1.
|
Florian Theil,
Surface energies in a two-dimensional mass-spring model for crystals,
2011,
45,
0764-583X,
873,
10.1051/m2an/2010106
|
|
2.
|
Roberto Alicandro, Gianni Dal Maso, Giuliano Lazzaroni, Mariapia Palombaro,
Derivation of a Linearised Elasticity Model from Singularly Perturbed Multiwell Energy Functionals,
2018,
230,
0003-9527,
1,
10.1007/s00205-018-1240-6
|
|
3.
|
Andrea Braides, Anneliese Defranceschi, Enrico Vitali,
A compactness result for a second-order variational discrete model,
2012,
46,
0764-583X,
389,
10.1051/m2an/2011043
|
|
4.
|
Rufat Badal, Manuel Friedrich, Joscha Seutter,
Existence of quasi-static crack evolution for atomistic systems,
2022,
9,
26663597,
100138,
10.1016/j.finmec.2022.100138
|
|
5.
|
R. Alicandro, L. De Luca, G. Lazzaroni, M. Palombaro, M. Ponsiglione,
Coarse-Graining of a Discrete Model for Edge Dislocations in the Regular Triangular Lattice,
2023,
33,
0938-8974,
10.1007/s00332-023-09888-z
|
|
6.
|
Roberto Alicandro, Giuliano Lazzaroni, Mariapia Palombaro,
Derivation of Linear Elasticity for a General Class of Atomistic Energies,
2021,
53,
0036-1410,
5060,
10.1137/21M1397179
|
|
7.
|
Manuel Friedrich,
A Derivation of Linearized Griffith Energies from Nonlinear Models,
2017,
225,
0003-9527,
425,
10.1007/s00205-017-1108-1
|
|
8.
|
Rufat Badal, Manuel Friedrich, Martin Kružík,
Nonlinear and Linearized Models in Thermoviscoelasticity,
2023,
247,
0003-9527,
10.1007/s00205-022-01834-9
|
|
9.
|
A. Braides, M.S. Gelli,
Asymptotic analysis of microscopic impenetrability constraints for atomistic systems,
2016,
96,
00225096,
235,
10.1016/j.jmps.2016.07.016
|
|
10.
|
Manuel Friedrich, Leonard Kreutz, Konstantinos Zemas,
From atomistic systems to linearized continuum models for elastic materials with voids,
2023,
36,
0951-7715,
679,
10.1088/1361-6544/aca5de
|
|
11.
|
Leonard C. Kreutz, Paolo Piovano,
Microscopic Validation of a Variational Model of Epitaxially Strained Crystalline Films,
2021,
53,
0036-1410,
453,
10.1137/19M1240010
|
|
12.
|
Manuel Friedrich, Bernd Schmidt,
An Analysis of Crystal Cleavage in the Passage from Atomistic Models to Continuum Theory,
2015,
217,
0003-9527,
263,
10.1007/s00205-014-0833-y
|
|
13.
|
Stefan Müller, Stefan Neukamm,
On the Commutability of Homogenization and Linearization in Finite Elasticity,
2011,
201,
0003-9527,
465,
10.1007/s00205-011-0438-7
|
|
14.
|
Roberto Alicandro, Giuliano Lazzaroni, Mariapia Palombaro,
On the effect of interactions beyond nearest neighbours on non-convex lattice systems,
2017,
56,
0944-2669,
10.1007/s00526-017-1129-5
|
|
15.
|
Manuel Friedrich, Edoardo Mainini, Paolo Piovano, Ulisse Stefanelli,
Characterization of Optimal Carbon Nanotubes Under Stretching and Validation of the Cauchy–Born Rule,
2019,
231,
0003-9527,
465,
10.1007/s00205-018-1284-7
|
|
16.
|
L. C. Flatley, F. Theil,
Face-Centered Cubic Crystallization of Atomistic Configurations,
2015,
218,
0003-9527,
363,
10.1007/s00205-015-0862-1
|
|
17.
|
Julian Braun, Bernd Schmidt,
Existence and convergence of solutions of the boundary value problem in atomistic and continuum nonlinear elasticity theory,
2016,
55,
0944-2669,
10.1007/s00526-016-1048-x
|
|
18.
|
Manuel Friedrich, Bernd Schmidt,
An Atomistic-to-Continuum Analysis of Crystal Cleavage in a Two-Dimensional Model Problem,
2014,
24,
0938-8974,
145,
10.1007/s00332-013-9187-0
|
|
19.
|
Julian Braun, Bernd Schmidt,
On the passage from atomistic systems to nonlinear elasticity theory for general multi-body potentials with p-growth,
2013,
8,
1556-181X,
879,
10.3934/nhm.2013.8.879
|
|
20.
|
Marta Lewicka, Pablo Ochoa,
2015,
Chapter 10,
978-3-319-18572-9,
279,
10.1007/978-3-319-18573-6_10
|
|
21.
|
Julian Braun, Bernd Schmidt,
An atomistic derivation of von-Kármán plate theory,
2022,
17,
1556-1801,
613,
10.3934/nhm.2022019
|
|
22.
|
NICOLAS MEUNIER, OLIVIER PANTZ, ANNIE RAOULT,
ELASTIC LIMIT OF SQUARE LATTICES WITH THREE-POINT INTERACTIONS,
2012,
22,
0218-2025,
1250032,
10.1142/S0218202512500327
|
|
23.
|
Manuel Friedrich, Bernd Schmidt,
On a discrete-to-continuum convergence result for a two dimensional brittle material in the small displacement regime,
2015,
10,
1556-1801,
321,
10.3934/nhm.2015.10.321
|
|
24.
|
Manuel Friedrich,
Griffith energies as small strain limit of nonlinear models for nonsimple brittle materials,
2020,
2,
2640-3501,
75,
10.3934/mine.2020005
|
|
25.
|
Prashant K. Jha, Timothy Breitzman, Kaushik Dayal,
Discrete-to-Continuum Limits of Long-Range Electrical Interactions in Nanostructures,
2023,
247,
0003-9527,
10.1007/s00205-023-01869-6
|
|
26.
|
Bernd Schmidt, Jiří Zeman,
A continuum model for brittle nanowires derived from an atomistic description by $$\Gamma $$-convergence,
2023,
62,
0944-2669,
10.1007/s00526-023-02562-y
|
|
27.
|
Stefano Almi, Elisa Davoli, Manuel Friedrich,
Non-interpenetration conditions in the passage from nonlinear to linearized Griffith fracture,
2023,
175,
00217824,
1,
10.1016/j.matpur.2023.05.001
|
|
28.
|
A. A. Dedkova, P. Yu. Glagolev, E. E. Gusev, N. A. Dyuzhev, V. Yu. Kireev, S. A. Lychev, D. A. Tovarnov,
Peculiarities of Deformation of Round Thin-Film Membranes and Experimental Determination of Their Effective Characteristics,
2024,
69,
1063-7842,
201,
10.1134/S1063784224010109
|
|
29.
|
Roberto Alicandro, Lucia De Luca, Mariapia Palombaro, Marcello Ponsiglione,
Γ-convergence analysis of the nonlinear self-energy induced by edge dislocations in semi-discrete and discrete models in two dimensions,
2024,
1864-8258,
10.1515/acv-2023-0053
|
|
30.
|
Bernd Schmidt, Jiří Zeman,
A Bending-Torsion Theory for Thin and Ultrathin Rods as a \(\boldsymbol{\Gamma}\)-Limit of Atomistic Models,
2023,
21,
1540-3459,
1717,
10.1137/22M1517640
|
|
31.
|
Stefano Almi, Maicol Caponi, Manuel Friedrich, Francesco Solombrino,
Geometric rigidity on Sobolev spaces with variable exponent and applications,
2025,
32,
1021-9722,
10.1007/s00030-024-01016-4
|
|