Loading [MathJax]/jax/output/SVG/jax.js

On the derivation of linear elasticity from atomistic models

  • Received: 01 July 2008 Revised: 01 July 2009
  • 74B05, 74B20, 49J45.

  • We derive linear elastic energy functionals from atomistic models as a Γ-limit when the number of atoms tends to infinity, respectively, when the interatomic distances tend to zero. Our approach generalizes a recent result of Braides, Solci and Vitali [2]. In particular, we study mass spring models with full nearest and next-to-nearest pair interactions. We also consider boundary value problems where a part of the boundary is free.

    Citation: Bernd Schmidt. On the derivation of linear elasticity from atomistic models[J]. Networks and Heterogeneous Media, 2009, 4(4): 789-812. doi: 10.3934/nhm.2009.4.789

    Related Papers:

    [1] Bernd Schmidt . On the derivation of linear elasticity from atomistic models. Networks and Heterogeneous Media, 2009, 4(4): 789-812. doi: 10.3934/nhm.2009.4.789
    [2] Andrea Braides, Margherita Solci, Enrico Vitali . A derivation of linear elastic energies from pair-interaction atomistic systems. Networks and Heterogeneous Media, 2007, 2(3): 551-567. doi: 10.3934/nhm.2007.2.551
    [3] Julian Braun, Bernd Schmidt . On the passage from atomistic systems to nonlinear elasticity theory for general multi-body potentials with p-growth. Networks and Heterogeneous Media, 2013, 8(4): 879-912. doi: 10.3934/nhm.2013.8.879
    [4] Marco Cicalese, Antonio DeSimone, Caterina Ida Zeppieri . Discrete-to-continuum limits for strain-alignment-coupled systems: Magnetostrictive solids, ferroelectric crystals and nematic elastomers. Networks and Heterogeneous Media, 2009, 4(4): 667-708. doi: 10.3934/nhm.2009.4.667
    [5] Manuel Friedrich, Bernd Schmidt . On a discrete-to-continuum convergence result for a two dimensional brittle material in the small displacement regime. Networks and Heterogeneous Media, 2015, 10(2): 321-342. doi: 10.3934/nhm.2015.10.321
    [6] Mathias Schäffner, Anja Schlömerkemper . On Lennard-Jones systems with finite range interactions and their asymptotic analysis. Networks and Heterogeneous Media, 2018, 13(1): 95-118. doi: 10.3934/nhm.2018005
    [7] Xavier Blanc, Claude Le Bris, Pierre-Louis Lions . From the Newton equation to the wave equation in some simple cases. Networks and Heterogeneous Media, 2012, 7(1): 1-41. doi: 10.3934/nhm.2012.7.1
    [8] Victor A. Eremeyev . Anti-plane interfacial waves in a square lattice. Networks and Heterogeneous Media, 2025, 20(1): 52-64. doi: 10.3934/nhm.2025004
    [9] Hirofumi Notsu, Masato Kimura . Symmetry and positive definiteness of the tensor-valued spring constant derived from P1-FEM for the equations of linear elasticity. Networks and Heterogeneous Media, 2014, 9(4): 617-634. doi: 10.3934/nhm.2014.9.617
    [10] Franco Cardin, Alberto Lovison . Finite mechanical proxies for a class of reducible continuum systems. Networks and Heterogeneous Media, 2014, 9(3): 417-432. doi: 10.3934/nhm.2014.9.417
  • We derive linear elastic energy functionals from atomistic models as a Γ-limit when the number of atoms tends to infinity, respectively, when the interatomic distances tend to zero. Our approach generalizes a recent result of Braides, Solci and Vitali [2]. In particular, we study mass spring models with full nearest and next-to-nearest pair interactions. We also consider boundary value problems where a part of the boundary is free.


  • This article has been cited by:

    1. Florian Theil, Surface energies in a two-dimensional mass-spring model for crystals, 2011, 45, 0764-583X, 873, 10.1051/m2an/2010106
    2. Roberto Alicandro, Gianni Dal Maso, Giuliano Lazzaroni, Mariapia Palombaro, Derivation of a Linearised Elasticity Model from Singularly Perturbed Multiwell Energy Functionals, 2018, 230, 0003-9527, 1, 10.1007/s00205-018-1240-6
    3. Andrea Braides, Anneliese Defranceschi, Enrico Vitali, A compactness result for a second-order variational discrete model, 2012, 46, 0764-583X, 389, 10.1051/m2an/2011043
    4. Rufat Badal, Manuel Friedrich, Joscha Seutter, Existence of quasi-static crack evolution for atomistic systems, 2022, 9, 26663597, 100138, 10.1016/j.finmec.2022.100138
    5. R. Alicandro, L. De Luca, G. Lazzaroni, M. Palombaro, M. Ponsiglione, Coarse-Graining of a Discrete Model for Edge Dislocations in the Regular Triangular Lattice, 2023, 33, 0938-8974, 10.1007/s00332-023-09888-z
    6. Roberto Alicandro, Giuliano Lazzaroni, Mariapia Palombaro, Derivation of Linear Elasticity for a General Class of Atomistic Energies, 2021, 53, 0036-1410, 5060, 10.1137/21M1397179
    7. Manuel Friedrich, A Derivation of Linearized Griffith Energies from Nonlinear Models, 2017, 225, 0003-9527, 425, 10.1007/s00205-017-1108-1
    8. Rufat Badal, Manuel Friedrich, Martin Kružík, Nonlinear and Linearized Models in Thermoviscoelasticity, 2023, 247, 0003-9527, 10.1007/s00205-022-01834-9
    9. A. Braides, M.S. Gelli, Asymptotic analysis of microscopic impenetrability constraints for atomistic systems, 2016, 96, 00225096, 235, 10.1016/j.jmps.2016.07.016
    10. Manuel Friedrich, Leonard Kreutz, Konstantinos Zemas, From atomistic systems to linearized continuum models for elastic materials with voids, 2023, 36, 0951-7715, 679, 10.1088/1361-6544/aca5de
    11. Leonard C. Kreutz, Paolo Piovano, Microscopic Validation of a Variational Model of Epitaxially Strained Crystalline Films, 2021, 53, 0036-1410, 453, 10.1137/19M1240010
    12. Manuel Friedrich, Bernd Schmidt, An Analysis of Crystal Cleavage in the Passage from Atomistic Models to Continuum Theory, 2015, 217, 0003-9527, 263, 10.1007/s00205-014-0833-y
    13. Stefan Müller, Stefan Neukamm, On the Commutability of Homogenization and Linearization in Finite Elasticity, 2011, 201, 0003-9527, 465, 10.1007/s00205-011-0438-7
    14. Roberto Alicandro, Giuliano Lazzaroni, Mariapia Palombaro, On the effect of interactions beyond nearest neighbours on non-convex lattice systems, 2017, 56, 0944-2669, 10.1007/s00526-017-1129-5
    15. Manuel Friedrich, Edoardo Mainini, Paolo Piovano, Ulisse Stefanelli, Characterization of Optimal Carbon Nanotubes Under Stretching and Validation of the Cauchy–Born Rule, 2019, 231, 0003-9527, 465, 10.1007/s00205-018-1284-7
    16. L. C. Flatley, F. Theil, Face-Centered Cubic Crystallization of Atomistic Configurations, 2015, 218, 0003-9527, 363, 10.1007/s00205-015-0862-1
    17. Julian Braun, Bernd Schmidt, Existence and convergence of solutions of the boundary value problem in atomistic and continuum nonlinear elasticity theory, 2016, 55, 0944-2669, 10.1007/s00526-016-1048-x
    18. Manuel Friedrich, Bernd Schmidt, An Atomistic-to-Continuum Analysis of Crystal Cleavage in a Two-Dimensional Model Problem, 2014, 24, 0938-8974, 145, 10.1007/s00332-013-9187-0
    19. Julian Braun, Bernd Schmidt, On the passage from atomistic systems to nonlinear elasticity theory for general multi-body potentials with p-growth, 2013, 8, 1556-181X, 879, 10.3934/nhm.2013.8.879
    20. Marta Lewicka, Pablo Ochoa, 2015, Chapter 10, 978-3-319-18572-9, 279, 10.1007/978-3-319-18573-6_10
    21. Julian Braun, Bernd Schmidt, An atomistic derivation of von-Kármán plate theory, 2022, 17, 1556-1801, 613, 10.3934/nhm.2022019
    22. NICOLAS MEUNIER, OLIVIER PANTZ, ANNIE RAOULT, ELASTIC LIMIT OF SQUARE LATTICES WITH THREE-POINT INTERACTIONS, 2012, 22, 0218-2025, 1250032, 10.1142/S0218202512500327
    23. Manuel Friedrich, Bernd Schmidt, On a discrete-to-continuum convergence result for a two dimensional brittle material in the small displacement regime, 2015, 10, 1556-1801, 321, 10.3934/nhm.2015.10.321
    24. Manuel Friedrich, Griffith energies as small strain limit of nonlinear models for nonsimple brittle materials, 2020, 2, 2640-3501, 75, 10.3934/mine.2020005
    25. Prashant K. Jha, Timothy Breitzman, Kaushik Dayal, Discrete-to-Continuum Limits of Long-Range Electrical Interactions in Nanostructures, 2023, 247, 0003-9527, 10.1007/s00205-023-01869-6
    26. Bernd Schmidt, Jiří Zeman, A continuum model for brittle nanowires derived from an atomistic description by $$\Gamma $$-convergence, 2023, 62, 0944-2669, 10.1007/s00526-023-02562-y
    27. Stefano Almi, Elisa Davoli, Manuel Friedrich, Non-interpenetration conditions in the passage from nonlinear to linearized Griffith fracture, 2023, 175, 00217824, 1, 10.1016/j.matpur.2023.05.001
    28. A. A. Dedkova, P. Yu. Glagolev, E. E. Gusev, N. A. Dyuzhev, V. Yu. Kireev, S. A. Lychev, D. A. Tovarnov, Peculiarities of Deformation of Round Thin-Film Membranes and Experimental Determination of Their Effective Characteristics, 2024, 69, 1063-7842, 201, 10.1134/S1063784224010109
    29. Roberto Alicandro, Lucia De Luca, Mariapia Palombaro, Marcello Ponsiglione, Γ-convergence analysis of the nonlinear self-energy induced by edge dislocations in semi-discrete and discrete models in two dimensions, 2024, 1864-8258, 10.1515/acv-2023-0053
    30. Bernd Schmidt, Jiří Zeman, A Bending-Torsion Theory for Thin and Ultrathin Rods as a \(\boldsymbol{\Gamma}\)-Limit of Atomistic Models, 2023, 21, 1540-3459, 1717, 10.1137/22M1517640
    31. Stefano Almi, Maicol Caponi, Manuel Friedrich, Francesco Solombrino, Geometric rigidity on Sobolev spaces with variable exponent and applications, 2025, 32, 1021-9722, 10.1007/s00030-024-01016-4
  • Reader Comments
  • © 2009 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3783) PDF downloads(71) Cited by(31)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog