.3934/nhm.2011.6.351
    [10] Oliver Kolb, Simone Göttlich, Paola Goatin . Capacity drop and traffic control for a second order traffic model. Networks and Heterogeneous Media, 2017, 12(4): 663-681. doi: 10.3934/nhm.2017027
  • We revisit the entropy formulation and the wave-front tracking construction of physically admissible solutions of the Aw-Rascle and Zhang (ARZ) ``second-order'' model for vehicular traffic. A Kruzhkov-like family of entropies is introduced to select the admissible shocks. This tool allows to define rigorously the appropriate notion of admissible weak solution and to approximate the solutions of the ARZ model with point constraint. Stability of solutions w.r.t. strong convergence is justified. We propose a finite volumes numerical scheme for the constrained ARZ, and we show that it can correctly locate contact discontinuities and take the constraint into account.


    [1] B. Andreianov, C. Donadello, U. Razafison and M. D. Rosini, Qualitative behaviour and numerical approximation of solutions to conservation laws with non-local point constraints on the flux and modeling of crowd dynamics at the bottlenecks, ESAIM: M2AN (2016), appeared online. doi: 10.1051/m2an/2015078
    [2] B. Andreianov, C. Donadello, U. Razafison and M. D. Rosini, Riemann problems with non-local point constraints and capacity drop, Mathematical Biosciences and Engineering, 12 (2015), 259-278, URL http://aimsciences.org/journals/displayArticlesnew.jsp?paperID=10696.
    [3] B. Andreianov, C. Donadello and M. D. Rosini, Crowd dynamics and conservation laws with nonlocal constraints and capacity drop, Mathematical Models and Methods in Applied Sciences, 24 (2014), 2685-2722. doi: 10.1142/S0218202514500341
    [4] B. Andreianov, C. Donadello and M. D. Rosini, A second order model for vehicular traffics with local point constraints on the flow, Mathematical Models and Methods in Applied Sciences (2016), appeared online. doi: 10.1142/S0218202516500172
    [5] B. Andreianov, P. Goatin and N. Seguin, Finite volume schemes for locally constrained conservation laws, Numerische Mathematik, 115 (2010), 609-645. doi: 10.1007/s00211-009-0286-7
    [6] A. Aw, Existence of a global entropic weak solution for the Aw-Rascle model, Int. J. Evol. Equ., 9 (2014), 53-70.
    [7] A. Aw and M. Rascle, Resurrection of "second order" models of traffic flow, SIAM Journal on Applied Mathematics, 60 (2000), 916-938. doi: 10.1137/S0036139997332099
    [8] F. Bouchut, Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws and Well-Balanced Schemes for Sources, Frontiers in Mathematics, Birkhäuser Verlag, Basel, 2004. doi: 10.1007/b93802
    [9] A. Bressan, Hyperbolic Systems of Conservation Laws, vol. 20 of Oxford Lecture Series in Mathematics and its Applications, Oxford University Press, Oxford, 2000.
    [10] C. Chalons and P. Goatin, Transport-equilibrium schemes for computing contact discontinuities in traffic flow modeling, Commun. Math. Sci., 5 (2007), 533-551, URL http://projecteuclid.org/euclid.cms/1188405667. doi: 10.4310/CMS.2007.v5.n3.a2
    [11] C. Chalons, P. Goatin and N. Seguin, General constrained conservation laws. application to pedestrian flow modeling, Networks and Heterogeneous Media, 8 (2013), 433-463, URL http://aimsciences.org/journals/displayArticlesnew.jsp?paperID=8648. doi: 10.3934/nhm.2013.8.433
    [12] G.-Q. Chen and H. Frid, Divergence-measure fields and hyperbolic conservation laws, Arch. Ration. Mech. Anal., 147 (1999), 89-118. doi: 10.1007/s002050050146
    [13] R. M. Colombo and P. Goatin, A well posed conservation law with a variable unilateral constraint, J. Differential Equations, 234 (2007), 654-675. doi: 10.1016/j.jde.2006.10.014
    [14] R. M. Colombo, P. Goatin and M. D. Rosini, A macroscopic model for pedestrian flows in panic situations, Proceedings of the 4th Polish-Japanese Days. GAKUTO International Series. Mathematical Sciences and Applications, 32 (2010), 255-272.
