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Abstract. We derive linear elastic energy functionals from atomistic models
as a Γ-limit when the number of atoms tends to infinity, respectively, when the
interatomic distances tend to zero. Our approach generalizes a recent result of
Braides, Solci and Vitali [2]. In particular, we study mass spring models with

full nearest and next-to-nearest pair interactions. We also consider boundary
value problems where a part of the boundary is free.

1. Introduction. The passage from discrete atomic models to continuum theories
is an active area of current research in continuum mechanics. For elastic systems
one usually refers to the Cauchy-Born rule to obtain macroscopic energy densities
from atomistic interaction functionals. The Cauchy-Born rule states that – roughly
speaking – each individual atom follows the macroscopic deformation gradient and
in particular does not take into account fine scale oscillations on the microscopic
scale.

For a two-dimensional mass spring model, the validity of the Cauchy-Born rule
for deformations close to a rigid motion has been proved by Friesecke and Theil in
[8]. Their result has been generalized to arbitrary dimensions by Conti, Dolzmann,
Kirchheim and Müller in [3].

If the deformation gradients are very close to SO(d), the set of orientation pre-
serving rigid motions, then we expect linear elasticity theory to apply. This relation
has been made rigorous by Dal Maso, Negri and Percivale who derive the energy
functional of linear elasticity as a Γ-limit of nonlinear elasticity for small displace-
ments in [5]. (See also the author’s article [10] for a strong convergence result for
the associated minimum problems.)

Recently it has been noted that one can derive linear elasticity functionals directly
from certain atomistic pair potentials: For a special class of pair interaction models
Braides, Solci and Vitali prove Γ-convergence of the discrete energy functionals to
the energy functional of an associated continuum linear elasticity energy functional
(see [2]). In this set-up one has to deal with two small parameters ε and δ measuring
the typical interatomic distance and the local distance of the deformations from the
set of rigid motions, respectively.

The aim of the present article is to extend these results in three directions.
Firstly, we will drop the assumption that atoms are allowed to interact only along
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special edges of a simplicial decomposition of the lattice unit cell (thus answering
positively an open problem posed in [2]). In particular, our approach will allow us to
deal with full next-to-nearest neighbor interactions in mass spring models. (In a 2D
square lattice, e.g., the contributions of both diagonal springs can be considered.)

Secondly, by considering more general ‘cell energies’, it will be possible to also
deal with mass spring systems for which individual pair interactions might not
be equilibrated in the reference lattice. In this regime it turns out that one has to
carefully choose the two small parameters in the Γ-limit process to obtain the desired
result: We will assume that ε≪ δ2. This seems to be a reasonable assumption from
a physical point of view as ε refers to the ratio of microscopic to macroscopic length
scales, while δ is a small macroscopic parameter describing the range of applicability
of linear elasticity theory. Note that this would always be satisfied if one first applies
the Cauchy-Born rule, i.e., sends ε → 0 and then derives the linear limit δ → 0.
Technically this condition ensures that even for mismatching equilibria of surface
and bulk energy contributions, the surface terms cannot dominate the bulk terms.

Finally we will also consider more general non-affine boundary conditions and in
particular also investigate the case when a part of the boundary is free. For the
sequence of minimizers of the associated boundary value problem we also prove a
strong convergence result to the minimizer of the limiting continuum functional.
(If Dirichlet boundary conditions are imposed on every surface atom, by a suitable
renormalization of the elastic energy, one can in fact drop the assumption ε ≪ δ2

even for incompatible surface and bulk energy expressions.)
To be more specific, we consider the portion εL∩Ω of some scaled Bravais lattice

L that lies in some fixed domain Ω ⊂ R
d. If Eε(y) denotes the elastic energy of

a deformation y : εL ∩ Ω → R
d, our main modeling assumption is that, roughly

speaking, Eε be decomposable as a sum of the form

Eε(y) =
∑

Q

Wcell(∇̄y|Q) + surface terms,

where the sum runs over scaled unit cells Q ⊂ Ω induced by εL and the discrete
gradient ∇̄y|Q consists of all the relative displacements of the corners of Q. Here
Wcell is of order one (in atomic units) and so we have to consider the scaled quantity
εdEε(y) so as to arrive at macroscopic energy expressions for small interatomic
distances ε.

For mass spring systems for which not every individual spring is minimal in the
reference configuration, Wcell typically assumes a positive mininmum value µ; and
one has to renormalize by subtracting a term µ|Ω| in the energy functional in order
to ensure Wcell = 0 at the identity. Note, however, that the surface terms, which are
also decomposable into unit cell contributions, will in general not be equilibrated
at the identity. As the number of surface atoms scales with ∼ ε1−d, our energy
functional becomes

εdEε(y) = εd
∑

Q

Wcell(∇̄y|Q) +O(ε).

In order to derive the functional of linear elasticity theory, we consider deforma-
tions y = Id + δu in terms of the small displacement δu and multiply the energy by
δ−2. This way, we finally are led to investigate the functional

δ−2εdEε(Id + δu) = δ−2εd
∑

Q

Wcell(∇̄(Id + δu)|Q) +O(δ−2ε).
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This formula also illustrates why the assumption ε≪ δ2 will be of importance.
Rigidity estimates will now guarantee that in the limit ε, δ → 0:

1. Manifestation of the Cauchy-Born rule: The discrete gradient of the atomic
displacements reduce to classical gradients, i.e., the microscopic deformation
gradient follows the macroscopic deformation gradient.

2. Linearization of the energy functional: Wcell reduces to its Hessian Qcell at
the identity.

3. Passage from discrete to continuum theory: The discrete energy functional
converges to an integral functional.

As a consequence, the discrete energy functionals will be seen to Γ-converge to the
common energy functional of linear elasticity, which is derived from Wcell by the
Cauchy-Bern rule.

The paper is organized as follows. In Section 2 we introduce the atomistic models
and state the main results on their discrete-to-continuum convergence properties:
Theorem 2.6 states compactness of finite energy sequences and the Γ-convergence to
a corresponding continuum limit as an integral functional over a suitable quadratic
form of the limiting linear strain. In Theorem 2.7 we prove strong convergence of
minimizers of the discrete problems to the minimizer of the continuum theory.

The following Section 3 is devoted to technical preliminaries for the proofs of these
results. The main tool is a careful interpolation in between the atomic positions,
which will enable us to make use of the corresponding continuum results. By our
general interaction assumptions, however, there is no associated triangulation of
the body where the energy can be recovered from an energy density defined on the
d×d gradients of some linear interpolation. Instead, we will have to consider discrete
gradients, i.e., d × 2d matrices that will account for all relative displacements in a
typical lattice cell. The ideas in this section are inspired by [9]. As in this paper
(also compare [11] for the 2D case), an important ingredient for our compactness
results is (a discrete version of) the geometric rigidity result of Friesecke James
and Müller, cf. [6]. However, near the free part of the boundary, discrete rigidity
may fail. Our main focus in Section 3 will be on how to overcome this difficulty.
As a by-product, we state a slightly generalized version of the discrete geometric
rigidity result of [9], which allows for a more general shape of the macroscopic region
occupied by the atoms.

In Section 4 we will then give the proofs of Theorems 2.6 and 2.7. The scheme to
arrive at a linearized limiting functional follows [5, 10] and also draws ideas from [6].
In fact, the strategy of our proofs is to reduce the problem to the continuum setting
investigated in [5, 10], and we refer the reader to these papers rather than re-deriving
the results that are needed here. However, as mentioned above and also noticed in
[2], the discrete nature of the atomistic interaction raises additional difficulties for
the simultaneous linearization/discrete-to-continuum limiting process. We exploit
techniques developed in [3, 9, 11] to overcome these problems.

In the last Section 5 we will give some examples of mass spring models as admis-
sible atomistic interaction functionals and their limiting continuum linear energy
functionals. In particular, we will discuss the nearest neighbor interaction in a
triangular lattice (recovering the functional derived in [2]) and the nearest and
next-to-nearest neighbor interaction in a square lattice in 2D. In 3D we will first
discuss a general nearest and next-to-nearest neighbor model. By way of example of
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an equilibrated bcc crystal, we will then also show how our technique can yield con-
tinuum theories rigorously even if the basic assumption on the interactions, namely,
to be decomposable into individual lattice cell contributions, fails.

2. The model and main results. Let Ω ⊂ R
d be a bounded Lipschitz domain

and L some Bravais-lattice in R
d, i.e.,

L = {λ1v1 + . . .+ λdvd : λ1, . . . , λd ∈ Z} = AZ
d

for linearly independent vectors v1, . . . , vd ∈ R
d, where A is the matrix (v1, . . . , vd).

For notational convenience we will suppose that the vi are labeled such that detA >
0. We assume that the atomic positions in the reference configuration are given by
the points of the scaled lattice Lε = εL that lie within Ω. Here ε is a small
parameter measuring the interatomic distance and eventually tending to 0. Note
that Lε partitions R

d into ‘unit cells’ εA(λ+ [0, 1)d), λ ∈ Z
d.

Figure 1. Reference configuration of an atomic system.

We denote the shifted lattice εA((1
2 , . . . ,

1
2 )T + Z

d) consisting of the midpoints

of the unit cells by L′
ε. Accordingly, if x ∈ R

d we denote by x̄ = x̄(x, ε) the element
of L′

ε lying in the same unit cell as x. The ε-cell corresponding to x is defined by
Qε(x) = x̄+A[− ε

2 ,
ε
2 )d. A corner of Qε(x) is an element of x̄+A{− ε

2 ,
ε
2}d.

The deformations of our system are mappings y : Ω ∩ Lε → R
d. In order to

keep track of the images of atoms under such deformations we choose a numbering
z1, . . . , z2d of the corners A{− 1

2 ,
1
2}d of the reference cell A[− 1

2 ,
1
2 )d and view

Y (x) = (y1, . . . , y2d) = (y(x̄ + εz1), . . . , y(x̄+ εz2d)) and

Z = (z1, . . . , z2d)
(1)

as elements of R
d×2d

. Let

L′
ε(Ω) = {x̄ ∈ L′

ε : Qε(x̄) ∩ Ω 6= ∅}, Lε(Ω) = L′
ε(Ω) + ε{z1, . . . , z2d}.

Whenever convenient we will extend the deformations y : Lε∩Ω → R
d to a function

on Lε(Ω). (The energy functional will of course not be affected by this extension.
For the precise definition of the values on the additional sites we refer to the next
section.)

Our basic assumption is that the energy of a deformation y can be expressed by

cell energies Wε : L′
ε(Ω) × R

d×2d → [0,∞] in the form

Eε(y) =
∑

x̄∈L′
ε(Ω)

Wε(x̄, Y (x̄)), (2)
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where Wε(x̄, ·) splits into a bulk and a surface part

Wε(x̄, F ) =

{

Wcell(ε
−1F ), if Iε(x̄) = {1, . . . , 2d},

Wsurface(Iε(x̄), ε
−1F ), if Iε(x̄) 6= {1, . . . , 2d}, (3)

where Iε(x̄) = {i : x̄ + εzi ∈ Ω} ⊂ {1, . . . , 2d}. We also assume that the surface
terms only depend on the atomic positions of those atoms that lie in Lε ∩ Ω in the
reference configuration, i.e., Wsurface(I, ε−1Y ) depends on the second variable only

through (yi)i∈I . Note in particular that there are no more than 22d

different surface
functions Wsurface(I, ·). The rescaling by ε−1 is due to our choice of measuring the
energy contributions of cell deformations in atomic units.

Remark. Note that such a decomposition of the energy is possible for suitable mass
spring models; e.g., in a two-dimensional square lattice with nearest and next-to-
nearest neighbor interaction one would assign half of the interaction energy of the
nearest neighbor bonds to each of the two adjacent cells. Note also that even in this
simple example Wsurface and Wcell could have mismatching equilibria if the ratio of
the preferred distance between next-to-nearest neighbors and nearest neighbors is
not

√
2. See Section 5 for more general examples, also in 3D.

Before we describe the properties of these cell energies in more detail, we intro-
duce the discrete gradient of a lattice deformation y : Lε(Ω) → R

d: If x ∈ Qε(x̄)
with x̄ ∈ L′

ε(Ω), set

∇̄y(x) := ε−1(y1 − ȳ, . . . , y2d − ȳ), ȳ :=
1

2d

2d

∑

i=1

yi,

yi = y(x̄+ εzi), i = 1, . . . , 2d. (So in particular ∇̄y is a piecewise constant function

on Ω with values in R
d×2d

.) Also let

S̄O(d) := {R̄ := RZ : R ∈ SO(d)} ⊂ R
d×2d

,

where Z is the d× 2d matrix (z1, . . . , z2d) introduced in (1).
Our general assumption on the cell energies is the following

Assumption 2.1. (i) Each of the energies Wcell,Wsurface(I, ·) : R
d×2d → [0,∞],

I ⊂ {1, . . . , 2d}, is invariant under translations and rotations, i.e. for F ∈
R

d×2d

,

Wcell(RF + (c, . . . , c)) = Wcell(F ),

Wsurface(I, RF + (c, . . . , c)) = Wsurface(I, F ) ∀ I ⊂ {1, . . . , 2d}

for all R ∈ SO(d), c ∈ R
d.

(ii) Wcell(Y ) is minimal (= 0) if and only if there exists R ∈ SO(d) and c ∈ R
d

such that

yi = Rzi + c, i = 1, . . . , 2d.

Wsurface is bounded in a neighborhood of S̄O(d).
(iii) Wcell is C2 in a neighborhood of S̄O(d) and the Hessian Qcell = D2Wcell(Z) at

the identity is positive definite on the orthogonal complement of the subspace
spanned by infinitesimal translations (x1, . . . , x2d) 7→ (c, . . . , c) and rotations
(x1, . . . , x2d) 7→ (Ax1, . . . , Ax2d), AT = −A.
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(iv) Wcell grows at infinity at least quadratically on the orthogonal complement of
the subspace spanned by infinitesimal translations, i.e.

lim inf
|F |→∞

F∈V

Wcell(F )

|F |2 > 0.

Here V = {F ∈ R
d×2d

: F1 + . . .+ F2d = 0}.
Note that for the quadratic form Qcell these assumptions imply that

Qcell(v, . . . , v) = 0 and Qcell(Az1, . . . , Az2d
) = 0 (4)

for all v ∈ R
d and A ∈ R

d×d with AT = −A.

Definition 2.2. We say that Wsurface is compatible with Wcell if Wsurface(I, ·) ≤
CWcell in a neighborhood of S̄O(d).

In order to study boundary value problems, we consider the Dirichlet boundary
∂Ω∗, which is a closed subset of ∂Ω of positive Hd−1-measure, and boundary data
given by g ∈ W 1,∞(Ω). The space of continuum displacements is H1(g, ∂Ω∗,Ω),
the H1-closure of {u ∈ W 1,∞(Ω,Rd) : u(x) = g(x) ∀x ∈ ∂Ω∗}.

The definition of the appropriate function space in the discrete setting is subtle,
in particular since we do not assume that ∂Ω is smooth or that ∂Ω = ∂Ω∗. In
order to avoid pathologies due to the loss of rigidity near the free boundary, one has
to prescribe boundary values in a suitable ε-neighborhood of ∂Ω∗ for the discrete
displacements. We introduce the following notation.

Definition 2.3. (i) Fix a point x0 ∈ Ω (independent of ε). Then by Ωε we

denote the connected component of
(

⋃

Q(x̄)⊂ΩQε(x̄)
)◦

containing x0.

(ii) We write x̄ ∈ L′
ε(Ω)◦ and call Qε(x̄) an inner cell if x̄ ∈ L′

ε ∩ Ωε. If x̄ ∈
∂L′

ε(Ω) := L′
ε(Ω) \ L′

ε(Ω)◦, then Qε(x̄) is called a boundary cell. The set of
the corners of all boundary cells, respectively inner cells, is denoted ∂Lε(Ω),
respectively Lε(Ω)◦.

Note that as ε → 0, Ωε does not depend on the particular choice of x0. For

sufficiently small ε, Ωε is the connected component of
(

⋃

Q(x̄)⊂ΩQε(x̄)
)◦

which

contains the bulk part of the inner cells. Also note that since Ω is a Lipschitz
domain, there exists a constant C = C(Ω) such that sup{dist(x,Ωε) : x ∈ Ω} < Cε.

For two points x̄, x̄′ ∈ L′
ε(Ω) we denote their lattice geodesic distance, i.e., the

length of the shortest polygonal path (x̄ = x̄0, x̄1, . . . , x̄n = x̄′) with x̄i ∈ L′
ε(Ω) and

x̄i+1 − x̄i ∈ {±v1, . . . ,±vd} connecting x̄ and x̄′ by distL′
ε(Ω)(x̄, x̄

′). (Also because
Ω is a Lipschitz domain, distL′

ε(Ω)(x̄, x̄
′) ≤ C|x̄− x̄′|.)

By extension we may furthermore assume that g ∈W 1,∞(Rd,Rd).

Definition 2.4. (i) A boundary cellQ = Qε(x̄), x̄ ∈ ∂L′
ε(Ω), is called a Dirichlet

boundary cell (x̄ ∈ ∂L′
ε(Ω)∗) if there exists a cell Q′ = Qε(x̄

′), x̄′ ∈ ∂L′
ε(Ω)

such that Q′ ∩ ∂Ω∗ 6= ∅ and distL′
ε(Ω)(Q,Q

′) ≤ distL′
ε(Ω)(Q

′,Ωε). The set of
corners of these cells is denoted ∂Lε(Ω)∗.

(ii) Now suppose u : Lε(Ω) → R
d is a lattice mapping. We say that u ∈

Aε(g, ∂Ω∗,Ω), if u(x) = g(x) for every x ∈ ∂Lε(Ω)∗.

Remark. This definition of Aε guarantees that even under very weak assumptions
on the surface energy Wsurface, the bulk part of the body ‘feels’ the boundary condi-
tion g. Under additional assumptions either on the geometry of Ω (asking, e.g., ∂Ω
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to be C1) or on the rigidity properties of Wsurface (e.g., imposing suitable growth
conditions), the notion u ∈ Aε can be relaxed in the sense that only those boundary
cells that actually contain a piece of ∂Ω∗ are defined to be Dirichlet boundary cells.

Finally we have to make precise in which sense discrete lattice mappings are
understood to converge to continuum deformations. To this end, for f ∈ L2(Rd,Rm)
define Pεf ∈ L2 by

Pεf(x) := −
∫

Qε(x)

f(ξ) dξ, (5)

where Qε(x) is the lattice cell containing x. It is not hard to see that Pεf → f
in L2 as ε → 0. Now if f ∈ L2(Ω,Rm), then we first extend f to a function in
L2(Rd,Rm), again denoted f , and define Pεf as before.

Definition 2.5. Let εk → 0 and suppose yk : Ω ∩ Lεk
→ R

d, y ∈ L2(Ω,Rd). We
say that yk converges to y, i.e., yk → y, if

εd
k

∑

x∈Ω∩Lεk

|yk(x) − Pεk
y(x)|2 → 0.

Note that this definition does not depend on the particular extension that has
been chosen for y. We also remark that our notion of convergence is equivalent to
asking that suitable interpolations (e.g., piecewise constant or piecewise affine on a
triangulation subordinate to the lattice) of yk converge to y in L2(Ω,Rd).

We will derive linear elasticity functionals by studying the functionals

Iε,δ :Aε(g, ∂Ω∗,Ω) → R,

u 7→ δ−2εdEε(Id + δu) = δ−2εd
∑

x̄∈L′
ε(Ω)

Wε(x̄, ε(Z + δ∇̄u(x̄)))

for lattice displacements u : Lε(Ω) → R
d. The main results of this paper are the

following:

Theorem 2.6. Suppose Wcell and Wsurface satisfy Assumption 2.1 and εk, δk are
sequences converging to 0 as k → ∞. In case Wcell and Wsurface are not compatible,
assume that also limk→∞ εkδ

−2
k = 0. Set Ik = Iεk,δk

.

Compactness: If Ik(uk) is equibounded for a sequence (uk) of lattice displacements,

then there exist modifications u′k ∈ Aεk
(g, ∂Ω∗,Ω) with u′k = uk on Lεk

(Ω)◦ ∪
∂Lεk

(Ω)∗ such that for a subsequence (not relabeled) u′k → u for some
u ∈ H1(g, ∂Ω∗,Ω). Moreover, the (piecewise constant) discrete gradients ∇̄u′k con-

verge to ∇u · Z weakly in L2(Ω) and thus ∇̄uk ⇀ ∇u · Z in L2
loc(Ω \ ∂Ω \ ∂Ω∗).

Γ-convergence: The functionals Ik Γ-converge to the functional

I : H1(g, ∂Ω∗,Ω) → R, u 7→ 1

2 detA

∫

Ω

Qcell(e(u) · Z).

(Here e(u) denotes the linear strain e(u) = 1
2 ((∇u)T + ∇u).) I.e.,

(i) Γ-lim inf inequality: All sequences (uk), uk ∈ Aεk
(g, ∂Ω∗,Ω), converging to

some u ∈ H1(g, ∂Ω∗,Ω) satisfy the estimate

lim inf
k→∞

Ik(uk) ≥ I(u).
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In fact, this is true under the weaker assumption

εd
k

∑

x∈Lεk
(Ω)◦∪∂Lεk

(Ω)∗

|uk(x) − Pεk
u(x)|2 → 0.

(ii) Existence of recovery sequences: For every u ∈ H1(g, ∂Ω∗,Ω) there is a se-
quence (uk), uk ∈ Aεk

(g, ∂Ω∗,Ω), such that uk → u and

lim
k→∞

Ik(uk) = I(u).

By general arguments in the theory of Γ-convergence and the fact that the mini-
mizer of the limiting problem is unique (by Korn’s inequality), one can now deduce
that, if wk is a minimizer of Ik, then w′

k → w (and so ‘wk → w away from the

free boundary’) and ∇̄wk ⇀ ∇w · Z weakly in L2
loc(Ω \ ∂Ω \ ∂Ω∗), where w is the

minimizer of I. In fact, following the approach in [10] we can show that recovery
sequences converge even strongly:

Theorem 2.7. Suppose (uk) is a recovery sequence for u. Then ∇̄uk → ∇u · Z
strongly in L2

loc(Ω \ ∂Ω \ ∂Ω∗).

We call (wk), wk ∈ Aεk
(g, ∂Ω∗,Ω), a sequence of almost minimizers if

lim
k→∞

(Ik(wk) − inf{Ik(v) : v ∈ Aεk
(g, ∂Ω∗,Ω)}) → 0

for k → ∞. The previous theorem immediately implies strong convergence of wk:

Corollary 2.8. If (wk) is a sequence of almost minimizers, then ∇̄wk → ∇w · Z
strongly in L2

loc(Ω \ ∂Ω \ ∂Ω∗), where w is the unique minimizer of I.

Remarks. (i) As our definition of convergence can be reformulated in terms
of the usual L2-convergence of suitable interpolations as remarked before,
we are indeed proving a Γ-limit result in the usual set-up of convergence in
metric spaces (see, e.g., [1, 4] for general introductions to the theory of Γ-
convergence).

In the next section we will associate carefully chosen modifications u′k (on
the free part of the boundary) and interpolations ũk to lattice displacements
uk. Our proofs will in particular show that one has weak H1-compactness for
the interpolations: Ik(uk) ≤ C implies ũk ⇀ u in H1 (up to subsequences).
For recovery sequences uk → u and sequences of almost minimizers (wk) we
will see that ũk → u and w̃k → w strongly in H1.

(ii) By standard arguments in the theory of Γ-convergence it is straightforward
to include loading terms of the form

Lε(u) =
∑

x∈Ω∩Lε

lε(x) · u(x),

where lε → l for some l ∈ L2(Ω) in the sense of Definition 2.5, e.g., lε(x) =
Pεl(x).

(iii) In case ∂Ω∗ = ∂Ω we can renormalize the energy by setting

Eren
ε (y) := Eε(y) −

∑

x̄∈∂L′
ε(Ω)

Wε(x̄, Y (x̄)) =
∑

x̄∈L′
ε(Ω)\∂L′

ε(Ω)

Wcell(∇̄y(x̄)).

Then Iren
ε,δ , defined accordingly, will satisfy all the assertions in Theorems

2.6, 2.7 and Corollary 2.8 with limiting functional I, even if Wsurface is not
admissible in the sense of Assumption 2.1.
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(iv) Note that indeed F 7→ 1
2 det A

Qcell(F · Z) is the quadratic form of the energy
per unit volume of linear elasticity obtained from the atomistic model by
applying the Cauchy-Born rule. Here, the Cauchy-Born rule does not enter as
an assumption but rather is a consequence of our analysis: For a given linear
macroscopic deformation gradient F , the discrete gradient of a typical unit
cell is the discrete gradient F · Z induced by F .

3. Discrete deformations. In the following paragraphs we introduce the main
technical tools for passing from discrete lattice deformations to continuum objects
which are more amenable to the analytical limiting process in the proofs of Section
4. Recall Definitions 2.3 and 2.4. In the following we will call two cells Q and Q′

neighbors if Q ∩ Q′ 6= ∅. The d × 2d matrix assumed by the discrete gradient ∇̄y
on some cell Q will be denoted ∇̄y|Q.

3.1. Modification. To every lattice displacement u ∈ Aε (resp., deformation y =
Id + δu) we associate a modified displacement u′ (resp. deformation y′) in the
following way. On Dirichlet boundary cells and inner cells in the bulk nothing
changes, i.e.,

y′(x) = y(x) for x ∈ (Lε(Ω) ∩ Ωε) ∪ ∂Lε(Ω)∗;

in particular, u(x) = g(x) for x ∈ ∂Lε(Ω)∗. On the remaining boundary cells we
proceed as follows: Consider the 2d sublattices L′

ε,i with L′
ε,i = zi +2Lε and extend

successively in the following Steps 1.1+, 1.1-, 1.2+, 1.2-, . . . , 1.d+, 1.d-, 2.1+, 2.1-,
2.2+, . . . , 2.d-, 3.1+, . . . , where

Step i.j± : For every cell Q = Qε(x̄) with x̄ ∈ L′
ε,i such that there exists

a cell Q′ = Qε(x̄±εvj), i.e. sharing a (d−1)-face with Q, on the corners
of which y′ has been defined already, we extend y′ to all corners of Q by
choosing an extension y′ such that dist2(∇̄y′|Q, S̄O(d)) is minimal.

Since Ω is assumed to have a Lipschitz boundary, the number of iterations needed
to define y′ on all boundary cells is bounded independently of ε.

If y′ is being extended to the corners of Q in some step as described above, let
QQ be the set of cells on every corner of which y′ has already been defined in a

previous step. Note that
(

⋃

Q′∈QQ
Q′
)◦

is connected by Definition 2.4. Since Ω has

a Lipschitz boundary, we can choose a subset BQ of QQ containing all neighbors

of Q that lie in QQ in such a way that
(

⋃

Q′∈BQ
Q′
)◦

is connected and such that

#BQ is bounded independently of Q and ε (see Figure 2).
The advantage of this particular modification scheme is that the rigidity of the

modified deformations on non-Dirichlet boundary cells is controlled by the behavior
in the bulk and on the Dirichlet boundary cells.

Lemma 3.1. Suppose y′ is defined on a boundary cell Q = Qε(x̄), x̄ ∈ ∂L′
ε(Ω) \

∂L′
ε(Ω)∗ as described above. Then there is a constant C such that

dist2(∇̄y′|Q, S̄O(d)) ≤ C
∑

Q′∈BQ

dist2(∇̄y′|Q′ , S̄O(d)).

We defer the proof of this lemma, which is based on a discrete geometric rigidity
estimate, to the end of this section. As a consequence we note the following estimate.
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Figure 2. BQ (shaded) and Q.

Lemma 3.2. There exist constants c, C > 0 (independent of ε and y) such that,
setting Vε := {x ∈ Ω : dist(x, ∂Ω) ≥ cε}, the estimate

∑

x̄∈∂L′
ε(Ω)\∂L′

ε(Ω)∗

dist2(∇̄y′(x̄), S̄O(d)) ≤ C
∑

x̄∈Bε

dist2(∇̄y′(x̄, S̄O(d)),

where Bε = {x̄ ∈ L′
ε(Ω)◦ ∪ ∂L′

ε(Ω) : x̄ /∈ Vε}, is satisfied.

Proof. This follows directly from Lemma 3.1 by induction on the extension
steps.

The versions of Lemma 3.1 and Lemma 3.2 for displacements u(x) = δ−1(y(x)−x)
read as follows. (Also the proof of Lemma 3.3 will be given at the end of this section.)

Lemma 3.3. Suppose u is the extension on a non-Dirichlet boundary cell Q =
Qε(x̄) as described above. Then there is a constant C such that

|∇̄u′|Q|2 ≤ C
∑

Q′∈BQ

|∇̄u′|Q′ |2.

Lemma 3.4. There exist constants c, C > 0 (independent of ε, δ and u) such that,
setting Vε := {x ∈ Ω : dist(x, ∂Ω) ≥ cε}, the estimate

∑

x̄∈∂L′
ε(Ω)\∂L′

ε(Ω)∗

|∇̄u′(x̄)|2 ≤ C
∑

x̄∈Bε

|∇̄u′(x̄)|2,

where Bε = {x̄ ∈ L′
ε(Ω)◦∪∂L′

ε(Ω) : x̄ /∈ Vε}, is satisfied for all for u ∈ Aε(g, ∂Ω∗,Ω).

Proof. This follows directly from Lemma 3.3 by induction on the extension
steps.

3.2. Interpolation. In the sequel it will be convenient to choose a particular in-
terpolation ỹ for a lattice deformation y′. We first explain the procedure on a single
cell with ε = 1 and y′ = y. Let

y : A

{

−1

2
,
1

2

}d

=
{

zi : i ∈
{

1, . . . , 2d
}}

→ R
d, Q = A

[

−1

2
,
1

2

]d

.

First interpolate linearly on one-dimensional faces of Q, i.e., on those segments
[zi, zj] with zi − zj parallel to one of the vectors vn spanning the lattice. Then
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define a triangulation and interpolation on all two-dimensional faces of Q in the
following way: If the face is

co{zi1 , . . . , zi4}, zi2 = zi1 + vn, zi3 = zi1 + vn + vm, zi4 = zi1 + vm,

then set ζ = 1
4 (zi1 + . . .+zi4), y(ζ) = 1

4 (y(zi1)+ . . .+y(zi4)) and interpolate linearly
on each of the triangles

co{zij
, zij+1 , ζ}, j = 1, 2, 3, 4 (mod 4).

In general, assuming that we have chosen a simplicial decomposition and corre-
sponding linear interpolation on all (n − 1)-dimensional faces, we decompose and
interpolate an n-dimensional face F = co{zi1 , . . . , zi2n} as follows. Set

ζ =
1

2n

2n

∑

j=1

zij
, y(ζ) =

1

2n

2n

∑

j=1

y(zij
).

Now decompose F by the simplices co{w1, . . . , wn, ζ}, where co{w1, . . . , wn} is a
simplex that belongs to the decomposition of an (n − 1)-face already constructed.
On these simplices interpolate linearly.

For later reference we note that each simplex constructed in this interpolation
scheme contains at least one corner zi of Q. One of the advantages of choosing this
particular interpolation is that it is not hard to see that if ỹ is the interpolation of
y on the unit cell Q, then

−
∫

Q

ỹ(x) dx =
1

2d

2d

∑

i=1

y(zi) = ỹ(0). (6)

(By induction, −
∫

F
ỹ(x) dx = 1

2n

∑2n

j=1 y(zij
) on each n-face F = co{zi1 , . . . , zi2n} of

Q.)
Now let u ∈ Aε(g, ∂Ω∗,Ω) and let u′ its modification constructed in Paragraph

3.1. We interpolate u′ on
⋃

x̄∈L′
ε(Ω)Qε(x̄) such that ũ|Ω ∈ H1(g, ∂Ω∗,Ω):

On Dirichlet boundary cells we set ũ(x) = g(x). If, on the other hand, Qε(x) is
neither a neighbor of a Dirichlet boundary cell nor a Dirichlet boundary cell itself,
we define ũ(x) = δ−1(ỹ(x)− x) on Qε(x) by interpolating as described above (with
vn, zi replaced by εvn, x̄+ εzi, respectively).

Finally, if Q = Qε(x̄) is a cell having neighbors Q′
j that are Dirichlet bound-

ary cells, we also follow the interpolation scheme described above, but without
linearly interpolating on faces of Q that are shared by some Q′

j : If F = x̄ +

ε co{zi1 , . . . , zi2n } ⊂ Q′
j for some Q′

j , let ũ(x) = g(x) for x ∈ F . If F 6⊂ Q′
j for

all Q′
j , then also ζ = x̄ + ε

2n

∑2n

j=1 zij
/∈ ⋃

j Q
′
j . In this case we define ũ(ζ) =

1
2n

∑2n

j=1 ũ(x̄ + εzij
) as before and interpolate on the simplices co{w1, . . . , wn, ζ}

linearly on each segment [ζ, w], w ∈ co{w1, . . . , wn}, where co{w1, . . . , wn} is a
simplex that belongs to the decomposition of an (n− 1)-face already constructed.

The following lemma is an easy consequence of our interpolation procedure.

Lemma 3.5. Suppose u′ ∈ Aε(g, ∂Ω∗,Ω) is (the modification of) a lattice displace-
ment interpolated as described above. There exist constants c, C > 0 such that the
following conditions are satisfied.
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(i) If Q is not a Dirichlet boundary cell itself, nor the neighbor of any Dirichlet
boundary cell, then

c
∣

∣∇̄u′|Q
∣

∣

2 ≤ −
∫

Q

|∇ũ|2 ≤ C
∣

∣∇̄u′|Q
∣

∣

2
.

(ii) If Q is not a Dirichlet boundary cell, but Q is neighboring a Dirichlet boundary
cell, then

c
∣

∣∇̄u′|Q
∣

∣

2 − C ≤ −
∫

Q

|∇ũ|2 ≤ C
∣

∣∇̄u′|Q
∣

∣

2
+ C.

(iii) If Q is a Dirichlet boundary cell, then

∣

∣∇̄u′|Q
∣

∣

2
,−
∫

Q

|∇ũ|2 ≤ C.

Proof. These estimates can be seen along the same lines as the estimates in the
following lemma. We refer to the proof of Lemma 3.6.

Lemma 3.6. Suppose u ∈ Aε(g, ∂Ω∗,Ω) and y′(x) = x+δu′(x) are lattice mappings
modified and interpolated as described above. There exist constants c, C > 0 such
that the following conditions are satisfied.

(i) If Q is not a Dirichlet boundary cell itself, nor the neighbor of any Dirichlet
boundary cell, then

c dist2(∇̄y′|Q, S̄O(d)) ≤ −
∫

Q

dist2(∇ỹ, SO(d))

≤ C dist2(∇̄y′|Q, S̄O(d)).

(ii) If Q is not a Dirichlet boundary cell, but Q is neighboring a Dirichlet boundary
cell, then

c dist2(∇̄y′|Q, S̄O(d)) − Cδ2 ≤ −
∫

Q

dist2(∇ỹ, SO(d))

≤ C dist2(∇̄y′|Q, S̄O(d)) + Cδ2.

(iii) If Q is a Dirichlet boundary cell, then

−
∫

Q

dist2(∇ỹ, SO(d)) ≤ Cδ2 and dist2(∇̄y′|Q, S̄O(d)) ≤ Cδ2.

Proof. (i) The first inequality is straightforward: Note that, since ỹ is linear on

simplices whose volume is comparable to |Q|, we have ‖ dist2(∇ỹ, SO(d))‖L∞(Q) ≤
C−
∫

Q
dist2(∇ỹ, SO(d)).

For the proof of the second inequality assume without loss of generality ε = 1,
Q = A[− 1

2 ,
1
2 ]d. Let R ∈ SO(d) such that dist(∇̄y′, S̄O(d)) = |∇̄y′ − R̄|. By

induction we prove that on each n-dimensional simplex S = co{w1, . . . , wn, ζ} of Q
constructed in the interpolation procedure we have

|(∇ỹ −R)PS | ≤ C|∇̄y′ − R̄|,
where PS is the projection onto the space span{w2 − w1, . . . , wn − w1, ζ − w1}:

Note first that by the remark above equation (6), we may without loss of gen-
erality assume that w1 = zi for some i. Let e be a unit vector in PS(Rd). If
e ∈ span{w2 − w1, . . . , wn − w1}, then

|(∇ỹ −R)e| ≤ C|∇̄y′ − R̄|
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by assumption. Now if e = ζ−zi

|ζ−zi| , then

|(∇ỹ −R)e| =
|y(ζ) − y′(zi) −R(ζ − zi)|

|ζ − zi|
≤ C sup

j

|y′(zj) −Rzj − (y′(zi) −Rzi)| ≤ C|∇̄y′ − R̄|,

and the induction step is proved. The claim now follows by letting n = d.
(ii) Suppose y∗ is the function obtained by interpolating y′ in Q as for cells

described in (i). Since g ∈ W 1,∞, it follows that ‖∇y∗ − ∇ỹ‖L∞(Q) ≤ Cδ. The
estimates now follow from (i).

(iii) This is clear since y′(x) = x+ δg(x) on Q.

3.3. Discrete geometric rigidity. An important ingredient for the derivation of
linear elasticity from nonlinear energy functionals is a quantitative rigidity estimate
for deformations near SO(d) as given in [6], see [5]. The discrete version of this
result proved in [9, Theorem 3.3] states that lattice deformations

y : L ∩ U → R
d,

where U is a union of closed lattice cells such that U◦ is connected, satisfy the
following rigidity estimate (in unrescaled variables): For each y there exists R ∈
SO(d) such that

∑

x̄∈L′∩U

|∇̄y(x̄) − R̄|2 ≤ C
∑

x̄∈L′∩U

dist2(∇̄y(x̄), S̄O(d)), (7)

R̄ = R · Z.
For later use we record here that Assumption 2.1 implies the following estimate.

Lemma 3.7. There is a constant C such that for all F ∈ R
d×2d

dist2(F, S̄O(d)) ≤ CWcell(F ).

Proof. This is essentially contained in Lemma 3.2 of [9]. The arguments detailed
there show that this estimate is a consequence of the growth assumptions on Wcell

near S̄O(d) and ∞ imposed in Assumption 2.1.

Proof of Lemma 3.1. By rescaling we may assume that ε = 1.
Let η > 0 and suppose

∑

Q′∈BQ

dist2(∇̄y′|Q′ , S̄O(d)) ≤ η.

By the discrete geometric rigidity result (7) there is a rotation R ∈ SO(d) such that
∑

Q′∈BQ

|∇̄y′|Q′ − R̄|2 ≤ Cη.

But then y′, restricted to Lε ∩ BQ, has an extension y′′ to the corners of Q with
|∇̄y′′|Q − R̄|2 ≤ Cη. The claim now follows by construction of y′.

Proof of Lemma 3.3. Let y′(x) = x + δu′(x) and suppose
∑

Q′∈BQ
|∇̄u′|Q′ |2 ≤

ηδ−2. Applying Lemma 3.1 and (7), we find a rotation R such that

|∇̄y′|Q − R̄|2 +
∑

Q′∈BQ

|∇̄y′|Q′ − R̄|2 ≤ Cη (8)
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holds. But by assumption we also have
∑

Q′∈BQ

|∇̄y′|Q′ − Z|2 =
∑

Q′∈BQ

δ2|∇̄u′|Q′ |2 ≤ Cη,

whence |R− Id|2 ≤ Cη. The claim now follows from (8).

As a by-product we also mention the following discrete geometric rigidity result,
which generalizes Theorem 3.3 in [9] in the sense that the constant C only depends
on the domain Ω.

Theorem 3.8. There exists a constant C > 0, independent of ε, such that for all
lattice deformations y : Lε(Ω) → R

d there exists a rotation R̄ ∈ S̄O(d) such that
∑

x̄∈L′
ε(Ω)

|∇̄y(x̄) − R̄|2 ≤ C
∑

x̄∈L′
ε(Ω)

dist2(∇̄y(x̄), S̄O(d)).

Proof. Apply the modification scheme of Paragraph 3.1 with ∂Ω∗ = ∅ and the
interpolation procedure of Paragraph 3.2 to define y′ and ỹ. By Lemmas 3.1 and
3.6 we then have

∫

Ω

dist2(∇ỹ(x), SO(d)) dx ≤ C
∑

x̄∈L′
ε(Ω)◦

dist2(∇̄y(x̄), S̄O(d)).

The continuum geometric rigidity result in [6] now provides a rotation R ∈ SO(d)
such that

∫

Ω

|∇ỹ(x) −R|2 dx ≤ C

∫

Ω

dist2(∇ỹ(x), SO(d)) dx

for a constant C = C(Ω) and from Lemma 3.5 we thus obtain
∑

x̄∈L′
ε(Ω)◦

|∇̄y′(x̄) − R̄|2 ≤ C
∑

x̄∈L′
ε(Ω)

dist2(∇̄y(x̄), S̄O(d)).

To extend this estimate to L′
ε(Ω), cover the boundary cells by sets Di such

that Di =
⋃

x̄∈L′
ε∩Di

Qε(x̄), is connected for all i, supi diamDi ≤ Cε and each Di

contains at least one inner cell Qi. The number of possible shapes of the Di is
bounded independently of ε, so by applying the rigidity estimate (7) on each of
these sets, we obtain rotations Ri such that

∑

x̄∈L′
ε∩Di

|∇̄y(x̄) − R̄i|2 ≤ C
∑

x̄∈L′
ε∩Di

dist2(∇̄y(x̄), S̄O(d)).

Since in particular
∑

i

|R̄i − R̄|2 ≤ 2
∑

i

(

|∇̄y|Qi
− R̄i|2 + |∇̄y|Qi

− R̄|2
)

≤ C
∑

x̄∈L′
ε(Ω)

dist2(∇̄y(x̄), S̄O(d)),

the claim now follows.

4. Proofs. The proofs of Theorems 2.6 and 2.7 are split into the following three
subsections. Throughout this section we will suppose that the assumptions of The-
orems 2.6 and 2.7 are satisfied.
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4.1. Compactness. We first prove the compactness statement in Theorem 2.6.
Let

Ω′
k =





⋃

x̄∈L′
εk

(Ω)

Qεk
(x̄)





◦

, Ω′′
k =





⋃

x̄∈L′
εk

(Ω)◦∪∂L′
εk

(Ω)∗

Qεk
(x̄)





◦

.

Lemma 4.1. Let (uk) be a sequence in Aεk
(g, ∂Ω∗,Ω).

(i) If the sequence (Ik(uk)) of energies is bounded, then the sequences
(‖ũk‖H1(Ω′

k
)), (‖∇̄u′k‖L2(Ω′

k
)) and (‖∇̄uk‖L2(Ω′′

k
)) are bounded, too.

(ii) If the sequence (χΩ′
k
δ−2
k dist2(Z + δk∇̄u′k, S̄O(d))) or, equivalently, the se-

quence (χΩ′
k
δ−2
k dist2(Id + δk∇ũk, SO(d))) is equiintegrable on R

d, then both

(χΩ′
k
|∇̄u′k|2) and (χΩ′

k
|∇ũk|2) are equiintegrable, too.

Proof. (i) If Ik(uk) ≤ C, then by Lemmas 3.6, 3.2 and 3.7 we also have
∫

Ω′
k

dist2(Id + δk∇ũk, SO(d)) ≤ C

∫

Ω′
k

dist2(Z + δk∇̄u′k, S̄O(d)) + Cδ2k

≤ Cεd
k

∑

x̄∈L′
εk

(Ω)◦

Wcell(Z + δk∇̄uk(x̄)) + Cδ2k ≤ Cδ2k.

(We follow the convention of denoting possibly different constants with the same
letter.) Applying the continuum results of [5], in particular Proposition 3.4 and
Poincaré’s inequality, we find that the ũk are equibounded in H1(g, ∂Ω∗,Ω). By
the construction of u′k and by Lemmas 3.5 and 3.4 we then find that

‖∇̄uk‖2
L2(Ω′′

k
) ≤ C‖∇̄u′k‖2

L2(Ω′
k
) ≤ C‖∇ũk‖2

L2(Ω′′
k
) ≤ C.

(ii) First note that Lemma 3.6 implies that (χΩ′
k
δ−2
k dist2(Id + δk∇ũk, SO(d)))

is equiintegrable if and only if (χΩ′
k
δ−2
k dist2(Z + δk∇̄u′k, S̄O(d))) is equiintegrable.

This follows from the fact that there is a constant c > 0 such that δ−2
k dist2(Z +

δk∇̄u′k, S̄O(d)) ≥M on a cell Q can only hold if δ−2
k dist2(Id+δk∇ũk, SO(d)) ≥ cM

on one of the d-simplices on which ũk is interpolated linearly and, vice versa, if
δ−2
k dist2(Id + δk∇ũk, SO(d)) ≥ M , then δ−2

k dist2(Z + δk∇̄u′k, S̄O(d)) ≥ cM on
Q. An analogous argument shows that (χΩ′

k
|∇ũk|2) is equiintegrable if and only if

(χΩ′
k
|∇̄u′k|2) is equiintegrable.

As a consequence we can refer to the continuum case investigated in Lemma 4.2
in [10], from which it follows that if (δ−2

k dist2(Id+δk∇ũk, SO(d))) is equiintegrable,
then so is (χΩ|∇ũk|2). The claim now follows from Lemmas 3.5 and 3.4.

Suppose (uk) is a sequence in Aεk
(g, ∂Ω∗,Ω) such that (Ik(uk)) is bounded. By

Lemma 4.1 we immediately deduce that for a suitable subsequence (not relabeled)
ũk ⇀ u in H1 for some u ∈ H1(g, ∂Ω∗,Ω). Passing to a further subsequence we also
see from Lemma 4.1 that there exists f ∈ L2(Ω,Rd) such that χΩ′

k
∇̄u′k ⇀ χΩf in

L2, and so χΩ′′
k
∇̄uk ⇀ χΩf in L2. Noting that any compact subset of Ω\(∂Ω \ ∂Ω∗)

is eventually contained in Ω′′
k, we see that ∇̄uk ⇀ f in L2

loc(Ω \ (∂Ω \ ∂Ω∗)).
To finish the first part of the proof of Theorem 2.6, it remains to show that

f = ∇u · Z. Let V ⊂⊂ Ω. For i ∈ {1, . . . , 2d} denote by ∂̄iuk and fi the i-th
columns of ∇̄uk and f , respectively. Note that

∂̄iuk(x) ⇀ fi, ∂̄1uk(x+ εk(zi − z1)) ⇀ f1 in L2(V ).
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For x ∈ V compute

∂̄iuk(x) = ε−1
k (ũk(x̄ + εkzi) − ũk(x̄))

= ε−1
k (ũk(x̄ + εk(zi − z1) + εkz1) − ũk(x̄+ εk(zi − z1)))

+ ε−1
k (ũk(x̄+ εk(zi − z1)) − ũk(x̄))

= ∂̄1uk(x̄+ εk(zi − z1))

+ ε−1
k −
∫

A[− εk
2 ,

εk
2 )d

ũk(x̄+ εk(zi − z1) + ξ) − ũk(x̄+ ξ) dξ

= ∂̄1uk(x+ εk(zi − z1))

+ ε−1
k (Pεk

ũk(x+ εk(zi − z1)) − Pεk
ũk(x))

by construction (see (6) and (5)). Now observe that for a test function ψ ∈
C∞

c (V,Rd)

ε−1
k

∫

V

(Pεk
ũk(x+ εk(zi − z1)) − Pεk

ũk(x))ψ(x) dx

=

∫

V

Pεk
ũk(x)

ψ(x − εk(zi − z1)) − ψ(x)

εk

dx

for εk sufficiently small. Since ũk → u in L2 and ‖Pεk
‖ ≤ 1 by Jensen’s inequality,

the first term Pεk
ũk in the integral converges strongly to u. The second term

converges to −∇ψ · (zi − z1) uniformly. Summarizing, we have shown that
∫

V

(fi − f1)(x)ψ(x) dx =

∫

V

u(x)∇ψ(x) · (zi − z1) dx

and hence, since V was arbitrary,

fi − f1 = ∇u · (zi − z1).

The claim now follows from

2d

∑

i=1

fi = lim
k→∞

2d

∑

i=1

∂̄iuk = 0 =
2d

∑

i=1

∇u · zi.

�

4.2. The Gamma-liminf inequality.

Let εd
k

∑

x∈Lεk
(Ω)◦∪∂Lεk

(Ω)∗
|uk(x) − Pεk

u(x)|2 → 0 and assume without loss of

generality Ik(uk) ≤ C, so that by the compactness properties proved in the previous
paragraph we may assume that u′k → u, ∇̄u′k ⇀ ∇u · Z.

Using Lemma 3.7 and Lemma 3.2 (set Vk = Vεk
) we can compute

Ik(uk) = δ−2
k εd

k

∑

x̄∈L′
εk

(Ω)

Wεk
(x̄, εk(Z + δk∇̄uk(x̄)))

≥ δ−2
k εd

k

∑

x̄∈L′
εk

∩Ω′′

Wcell(Z + δk∇̄uk(x̄))

≥ δ−2
k

detA

∫

Vk

Wcell(Z + δk∇̄uk(x)) dx

+ cδ−2
k

∫

Ω′
k
\Vk

dist2(Z + δk∇̄u′k(x), S̄O(d)) dx
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for some c > 0. By Assumption 2.1 we can write Wcell(Z + F ) = 1
2Qcell(F ) + ω(F )

with sup{ω(F )
|F |2 : |F | ≤ ρ} → 0 as ρ→ 0. Let (ηk) be a sequence of positive numbers

and set χk(x) := χ[0,ηk)(|∇̄uk(x)|). Using Lemma 3.7 once more, we find

Ik(uk) ≥ δ−2
k

detA

∫

Vk

χk(x)Wcell(Z + δk∇̄uk(x)) dx

+ cδ−2
k

∫

Ω′
k

(1 − χk(x)) dist2(Z + δk∇̄u′k(x), S̄O(d)) dx

=
1

2 detA

∫

Vk

χk(x)
(

Qcell(∇̄uk(x)) + δ−2
k ω(δk∇̄uk(x))

)

dx

+ cδ−2
k

∫

Ω′
k

(1 − χk(x)) dist2(Z + δk∇̄u′k(x), S̄O(d)) dx,

where the second term inside the first integral can be bounded by

χk|∇̄uk|2
ω(δk∇̄uk)

|δk∇̄uk|2
.

Now if ηk is such that ηk → ∞ and ηkδk → 0, then, since χΩ′
k
|∇̄u′k| is bounded in

L2 and χΩ′
k
χk

ω(δk∇̄uk)

|δk∇̄uk|2 converges to zero uniformly as k → ∞, we deduce that

lim inf
k→∞

Ik(uk) ≥ lim inf
k→∞

1

2 detA

∫

Ω

Qcell

(

χVk
(x)χk(x)∇̄uk(x)

)

dx

+ c lim inf
k→∞

δ−2
k

∫

Ω′
k

(1 − χk(x)) dist2(Z + δk∇̄u′k(x), S̄O(d)) dx.

Now observe that χVk
χk converges to 1 boundedly in measure, so

χVk
χk∇̄uk ⇀ ∇u · Z in L2(Ω).

By lower semicontinuity we obtain

lim inf
k→∞

Ik(uk) ≥ 1

2 detA

∫

Ω

Qcell(∇u · Z) dx

+ c lim inf
k→∞

δ−2
k

∫

Ω′
k

(1 − χk(x)) dist2(Z + δk∇̄u′k(x), S̄O(d)) dx. (9)

Since the latter term is non-negative and F 7→ Qcell(F ·Z) vanishes on antisymmetric
matrices (see (4)), the lower bound in Theorem 2.6 is proved. �

The benefit of proving a sharper estimate in (9) than needed to obtain the Γ-
lim inf inequality is seen in the proof of the following observation.

Lemma 4.2. For a recovery sequence (uk) the terms χΩ′
k
δ−2
k dist2(Z+δk∇̄u′k, S̄O(d))

are equiintegrable.

Proof. Suppose this were not the case. Then there exists γ > 0 such that for each
m ∈ N we find k = k(m) ∈ N such that

∫

{|∇̄u′
k
|>m}∩Ω′

k

δ−2
k dist2(Z + δk∇̄u′k, S̄O(d)) ≥ γ.

Without loss of generality we may choose k(m) such that k(1) < k(2) < . . . and
mδk(m) ≤ m−1. Now choose ηk as the inverse of m 7→ k(m) wherever it is defined,
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i.e., such that ηk(m) = m, and note that δk(m)ηk(m) = mδk(m) ≤ m−1 = η−1
k(m).

Then for the subsequence (u′
k(m)) we have

∫

{|∇̄u′
k(m)

|>ηk(m)}∩Ω′
k(m)

δ−2
k(m) dist2(Z + δk(m)∇̄u′k(m), S̄O(d)) ≥ γ.

Taking the lim inf of this expression we find by using (9) that

lim inf
k→∞

Ik(uk) ≥ I(u) + cγ.

This contradicts the fact that (uk) is a recovery sequence for u.

Lemma 4.3. If (uk) is a recovery sequence, then (χΩ′
k
|∇ũk|2) and (χΩ′

k
|∇̄u′k|2) are

equiintegrable.

Proof. Immediate from Lemma 4.1(ii) and Lemma 4.2.

4.3. Recovery sequences. By density it suffices to provide recovery sequences
for u ∈ W 1,∞(Ω,Rd) with u = g on ∂Ω∗. Extending u we may assume that u ∈
W 1,∞(Rd,Rd). Recall the definition of Pε from (5) and define lattice displacements
uk ∈ Aεk

(g, ∂Ω∗,Ω) by

uk(x) =

{

Pεk
u(x), for x ∈ Lεk

\ ∂Lεk
(Ω)∗,

g(x), for x ∈ ∂Lεk
(Ω)∗

(10)

(and interpolate to obtain ũk : Ω′
k → R

d as before).

Lemma 4.4. Let (uk) be the sequence of functions defined in (10). Then uk → u
in the sense of Definition 2.5, χΩ′

k
∇̄uk → χΩ∇u · Z strongly in L2 and ũk → u

strongly in H1(Ω).

Proof. Note first that ‖∇̄uk‖L∞ is bounded. This is easily seen on lattice cells not
neighboring a Dirichlet boundary cell and on Dirichlet boundary cells it follows
from ∇g ∈ L∞. If Q = Qεk

(x̄) and Q′ = Qεk
(x̄′) are cells with Q ∩ Q′ 6= ∅ and

x̄′ ∈ ∂L′
εk

(Ω)∗, then by the remark below Definition 2.3 and by Definition 2.4(i)

there exists a ∈ R
d with |a| bounded independently of x̄, x̄′ and εk such that

x̄′ + εka ∈ ∂Ω∗. For all pairs of corners (x̄+ εkzi, x̄+ εkzj) of Q we have

|uk(x̄+ εkzi) − uk(x̄+ εkzj)|
≤ |uk(x̄ + εkzi) − u(x̄′ + εka)| + |uk(x̄+ εkzj) − u(x̄′ + εka)|.

Since u(x̄′+εka) = g(x̄′+εka), the estimate now also follows onQ from u, g ∈W 1,∞.
Since uk = Pεk

u on all inner cells and ‖∇̄uk‖L∞ is bounded, we have

εd
k

∑

x∈Lεk
∩Ω

|uk(x) − Pεk
u(x)| ≤ Cεk → 0

as k → ∞, i.e, uk → u.
Let Uk = Pεk

∇u(· + ( εk

2 , . . . ,
εk

2 )). In order to see that ∇̄uk → ∇u · Z in L2, it

suffices to show that ∇̄uk − Uk · Z → 0, because Uk · Z → ∇u · Z in L2. Choose
c > 0 such that Vk := {x ∈ Ω : dist(x, ∂Ω) > cεk} satisfies ∂Lεk

(Ω) ∩ Vk 6= ∅. Since
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∇̄uk and Uk are constant on lattice cells, we have

‖∂̄iuk − ∂̄1uk − Uk · (zi − z1)‖2
L2(Ω′

k
)

≤ Cεd
k

∑

x̄∈L′
εk

∩Vk

∣

∣∂̄iuk(x̄) − ∂̄1uk(x̄) − Uk(x̄) · (zi − z1)
∣

∣

2
+ Cεk

= Cεd
k

∑

x̄∈L′
εk

∩Vk

∣

∣

∣

∣

−
∫

A[0,εk)d

(

u(x̄+ εkzi + ξ) − u(x̄+ εkz1 + ξ)

εk

−∇u(x̄+ ξ) · (zi − z1)

)

dξ

∣

∣

∣

∣

2

+ Cεk

≤ C

∫

Ω

∣

∣

∣

∣

u(ξ + εkzi) − u(ξ + εkz1)

εk

−∇u(ξ) · (zi − z1)

∣

∣

∣

∣

2

dξ + Cεk

by Jensen’s inequality. This is easily seen to tend to 0 as εk → 0 (see, e.g., Lemma

A.2 in [9]). Since
∑2d

i=1 ∂̄iuk = 0 for all k and
∑2d

i=1 zi = 0, it follows that ∇̄uk →
∇u · Z. (It is not hard to see that this also implies that ∇ũk → ∇u, see, e.g.,
Lemma A.1 in [9].)

We finish the proof of Theorem 2.6 by showing that uk as defined above is a re-
covery sequence for u. By Lemma 4.4 it remains to prove that lim supk→∞ Ik(uk) ≤
I(u).

The termsWsurface(Iεk
(x̄), Z+δk∇̄uk(x̄)) on boundary cells are uniformly bounded.

If Wsurface and Wcell are compatible, they are even bounded by Cδ2k for some C > 0.
It follows that

Ik(uk) ≤ 1

detA

∫

Ω

δ−2
k Wcell(Z + δk∇̄uk(x)) dx + Cδ−2

k εk,

where the error term can be improved to Cεk for Wsurface and Wcell compatible.
Since F 7→ δ−2

k Wcell(Z + δkF ) converges uniformly on compacta to 1
2Qcell and

the error terms Cδ−2
k εk (resp. Cεk) converge to zero, we obtain from Lemma 4.4

lim sup
k→∞

Ik(uk) ≤ 1

2 detA

∫

Ω

Qcell(∇u(x) · Z) dx.

�

Proof of Theorem 2.7. Let (uk) be a recovery sequence for u. Strong convergence
∇̄u′k → ∇u · Z follows from a convexity argument and equiintegrability of the
discrete gradients of recovery sequences proved in Lemma 4.3 (also compare [10]).

For Vk as in the proof of Lemma 4.4 we have

Ik(uk) − I(ũk) ≥ 1

detA

∫

Vk∩{|∇̄uk|≤M}

(

δ−2
k Wcell(Z + δk∇̄uk) − 1

2
Qcell(∇ũk · Z)

)

− 1

detA

∫

(Vk∩{|∇̄uk|>M})∪(Ω\Vk)

1

2
Qcell(∇ũk · Z)

for all M > 0. Sending first k and then M to ∞, since F 7→ δ−2
k Wcell(Z + δkF )

converges uniformly on compacta to 1
2Qcell, we obtain

I(u) − lim sup
k→∞

I(ũk) ≥ lim inf
k→∞

Ik(uk) − I(ũk) ≥ 0 (11)
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by Lemma 4.4 and equiintegrability of (|∇ũk|2). But Qcell grows quadratically on
the subspace perpendicular to infinitesimal rotations and translations. In particular,

1

2
Qcell(F · Z) ≥ c

∣

∣

∣

∣

FT + F

2

∣

∣

∣

∣

2

and so

c

∫

Ω

|e(ũk) − e(u)|2

≤ 1

2 detA

∫

Ω

Qcell(∇ũk · Z) − 2Qcell(∇ũk · Z,∇u · Z) +Qcell(∇u · Z).

By Lemma 4.1 ∇ũk converges weakly to ∇u, so (11) implies

lim sup
k→∞

c

∫

Ω

|e(ũk) − e(u)|2 = 0.

The strong convergence of ∇ũk to ∇u in L2(Ω) now follows from Korn’s inequality.
By Lemma 4.3 we now deduce that in fact χΩ′

k
∇ũk and χΩ′

k
∇̄uk converge to χΩ∇u

and χΩ∇u·Z strongly in L2(Rd), respectively. Using again that any compact subset

of Ω\ (∂Ω \ ∂Ω∗) is eventually contained in Ω′′
k and ∇̄u′k = ∇̄uk on Ω′′

k, we conclude
the proof.

Proof of Corollary 2.8. Just note that I has a unique minimizer w by strict con-
vexity of Qcell on symmetric matrices and Korn’s inequality. So if (wk) is a sequence
of almost minimizers of Ik, then (wk) is a recovery sequence for w. The claim thus
follows from Theorem 2.7.

5. Examples. In this section we give some examples of atomic interactions to
which the results of the previous sections apply. Motivated by the investigations in
[8, 2, 9] we examine mass spring models: lattices of atoms whose energy is given
by springs between nearest and next nearest neighbors. We also provide explicit
formulas for the (partly well-known) limiting functionals, which can be derived by
elementary calculations.

5.1. The triangular lattice in 2D. The nearest neighbor interaction

Eε(y) =
ε2

2

∑

x1,x2∈Lε∩Ω

|x1−x2|=ε

K

2

( |y(x1) − y(x2)|
ε

− 1

)2

,

on the triangular lattice L = AZ
2 =

(

1 1
2

0
√

3
2

)

Z
2 in 2D for deformations that

are locally orientation preserving, i.e., whose affine interpolation has nonnegative
determinant on each triangle of the induced triangulation, has been analyzed by
Braides, Solci and Vitali in [2]. We include it here for the sake of completeness.

Denoting the i-th column of F ∈ R
2×4 by Fi and choosing the numbering of zi

such that Z = 1
2A

(

−1 1 1 −1
−1 −1 1 1

)

, the associated cell energy is given by

Wcell(F ) =
K

4

(

(|F2 − F1| − 1)2 + (|F3 − F2| − 1)2

+ (|F4 − F3| − 1)2 + (|F1 − F4| − 1)2 + 2(|F4 − F2| − 1)2
)
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on orientation preserving discrete gradients. Wsurface (compatible with Wcell) is
defined appropriately. This is an admissible cell energy, and we have thus re-derived
the limiting functional

I(u) =
1

2 detA

∫

Ω

Qcell(e(u) · Z) =

√
3K

8

∫

Ω

2|e(u)|2 + (trace e(u))2

from [2].

5.2. A mass spring model in 2D. The following energy functional has been
introduced and studied by Friesecke and Theil in [8]. Let L = Z

2. For a deformation
y : Lε ∩ Ω → R

2 let

Eε(y) =
ε2

2

∑

x1,x2∈Lε∩Ω

|x1−x2|=ε

K1

2

( |y(x1) − y(x2)|
ε

− a1

)2

+
ε2

2

∑

x1,x2∈Lε∩Ω

|x1−x2|=
√

2ε

K2

2

( |y(x1) − y(x2)|
ε

− a2

)2

+
∑

x̄∈L′
ε(Ω)

χ(∇̄y(x̄))

with χ = 0 on orientation preserving cell deformations and = ∞ otherwise. (We
will only need that χ is zero in a neighborhood of S̄O(2) and positive (≥ c > 0) on
Ō(2) \ S̄O(2).

Denoting the i-th column F · zi of F ∈ R
2×4 by Fi, the associated cell energy is

given by

Wcell(F ) =
1

4

∑

|zi−zj |=1

K1

2
(|Fi − Fj | − a1)

2

+
1

2

∑

|zi−zj|=
√

2

K2

2
(|Fi − Fj | − a2)

2 + χ(F ),

the surface energy expressions are defied appropriately.
We choose units such that K1a1 +

√
2K2a2 = K1 + 2K2, i.e., such that Z is

a stationary point of Wcell (with µ := Wcell(Z) = K1(1 − a1)
2 + K2(

√
2 − a2)

2).
In [8] it is shown that indeed for a parameter region (open with respect to the

constraint K1a1 +
√

2K2a2 = K1 + 2K2) Wcell grows quadratically on the subspace
perpendicular to infinitesimal translations and rotations. Now note that Theorems
2.6 and 2.7 apply to the energy functional Eµ

ε that arises from Eε by replacing Wcell

with Wcell − µ. The limiting linear energy functional is given by

I(u) =
1

2

∫

Ω

Qcell(e(u) · Z),

where the quadratic form R
2×2
sym ∋ F 7→ Qcell(F · Z) is given by

F 7→ K1a1|F |2 +
a2K2

2
(traceF )2 + 2(

√
2a2K2 − a1K1)f

2
12.

Remarks. (i) Note that for a1 6= 1, a2 6=
√

2 the bulk and surface contribu-
tions are not compatible and µ > 0. Our result can be interpreted as a
Γ-development of the functionals u 7→ Eεk

(Id + δku): Subtracting the zeroth
order constant Γ-limit µ|Ω|, the above calculated Γ-limit is just the Γ-limit of

u 7→ δ−2
k (Eεk

(Id + δku) − µ|Ω|) = δ−2
k Eµ

εk
(Id + δku) + Cεkδ

−2
k .

(See, e.g., [1] for the notion of development by Γ-convergence.)
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(ii) If a1 = 1, a2 =
√

2, we have µ = 0. In this case Wcell and Wsurface are
compatible.

5.3. A mass spring model in 3D. The following energy functional has been
investigated in [9] for a1 = 1, a2 =

√
2. Let L = Z

3. For a deformation y : Lε∩Ω →
R

3 let

Eε(y) =
ε3

2

∑

x1,x2∈Lε∩Ω

|x1−x2|=ε

K1

2

( |y(x1) − y(x2)|
ε

− a1

)2

+
ε3

2

∑

x1,x2∈Lε∩Ω

|x1−x2|=
√

2ε

K2

2

( |y(x1) − y(x2)|
ε

− a2

)2

+
∑

x̄∈L′
ε(Ω)

χ(∇̄y(x̄)).

The non-negative term χ is assumed to be non-zero only for deformations which
are not locally orientation preserving, in particular it is zero in a neighborhood of
S̄O(3) and positive (≥ c > 0) on Ō(3) \ S̄O(3).

The associated cell energy on R
3×8 is given by

Wcell(F ) =
1

8

∑

|zi−zj |=1

K1

2
(|Fi − Fj | − a1)

2

+
1

4

∑

|zi−zj|=
√

2

K2

2
(|Fi − Fj | − a2)

2 + χ(F ),

the surface energy is chosen appropriately.
In [9] it is shown that for a1 = 1, a2 =

√
2, Wcell is an admissible cell energy in

the sense of Assumption 2.1 for all K1,K2 > 0. Noting that for a1 6= 1, a2 6=
√

2
the cell energy can be written as a sum of 2D cell energies over the cube’s faces as
in the previous example, a necessary condition that Wcell be equilibrated on Z is
that K1

4 a1 +
√

2K2

2 a2 = K1

4 + 2K2

2 , i.e., K1a1 + 2
√

2K2a2 = K1 + 4K2.
For given K1, K2, a perturbation argument – using that the in-plane displace-

ments on every face are minimized precisely on the unit square by our previous
example – shows that (up to a constant) Wcell still is an admissible energy function

for small deviations from the perfectly equilibrated system if K1a1 + 2
√

2K2a2 =
K1 +4K2. So again our results of the previous sections apply (after subtracting the

zeroth order term µ|Ω|, µ = K1(1 − a1)
2 + 3K2(

√
2 − a2)

2).
The quadratic form R

3×3
sym ∋ F 7→ Qcell(F · Z) is given by

F 7→
(

K1 +

(

4 − 3a2√
2

)

K2

)

|F |2 +
a2K2√

2
(traceF )2

+
(√

2a2K2 − 2a1K1

)

(

f2
12 + f2

13 + f2
23

)

.

5.4. bcc crystals. Although the bcc crystal L = K ∪M with K = Z
3 and M =

(1
2 ,

1
2 ,

1
2 )T +Z

3 is a Bravais-lattice (spanned, e.g., by (1, 0, 0)T , (0, 1, 0)T , (1
2 ,

1
2 ,

1
2 )T ),
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the nearest and next-nearest neighbor pair interaction functional

Eε(y) =
ε3

2

∑

x1,x2∈Lε∩Ω

|x1−x2|=
√

3ε
2

K1

2

(

|y(x1) − y(x2)|
ε

−
√

3

2

)2

+
ε3

2

∑

x1,x2∈Lε∩Ω

|x1−x2|=ε

K2

2

( |y(x1) − y(x2)|
ε

− 1

)2

(with orientation preserving condition) cannot be decomposed in the form (2) as a
sum of suitable cell energies over the lattice unit cells.

However, since the individual interactions are equilibrated in the reference con-
figuration, we can still apply our results to derive the limiting linear theory: As-
sume that boundary conditions are prescribed for every boundary atom ∂Kε(Ω) and
∂Mε(Ω) of Ω ∩ εK and of Ω ∩ εM, respectively. For F ∈ R

3×8, c ∈ R
3, let

W̃cell(F, c) =
1

2

∑

1≤i≤8

K1

2

(

|Fi − c| −
√

3

2

)2

+
1

8

∑

|zi−zj|=1

K2

2
(|Fi − Fj | − 1)

2
+ χ(F ),

χ as before. Then Wcell(F ) := minc∈R3 W̃cell(F1 − c, . . . , F8 − c) is an admissible
cell energy function and – up to boundary terms –

Eε(y) ≥
∑

x̄∈(Z3)′ε(Ω)

Wcell(∇̄y1(x̄)) +
∑

x̄∈(Z3)′′ε (Ω)

Wcell(∇̄y2(x̄)), (12)

where y1, y2 denote the restrictions of y to the sets K′
ε(Ω) and M′

ε(Ω), respectively
(cf. Definition 2.3). A simple convexity argument shows that, in the limit ∇̄y ≈
∇ỹ · Z, we obtain Wcell(∇̄y) = W̃cell(∇̄y, 0) and the lower bound (12) becomes
sharp.

As a consequence, the result of the preceding sections also apply here, and we
obtain the limiting functional

I(u) =
1

2 det Id

∫

Ω

2Qcell(e(u) · Z) =

∫

Ω

Qcell(e(u) · Z)

with

Qcell(F · Z) = K2|F |2 +K1(traceF )2 + (4K1 − 2K2)(f12 + f13 + f23)
2

for F ∈ R
3×3 symmetric.
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