1.
|
Rooholah Abedian, Hojatollah Adibi, Mehdi Dehghan,
A high-order symmetrical weighted hybrid ENO-flux limiter scheme for hyperbolic conservation laws,
2014,
185,
00104655,
106,
10.1016/j.cpc.2013.08.020
|
|
2.
|
Cristiana De Filippis, Paola Goatin,
The initial–boundary value problem for general non-local scalar conservation laws in one space dimension,
2017,
161,
0362546X,
131,
10.1016/j.na.2017.05.017
|
|
3.
|
Yongki Lee,
Thresholds for shock formation in traffic flow models with nonlocal-concave-convex flux,
2019,
266,
00220396,
580,
10.1016/j.jde.2018.07.048
|
|
4.
|
Yongki Lee, Hailiang Liu,
Thresholds for shock formation in traffic flow models with Arrhenius look-ahead dynamics,
2015,
35,
1553-5231,
323,
10.3934/dcds.2015.35.323
|
|
5.
|
Oluwaseun Farotimi, Kuppalapalle Vajravelu,
Formulation of a maximum principle satisfying a numerical scheme for traffic flow models,
2020,
1,
2662-2963,
10.1007/s42985-020-00022-2
|
|
6.
|
F Betancourt, R Bürger, K H Karlsen, E M Tory,
On nonlocal conservation laws modelling sedimentation,
2011,
24,
0951-7715,
855,
10.1088/0951-7715/24/3/008
|
|
7.
|
Christophe Chalons, Paola Goatin, Luis M. Villada,
High-Order Numerical Schemes for One-Dimensional Nonlocal Conservation Laws,
2018,
40,
1064-8275,
A288,
10.1137/16M110825X
|
|
8.
|
Dong Li, Tong Li,
Shock formation in a traffic flow model with Arrhenius look-ahead dynamics,
2011,
6,
1556-181X,
681,
10.3934/nhm.2011.6.681
|
|
9.
|
Yongki Lee,
Wave breaking in a class of non-local conservation laws,
2020,
269,
00220396,
8838,
10.1016/j.jde.2020.06.035
|
|
10.
|
Yi Sun, Changhui Tan,
Accelerated kinetic Monte Carlo methods for general nonlocal traffic flow models,
2023,
446,
01672789,
133657,
10.1016/j.physd.2023.133657
|
|
11.
|
F. Betancourt, R. Bürger, R. Ruiz-Baier, H. Torres, C. A. Vega,
2014,
Chapter 2,
978-3-642-39006-7,
23,
10.1007/978-3-642-39007-4_2
|
|
12.
|
Eitan Tadmor,
2011,
Chapter 4,
978-1-4419-9553-7,
101,
10.1007/978-1-4419-9554-4_4
|
|
13.
|
Felisia Angela Chiarello, Paola Goatin,
Global entropy weak solutions for general non-local traffic flow models with anisotropic kernel,
2018,
52,
0764-583X,
163,
10.1051/m2an/2017066
|
|
14.
|
Zlatinka Dimitrova,
Flows of Substances in Networks and Network Channels: Selected Results and Applications,
2022,
24,
1099-4300,
1485,
10.3390/e24101485
|
|
15.
|
Ali R. Soheili, A. Kerayechian, H.R. Tareghian, N. Davoodi,
Adaptive numerical simulation of traffic flow density,
2013,
66,
08981221,
227,
10.1016/j.camwa.2013.04.025
|
|
16.
|
Felisia Angela Chiarello,
2021,
Chapter 5,
978-3-030-66559-3,
79,
10.1007/978-3-030-66560-9_5
|
|
17.
|
Paola Goatin, Sheila Scialanga,
Well-posedness and finite volume approximations of the LWR traffic flow model with non-local velocity,
2016,
11,
1556-1801,
107,
10.3934/nhm.2016.11.107
|
|
18.
|
Yuanzhen Cheng, Alina Chertock, Michael Herty, Alexander Kurganov, Tong Wu,
A New Approach for Designing Moving-Water Equilibria Preserving Schemes for the Shallow Water Equations,
2019,
80,
0885-7474,
538,
10.1007/s10915-019-00947-w
|
|
19.
|
Jianzhong Chen, Ronghui Liu, Yanmei Hu,
High-resolution central-upwind scheme for second-order macroscopic traffic flow models,
2020,
31,
0129-1831,
2050097,
10.1142/S0129183120500977
|
|
20.
|
Yongki Lee, Hailiang Liu,
Threshold for shock formation in the hyperbolic Keller–Segel model,
2015,
50,
08939659,
56,
10.1016/j.aml.2015.06.001
|
|
21.
|
Tong Li,
Qualitative analysis of some PDE models of traffic flow,
2013,
8,
1556-181X,
773,
10.3934/nhm.2013.8.773
|
|
22.
|
Yi Sun, Changhui Tan,
On a class of new nonlocal traffic flow models with look-ahead rules,
2020,
413,
01672789,
132663,
10.1016/j.physd.2020.132663
|
|
23.
|
Thomas Hamori, Changhui Tan,
Sharp critical thresholds for a class of nonlocal traffic flow models,
2023,
73,
14681218,
103899,
10.1016/j.nonrwa.2023.103899
|
|
24.
|
Seyed Esmaeil Sadat Najafi, Tofigh Allahviranloo, Saeid Abbasbandy, Mohsen Rostamy Malkhalifeh,
Numerical solution of nonlinear equations of traffic flow density using spectral methods by filter,
2024,
1598-5865,
10.1007/s12190-024-02252-8
|
|
25.
|
Saeed Mohammadian, Zuduo Zheng, Md. Mazharul Haque, Ashish Bhaskar,
Continuum modeling of freeway traffic flows: State-of-the-art, challenges and future directions in the era of connected and automated vehicles,
2023,
3,
27724247,
100107,
10.1016/j.commtr.2023.100107
|
|
26.
|
Said Belkadi, Mohamed Atounti,
A class of central unstaggered schemes for nonlocal conservation laws: Applications to traffic flow models,
2024,
42,
2175-1188,
1,
10.5269/bspm.63895
|
|
27.
|
S. Belkadi, M. Atounti,
Central finite volume schemes for non-local traffic flow models with Arrhenius-type look-ahead rules,
2023,
10,
23129794,
1100,
10.23939/mmc2023.04.1100
|
|
28.
|
Yi Hu, Yongki Lee, Shijun Zheng,
2024,
Chapter 13,
978-3-031-69709-8,
301,
10.1007/978-3-031-69710-4_13
|
|
29.
|
Mehdi Dehghan, Rooholah Jazlanian,
A high-order non-oscillatory central scheme with non-staggered grids for hyperbolic conservation laws,
2011,
182,
00104655,
1284,
10.1016/j.cpc.2011.03.001
|
|
30.
|
E. Abreu, J. C. Valencia-Guevara, M. Huacasi-Machaca, J. Pérez,
A numerical scheme for doubly nonlocal conservation laws,
2024,
61,
0008-0624,
10.1007/s10092-024-00624-x
|
|