    [15] R. M. Colombo and M. D. Rosini, Pedestrian flows and non-classical shocks, Math. Methods Appl. Sci., 28 (2005), 1553-1567. doi: 10.1002/mma.624
    [16] R. M. Colombo and M. D. Rosini, Existence of nonclassical solutions in a Pedestrian flow model, Nonlinear Analysis: Real World Applications, 10 (2009), 2716-2728. doi: 10.1016/j.nonrwa.2008.08.002
    [17] R. M. Colombo, P. Goatin and M. D. Rosini, Conservation laws with unilateral constraints in traffic modeling, in Applied and Industrial Mathematics in Italy III, 82 (2010), 244-255. doi: 10.1142/9789814280303_0022
    [18] Colombo, M. Rinaldo, P. Goatin and M. D. Rosini, On the modelling and management of traffic, ESAIM: M2AN, 45 (2011), 853-872. doi: 10.1051/m2an/2010105
    [19] C. M. Dafermos, Polygonal approximations of solutions of the initial value problem for a conservation law, J. Math. Anal. Appl., 38 (1972), 33-41. doi: 10.1016/0022-247X(72)90114-X
    [20] C. M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, vol. 325 of Grundlehren der Mathematischen Wissenschaften, Springer-Verlag, Berlin, 2000. doi: 10.1007/3-540-29089-3_14
    [21] R. E. Ferreira and C. I. Kondo, Glimm method and wave-front tracking for the Aw-Rascle traffic flow model, Far East J. Math. Sci. (FJMS), 43 (2010), 203-223.
    [22] M. Garavello and P. Goatin, The Aw-Rascle traffic model with locally constrained flow, J. Math. Anal. Appl., 378 (2011), 634-648. doi: 10.1016/j.jmaa.2011.01.033
    [23] M. Godvik and H. Hanche-Olsen, Existence of solutions for the Aw-Rascle traffic flow model with vacuum, Journal of Hyperbolic Differential Equations, 5 (2008), 45-63. doi: 10.1142/S0219891608001428
    [24] H. Holden and N. H. Risebro, Front Tracking for Hyperbolic Conservation Laws, vol. 152 of Applied Mathematical Sciences, Springer, New York, 2011. doi: 10.1007/978-3-642-23911-3
    [25] S. N. Kruzhkov, First order quasilinear equations with several independent variables, Mat. Sb. (N.S.), 81 (1970), 228-255.
    [26] M. Lighthill and G. Whitham, On kinematic waves. II. A theory of traffic flow on long crowded roads, in Royal Society of London. Series A, Mathematical and Physical Sciences, 229 (1955), 317-345. doi: 10.1098/rspa.1955.0089
    [27] E. Panov, Generalized solutions of the Cauchy problem for a transport equation with discontinuous coefficients, in Instability in models connected with fluid flows. II, vol. 7 of Int. Math. Ser. (N. Y.), Springer, New York, 2008, 23-84. doi: 10.1007/978-0-387-75219-8_2
    [28] P. I. Richards, Shock waves on the highway, Operations Research, 4 (1956), 42-51. doi: 10.1287/opre.4.1.42
    [29] M. D. Rosini, Nonclassical interactions portrait in a macroscopic pedestrian flow model, Journal of Differential Equations, 246 (2009), 408-427, URL http://www.sciencedirect.com/science/article/pii/S002203960800140X. doi: 10.1016/j.jde.2008.03.018
    [30] M. Rosini, The initial-boundary value problem and the constraint, in Macroscopic Models for Vehicular Flows and Crowd Dynamics: Theory and Applications, Understanding Complex Systems, Springer International Publishing, 2013, 63-91. doi: 10.1007/978-3-319-00155-5_6
    [31] M. Rosini, Numerical applications, in Macroscopic Models for Vehicular Flows and Crowd Dynamics: Theory and Applications, Understanding Complex Systems, Springer International Publishing, 2013, 167-173.
    [32] H. Zhang, A non-equilibrium traffic model devoid of gas-like behavior, Transportation Research Part B: Methodological, 36 (2002), 275-290. doi: 10.1016/S0191-2615(00)00050-3
  • This article has been cited by:

    1. Mohamed Benyahia, Massimiliano D. Rosini, A macroscopic traffic model with phase transitions and local point constraints on the flow, 2017, 12, 1556-181X, 297, 10.3934/nhm.2017013
    2. Mohamed Benyahia, Massimiliano D. Rosini, Lack of BV bounds for approximate solutions to a two‐phase transition model arising from vehicular traffic, 2020, 43, 0170-4214, 10381, 10.1002/mma.6304
    3. Mohamed Benyahia, Massimiliano D. Rosini, Entropy solutions for a traffic model with phase transitions, 2016, 141, 0362546X, 167, 10.1016/j.na.2016.04.011
    4. Marco Di Francesco, Simone Fagioli, Massimiliano D. Rosini, Giovanni Russo, 2018, Chapter 37, 978-3-319-91544-9, 487, 10.1007/978-3-319-91545-6_37
    5. Shuai Fan, Yu Zhang, Riemann problem and wave interactions for an inhomogeneous Aw-Rascle traffic flow model with extended Chaplygin gas, 2023, 152, 00207462, 104384, 10.1016/j.ijnonlinmec.2023.104384
    6. Boris Andreianov, Carlotta Donadello, Ulrich Razafison, Massimiliano D. Rosini, Analysis and approximation of one-dimensional scalar conservation laws with general point constraints on the flux, 2018, 116, 00217824, 309, 10.1016/j.matpur.2018.01.005
    7. Marco Di Francesco, Simone Fagioli, Massimiliano D. Rosini, Many particle approximation of the Aw-Rascle-Zhang second order model for vehicular traffic, 2017, 14, 1551-0018, 127, 10.3934/mbe.2017009
    8. M. Di Francesco, S. Fagioli, M. D. Rosini, G. Russo, 2017, Chapter 9, 978-3-319-49994-9, 333, 10.1007/978-3-319-49996-3_9
    9. Mohamed Benyahia, Carlotta Donadello, Nikodem Dymski, Massimiliano D. Rosini, An existence result for a constrained two-phase transition model with metastable phase for vehicular traffic, 2018, 25, 1021-9722, 10.1007/s00030-018-0539-1
    10. Boris Andreianov, Carlotta Donadello, Ulrich Razafison, Massimiliano Daniele Rosini, 2018, Chapter 5, 978-3-030-05128-0, 103, 10.1007/978-3-030-05129-7_5
    11. E. Dal Santo, M. D. Rosini, N. Dymski, M. Benyahia, General phase transition models for vehicular traffic with point constraints on the flow, 2017, 40, 01704214, 6623, 10.1002/mma.4478
    12. Stefano Villa, Paola Goatin, Christophe Chalons, Moving bottlenecks for the Aw-Rascle-Zhang traffic flow model, 2017, 22, 1553-524X, 3921, 10.3934/dcdsb.2017202
    13. Muhammed Ali Mehmood, Hard congestion limit of the dissipative Aw-Rascle system with a polynomial offset function, 2024, 533, 0022247X, 128028, 10.1016/j.jmaa.2023.128028
    14. Wenjie Zhu, Rongyong Zhao, Hao Zhang, Cuiling Li, Ping Jia, Yunlong Ma, Dong Wang, Miyuan Li, Panic-Pressure Conversion Model From Microscopic Pedestrian Movement to Macroscopic Crowd Flow, 2023, 18, 1555-1415, 10.1115/1.4063505
  • Reader Comments
  • © 2016 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4757) PDF downloads(477) Cited by(14)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog