In this paper we deal with the homogenization of stochastic nonlinear hyperbolic equations with periodically oscillating coefficients involving nonlinear damping and forcing driven by a multi-dimensional Wiener process. Using the two-scale convergence method and crucial probabilistic compactness results due to Prokhorov and Skorokhod, we show that the sequence of solutions of the original problem converges in suitable topologies to the solution of a homogenized problem, which is a nonlinear damped stochastic hyperbolic partial differential equation. More importantly, we also prove the convergence of the associated energies and establish a crucial corrector result.
Citation: Mogtaba Mohammed, Mamadou Sango. Homogenization of nonlinear hyperbolic stochastic partial differential equations with nonlinear damping and forcing[J]. Networks and Heterogeneous Media, 2019, 14(2): 341-369. doi: 10.3934/nhm.2019014
[1] | Mogtaba Mohammed, Mamadou Sango . Homogenization of nonlinear hyperbolic stochastic partial differential equations with nonlinear damping and forcing. Networks and Heterogeneous Media, 2019, 14(2): 341-369. doi: 10.3934/nhm.2019014 |
[2] | Catherine Choquet, Ali Sili . Homogenization of a model of displacement with unbounded viscosity. Networks and Heterogeneous Media, 2009, 4(4): 649-666. doi: 10.3934/nhm.2009.4.649 |
[3] | Alexander Mielke, Sina Reichelt, Marita Thomas . Two-scale homogenization of nonlinear reaction-diffusion systems with slow diffusion. Networks and Heterogeneous Media, 2014, 9(2): 353-382. doi: 10.3934/nhm.2014.9.353 |
[4] | Liselott Flodén, Jens Persson . Homogenization of nonlinear dissipative hyperbolic problems exhibiting arbitrarily many spatial and temporal scales. Networks and Heterogeneous Media, 2016, 11(4): 627-653. doi: 10.3934/nhm.2016012 |
[5] | Erik Grandelius, Kenneth H. Karlsen . The cardiac bidomain model and homogenization. Networks and Heterogeneous Media, 2019, 14(1): 173-204. doi: 10.3934/nhm.2019009 |
[6] | Hakima Bessaih, Yalchin Efendiev, Florin Maris . Homogenization of the evolution Stokes equation in a perforated domain with a stochastic Fourier boundary condition. Networks and Heterogeneous Media, 2015, 10(2): 343-367. doi: 10.3934/nhm.2015.10.343 |
[7] | Junlong Chen, Yanbin Tang . Homogenization of nonlinear nonlocal diffusion equation with periodic and stationary structure. Networks and Heterogeneous Media, 2023, 18(3): 1118-1177. doi: 10.3934/nhm.2023049 |
[8] | Martin Heida, Benedikt Jahnel, Anh Duc Vu . Regularized homogenization on irregularly perforated domains. Networks and Heterogeneous Media, 2025, 20(1): 165-212. doi: 10.3934/nhm.2025010 |
[9] | Didier Georges . Infinite-dimensional nonlinear predictive control design for open-channel hydraulic systems. Networks and Heterogeneous Media, 2009, 4(2): 267-285. doi: 10.3934/nhm.2009.4.267 |
[10] | Xavier Blanc, Claude Le Bris . Improving on computation of homogenized coefficients in the periodic and quasi-periodic settings. Networks and Heterogeneous Media, 2010, 5(1): 1-29. doi: 10.3934/nhm.2010.5.1 |
In this paper we deal with the homogenization of stochastic nonlinear hyperbolic equations with periodically oscillating coefficients involving nonlinear damping and forcing driven by a multi-dimensional Wiener process. Using the two-scale convergence method and crucial probabilistic compactness results due to Prokhorov and Skorokhod, we show that the sequence of solutions of the original problem converges in suitable topologies to the solution of a homogenized problem, which is a nonlinear damped stochastic hyperbolic partial differential equation. More importantly, we also prove the convergence of the associated energies and establish a crucial corrector result.
Homogenization theory has become an important tool in the investigation of processes taking place in highly heterogenous media ranging from soil to the most advanced aircraft the construction of which uses composite materials. So far, the problems solved by means of homogenization have mainly involved deterministic partial differential equations (PDEs) and the homogenization of PDEs with randomly oscillating coefficients; the great wealth of results obtained over several decades on problems of diverse classes and methodologies can be found for instance in [9,6,40,41,23,34,22,49,31,17,4,32,36,46,50,33], for the deterministic case and [13,14,18,20,24,37,19,47,48]. for the random case. Fundamental methods were subsequently developed such as the method of asymptotic expansions ([9], [6], [40], [41]), the two scale-convergence ([4], [32]), Tartar method of oscillating test functions and H-convergence ([49]), the asymptotic method for non periodically perforated domains ([23], [46]), G-convergence ([36]) and
However physical processes under random fluctuations are better modelled by stochastic partial differential equations (SPDEs). It was therefore natural to consider homogenization of this very important class of PDEs. Research in this direction is still at its infancy, despite the importance of such problems in both applied and fundamental sciences. Some relevant interesting work have recently been undertaken, mainly for parabolic SPDEs; see for instance [3,8,10,11,21,43,44]. We also note the closely related work [3,25,15,16] dealing with stochastic homogenization for SPDEs with small parameters. The list of references is of course not exhaustive, but a representation of the main trends in the field.
The homogenization of hyperbolic SPDEs was initiated in [27], [28,29], [30] where the authors studied the homogenization of Dirichlet problems for linear hyperbolic equation with rapidly oscillating coefficients using the method of the two-scale convergence pioneered by Nguetseng in [32] and developed by Allaire in [4] and [5]; they also dealt with the linear Neumann problem by means of Tartar's method and obtained the corresponding corrector results within these settings; [30] deals with a semilinear hyperbolic SPDE by Tartar's method.
In the present work, following the two-scale convergence method, we investigate the homogenization of a non-linear hyperbolic equation with nonlinear damping, where the intensity of the noise is also nonlinear and is assumed to satisfy Lipschitz's condition. Our investigation relies on crucial compactness results of analytic (Aubin-Lions-Simon's type) and probabilistic (Prokhorov and Skorokhod fundamental theorems) nature. It should be noted that these methods extend readily to the case when Lipschitz condition on the intensity of the noise is replaced by a mere continuity. In contrast to the linear and the semilinear cases considered in previous papers, the type of nonlinear damping and nonlinear noise in the present paper leads to new challenges in obtaining uniform a priori estimates as well as in the passage to the limit. It should be noted that the process of damping in mechanical systems is a crucial stabilizing factor when the system is subjected to very extreme tasks; mathematically this translates in some regularizing effects on the solution of the governing equations.
We are concerned with the homogenization of the initial boundary value problem with oscillating data, referred to throughout the paper as problem
$ duϵt−div(Aϵ(x)∇uϵ)dt+B(t,uϵt)dt=f(t,x,x/ε,∇uϵ)dt+g(t,x,x/ε,uϵt)dW in (0,T)×Quϵ=0 on(0,T)×∂Q,uϵ(0,x)=aϵ(x), uϵt(0,x)=bϵ(x) in Q, $
|
where
Few words about the difference between the current work and previous works by the authors on homogenization of SPDEs. Compared to [27,28,29,30], the structure of problem (
We now introduce some functions spaces needed in the sequel.
For
$ W1,p(Q)={ϕ:ϕ∈Lp(Q),∂ϕ∂xj∈Lp(Q),j=1,...,n}, $
|
where the derivatives exist in the weak sense, and
For a Banach space
$ ||ϕ||Lp(0,T;X)=(∫T0||ϕ||pXdt)1p,0≤p<∞. $
|
When
$ ‖ϕ‖L∞(0,T;X)=esssup[0,T]‖ϕ‖X<∞. $
|
For
$ ||ϕ||Lq(Ω,F,P;Lp(0,T;X))=(E||ϕ||qLp(0,T;X))1/q. $
|
When
$ ||ϕ||Lq(Ω,F,P;L∞(0,T;X))=(E||ϕ||qL∞(0,T;X))1/q. $
|
It is well known that under the above norms,
We now impose the following hypotheses on the data.
$ n∑i,j=1ai,jξiξj≥αn∑i=1ξ2i for, ξ∈Rn,ai,j∈L∞(Rn),i,j=1,…,n. $
|
(ⅰ)
(ⅱ) There exists a constant
(ⅲ) There exists a positive constant
(ⅳ)
(ⅴ) The map
(A3) We assume that
$ ||f(t,x,xε,w)||L2(Q)≤C||w||L2(Q), $
|
for any
(A4)
(A5)
●
●
$ ||gj(t,x,y,ϕ)||L2(Q)≤C(1+||ϕ||L2(Q)), $
|
(1) |
and
●
$ |gj(t,x,y,s1)−gj(t,x,y,s2)|≤L|s1−s2|, $
|
(2) |
with the constant
If
From now on we use the following oscillating functions
$ fϵ(t,x,w)=f(t,x,xε,w), gεj(t,x,ϕ)=gi(t,x,xε,ϕ). $
|
We now introduce our notion of solution; namely the strong probabilistic one.
Definition 1.1. We define the strong probabilistic solution of the problem
$ uϵ:Ω×[0,T]⟶H10(Q), $
|
satisfying the following conditions:
(1)
(2)
$ uϵ∈L2(Ω,F,P;C(0,T;H10(Q)))uϵt∈L2(Ω,F,P;C(0,T;L2(Q)))∩Lp(Ω,F,P;Lp(0,T;W1,p0(Q))), $
|
(3)
$ (uϵt(t,.),ϕ)−(uϵt(0,.),ϕ)+∫t0(Aϵ∇uϵ(s,.),∇ϕ)ds+∫t0⟨Bϵ(s,uϵt),ϕ⟩ds=∫t0(fϵ(s,.,∇uϵ),ϕ)ds+(∫t0gϵ(s,.,uϵt)dW(s),ϕ),∀ϕ∈C∞c(Q). $
|
The problem of existence and uniqueness of a strong probabilistic solution of
Theorem 1.2. Suppose that the assumptions
Our goal is to show that as
$ (P){dut−divA0∇udt+B(t,ut)dt=˜f(t,x,∇u)dt+˜g(t,x,ut)d˜W in Q×(0,T),u=0 on∂Q×(0,T),u(0,x)=a(x)∈H10(Q),ut(0,x)=b(x)∈L2(Q), $
|
where
$ A0=1|Y|∫Y(A(y)−A(y)χ(y))dy, $
|
$ {divy(A(y)∇yχ(y))=∇y⋅A(y)inYχisYperiodic, $
|
for any
$˜f(t,x,∇u)=1|Y|∫YF(t,x,y)⋅[∇xu(t,x)+∇yu1(t,x,y)]dy,˜g(t,x,ut)=1|Y|∫Yg(t,x,y,ut)dy, $
|
Here and in the sequel,
Lemma 2.1. Under the assumptions
$ Esup0≤t≤T‖uϵ(t)‖2H10(Q)≤C,Esup0≤t≤T‖uϵt(t)‖2L2(Q)≤C, $
|
(3) |
and
$ E∫T0‖uϵt(t)‖pW1,p0(Q)≤C. $
|
(4) |
Proof. The following arguments are used modulo appropriate stopping times. It
$ d[‖uϵt‖2L2(Q)+(Aϵ∇uϵ,∇uϵ)]+2⟨B(t,uϵt),uϵt)⟩dt=2(fϵ(t,x,∇uϵ)),uϵt)dt+2(gϵ(t,x,uϵt),uϵt)dW+m∑j=0‖gϵj(t,x,uϵt)‖2L2(Q)dt. $
|
Integrating over
$ ‖uϵt(t)‖2L2(Q)+(Aϵ∇uϵ(t),∇uϵ(t))+2∫t0⟨B(s,uϵt(s)),uϵt(s))⟩ds=‖uϵ1‖2L2(Q)+(Aϵ∇uϵ0,∇uϵ0)+2∫t0(fϵ(s,x,∇uϵ),uϵt)ds+2∫t0(gϵ(s,x,uϵt),uϵt)dW+m∑j=0∫t0‖gϵj(s,x,uϵt)‖2L2(Q)ds. $
|
Using the assumptions
$ E[sup0≤t≤T‖uϵt(t)‖2L2(Q)+sup0≤t≤T‖uϵ(t)‖2H10(Q)+2γ∫t0‖uϵt(s)‖pW1,p0(Q)ds]≤C[C1+∫t0‖uϵt(t)‖2L2(Q)dt+2∫t0|(fϵ(s,x,∇uϵ),uϵt)|ds+2sup0≤s≤t|∫s0(gϵ(σ,x,uϵt),uϵt)dW|], $
|
(5) |
where
$ C1=C(T)+‖uϵ1‖2L2(Q)+‖uϵ0‖2H10(Q). $
|
Using assumptions (A3), thanks to Cauchy-Schwarz's and Young's inequalities, we have
$ E∫T0|(fϵ(s,x,∇uϵ),uϵt)|dt≤E∫T0‖∇uϵ‖L2(Q)‖uϵt‖L2(Q)dt≤Esup0≤t≤T‖uϵt(t)‖L2(Q)∫T0‖∇uϵ‖L2(Q)dt≤ϱEsup0≤t≤T‖uϵt(t)‖2L2(Q)+C(ϱ)T(∫T0‖∇uϵ‖2L2(Q)dt), $
|
(6) |
where
$ Esup0≤s≤t|∫s0(gϵ(σ,x,uϵt(σ)),uϵt(σ))dW(σ)|≤CE(∫t0(gϵ(σ,x,uϵt(σ)),uϵt(σ))2dσ)12≤CE(sup0≤s≤t‖uϵt(s)‖L2(Q)∫t0‖gϵ(σ,x,uϵt(σ))‖2L2(Q)dσ)12. $
|
Again using Young's inequality and the assumptions
$ 2Esup0≤s≤t|∫s0(gϵ(σ,x,uϵt(σ)),uϵt(σ))dW|≤ϱEsup0≤s≤t‖uϵt(s)‖2L2(Q)+C(ϱ)∫T0‖gϵ(σ,uϵt(σ))‖2L2(Q)dσ≤ϱEsup0≤s≤t‖uϵt(s)‖2L2(Q)+C(ϱ)(T)+C(ϱ)∫T0‖uϵt(σ)‖2L2(Q)dσ, $
|
(7) |
for
$ Esup0≤t≤T‖uϵt(t)‖2L2(Q)+Esup0≤t≤T‖uϵ(t)‖2H10(Q)+CE∫t0‖uϵt(s)‖pW1,p0(Q)ds≤C(T,C1,C2)+CE∫t0[‖uϵt(s)‖2L2(Q)+‖uϵ(s)‖2H10(Q)]dt, $
|
(8) |
Using Gronwall's inequality, we have
$ E[sup0≤t≤T‖uϵt(t)‖2L2(Q)+sup0≤t≤T‖uϵ(t)‖2H10(Q)]≤C, $
|
and subsequently
$ E∫t0‖uϵt(s)‖pW1,p0(Q)ds≤C. $
|
The proof is complete.
The following lemma will be of great importance in proving the tightness of probability measures generated by the solution of problem
Lemma 2.2. Let the conditions of Lemma 2.1 be satisfied and let
$ Esup|θ|≤δ∫T0‖uϵt(t+θ)−uϵt(t)‖p′W−1,p′(Q)dt≤Cδp′/p, $
|
for any
Proof..
Assume that
$ uϵt(t+θ)−uϵt(t)=∫t+θtdiv(Aϵ∇uϵ)ds−∫t+θtB(s,uϵt(s))ds+∫t+θtfϵ(s,x,∇uϵ)ds+∫t+θtgϵ(s,uϵt(s))dW(s). $
|
Then
$ ‖uϵt(t+θ)−uϵt(t)‖W−1,p′(Q)≤‖∫t+θtdiv(Aϵ∇uϵ)ds‖W−1,p′(Q)+‖∫t+θtB(s,uϵt(s))ds‖W−1,p′(Q)+‖∫t+θtfϵ(s,x,∇uϵ)ds‖W−1,p′(Q)+‖∫t+θtgϵ(s,uϵt(s))dW(s)‖W−1,p′(Q). $
|
(9) |
Firstly, thanks to assumption
$ ‖∫t+θtdiv(Aϵ∇uϵ)ds‖W−1,p′(Q)≤supϕ∈W1,p0(Q):‖ϕ‖=1|⟨∫t+θtdiv(Aϵ∇uϵ)ds,ϕ⟩W−1,p′(Q),W1,p0(Q)|=supϕ∈W1,p0(Q):‖ϕ‖=1∫Q∫t+θtAϵ∇uϵ∇ϕdxds≤Csupϕ∈W1,p0(Q):‖ϕ‖=1∫t+θt‖∇uϵ‖Lp′(Q)‖∇ϕ‖Lp(Q)ds≤C∫t+θt‖∇uϵ‖L2(Q)ds≤Cθ1/2(∫t+θt‖∇uϵ‖2L2(Q)ds)1/2, $
|
(10) |
where we have used the fact that
Secondly, we use assumption
$ ‖∫t+θtB(s,uϵt(s))ds‖W−1,p′(Q)≤supϕ∈W1,p0(Q):‖ϕ‖=1|⟨∫t+θtB(s,uϵt(s))ds,ϕ⟩W−1,p′(Q),W1,p0(Q)|≤supϕ∈W1,p0(Q):‖ϕ‖=1∫t+θt‖B(s,uϵt(s))‖W−1,p′(Q)‖ϕ‖W1,p0(Q)ds≤Cθ1/p(∫t+θt‖uϵt‖pW1,p0(Q)ds)1/p′. $
|
(11) |
Thirdly,
$ ‖∫t+θtfϵ(s,x,∇uϵ)ds‖W−1,p′(Q)≤‖∫t+θtfϵ(s,x,∇uϵ)ds‖L2(Q)≤C∫t+θt‖∇uϵ‖L2(Q)≤θ1/2(∫t+θt‖∇uϵ‖2L2(Q)ds)1/2, $
|
(12) |
where we have used assumption (A3).
Using 10, 11 and 12 in 9 raised to the power
$ Esup0<θ≤δ∫T0‖uϵt(t+θ)−uϵt(t)‖p′W−1,p′(Q)dt≤CEsup0<θ≤δθp′/2∫T0(∫t+θt‖∇uϵ‖2L2(Q)ds)p′/2dt+CEsup0<θ≤δθp′/p∫T0∫t+θt‖uϵt‖pW1,p0(Q)dsdt+Esup0<θ≤δ∫T0‖∫t+θtgϵ(s,uϵt(s)dW(s)‖p′W−1,p′(Q)dt. $
|
(13) |
We now estimate the term involving the stochastic integral.
We use the embedding
$ W1,p0(Q)↪L2(Q)↪W−1,p′(Q) $
|
to get the estimate
$ Esup0<θ≤δ∫T0||∫t+θtgϵ(s,uϵt(s)dW(s)||p′W−1,p′dt≤Esup0<θ≤δ∫T0||∫t+θtgϵ(s,uϵt(s)dW(s)||p′L2(Q)dt. $
|
(14) |
Thanks to Fubini's theorem and H
$ E∫T0sup0<θ≤δ||∫t+θtgϵ(s,uϵt(s)dW(s)||p′L2(Q)dt≤∫T0(∫QEsup0<θ≤δ(∫t+θtgϵ(s,uϵt(s))dW(s))2dx)p′/2dt≤∫T0(E∫t+δt||gϵ(s,uϵt(s)||2L2(Q)ds)p′/2dt, $
|
(15) |
where we have used Burkholder-Davis-Gundy's inequality. We now invoke assumption
$ Esup0<θ≤δ∫T0||∫t+θtgϵ(s,uϵt(s)dW(s)||p′W−1,p′dt≤∫T0[E∫t+δt(1+||uϵt(s)||2L2(Q))ds]p′/2dt≤CTδp′/2. $
|
(16) |
For the first term in the right-hand side of 13, we use Fubini's theorem, H
$ Esup0<θ≤δθp′/2∫T0(∫t+θt‖∇uϵ‖2L2(Q)ds)p′/2≤δp′/2∫T0(E∫t+δt‖∇uϵ‖2L2(Q)ds)p′/2≤CTδp′. $
|
(17) |
The second term on the right hand side of 13 is estimated using 4 and we get
$ Esup0<θ≤δθp′/p∫T0∫t+θt‖uϵt‖pW1,p0(Q)dsdt≤δp′/p∫T0E∫T0‖uϵt‖pW1,p0(Q)dsdt≤Cδp′/p. $
|
(18) |
Combining 13, 16, 17 and 18, and taking into account the fact that the similar estimates hold for
$ Esup|θ|≤δ∫T0‖uϵt(t+θ)−uϵt(t)‖p′W−1,p′(Q)dt≤Cδp′/p. $
|
This completes the proof.
The following Lemmas are needed in the proof of the tightness and the study of the properties of the probability measures generated by the sequence
We have from [45]
Lemma 3.1. Let
$ Ns,p(0,T;B1)={v∈Lp(0,T;B1):suph>0h−s‖v(t+h)−v(t)‖Lp(0,T−θ,B1)<∞}. $
|
Then
The following two lemmas are collected from [12]. Let
Lemma 3.2. (Prokhorov) A sequence of probability measures
Lemma 3.3. (Skorokhod) Suppose that the probability measures
$ limn→∞ξn=ξ,P−a.s.; $
|
the symbol
Let us introduce the space
$ Z1={ϕ:sup0≤t≤T‖ϕ(t)‖2H10(Q)≤C1,sup0≤t≤T‖ϕ′(t)‖2L2(Q)≤C1}, $
|
and
$ Z2={ψ:sup0≤t≤T‖ψ(t)‖2L2(Q)≤C3,∫T0‖ψ(t)‖pW1,p0(Q)dt≤C4,∫T0‖ψ(t+θ)−ψ(t)‖p′W−1,p′(Q)≤C5θ1/p}. $
|
We endow
$ ‖(ϕ,ψ)‖Z=‖ϕ‖Z1+‖ψ‖Z2=sup0≤t≤T‖ϕ′(t)‖L2(Q)+sup0≤t≤T‖ϕ‖H10(Q)+sup0≤t≤T‖ψ(t)‖2L2(Q)+(∫T0‖ψ(t)‖pW1,p0(Q)dt)1p+(supθ>01θ1/p∫T0‖ψ(t+θ)−ψ(t)‖p′W−1,p′(Q))1p′. $
|
Lemma 3.4. The above constructed space
Proof. Lemma 3.1 together with suitable arguments due to Bensoussan [7] give the compactness of
We now consider the space
$ Ψϵ:ω↦(W(ω),uϵ(ω),uϵt(ω)). $
|
Define on
$ Πϵ(A)=P(Ψ−1ϵ(A))for allA∈B(X). $
|
Lemma 3.5. The family of probability measures
Proof. We carry out the proof following a long the lines of the proof of [27,lemma 7]. For
$ Wδ⊂C(0,T;Rm),Dδ⊂L2(0,T;L2(Q)),Eδ⊂L2(0,T;L2(Q)) $
|
such that
$ Πϵ{(W,uϵ,uϵt)∈Wδ×Dδ×Eδ}≥1−δ. $
|
This is equivalent to
$ P{ω:W(⋅,ω)∈Wδ,uϵ(⋅,ω)∈Dδ,uϵt)(⋅,ω)∈Eδ}≥1−δ, $
|
which can be proved if we can show that
$ P{ω:W(⋅,ω)∉Wδ}≤δ,P{uϵ(⋅,ω)∉Dδ}≤δ,P{uϵt)(⋅,ω).∉Eδ}≤δ. $
|
Let
$ Wδ={W(⋅)∈C(0,T;Rm):supt,s∈[0,T]n|W(s)−W(t)|≤Lδ:|s−t|≤Tn−1}. $
|
Using Arzela's theorem and the fact that
$ P(ω:η(ω)≥α)≤E|η(ω)|kαk, $
|
(19) |
where
$ P{ω:W(⋅,ω)∉Wδ}≤P[∞⋃n=1(supt,s∈[0,T]|W(s)−W(t)|≥Lδn:|s−t|≤Tn−1)]≤∞∑n=0P[n6⋃j=1(supTjn−6≤t≤T(j+1)n−6|W(s)−W(t)|≥Lδn)]. $
|
But
$ \mathbb{E}\left( W_{i}(t)-W_{i}(s)\right) ^{2k} = (2k-1)!!(t-s)^{k},\,\,\,k = 1,2,3,\dots , $ |
where
For
$ P{ω:W(.,ω)∉Wδ}≤∞∑n=0n6∑j=1(nLδ)4E(supTjn−6≤t≤T(j+1)n−6|W(t)−W(jTn−6)|4)≤C∞∑n=0n6∑j=1(nLδ)4(Tn−6)2=CT2(Lδ)4∞∑n=0n−2. $
|
Choosing
$ P{ω:W(.,ω)∉Wδ}≤δ3. $
|
Now, let
$ Dδ={z:sup0≤t≤T‖z(t)‖2H10(Q)≤Kδ,sup0≤t≤T‖z′(t)‖2L2(Q)≤Mδ}. $
|
Lemma 3.4 shows that
$ P{uϵ∉Dδ}≤P{sup0≤t≤T‖uϵ(t)‖2H10(Q)≥Kδ}+P{sup0≤t≤T‖uϵt(t)‖2L2(Q)≥Mδ}. $
|
Markov's inequality 19 gives
$ P{uϵ∉Dδ}≤1KδEsup0≤t≤T‖uϵ(t)‖2H10(Q)+1MδEsup0≤t≤T‖uϵt(t)‖2L2(Q)≤CKδ+CMδ=δ3. $
|
for
Similarly, we let
$ Bδ={v:sup0≤t≤T‖v(t)‖2L2(Q)≤K′δ,∫T0‖v(t)‖pW1,p0(Q)dt≤L′δ,supθ≤μn∫T0‖v(t+θ)−v(t)‖p′W−1,p′(Q)dt≤νnM′δ}. $
|
Owing to Proposition 3.1 in [7],
$ P{uϵt∉Bδ}≤P{sup0≤t≤T‖uϵt(t)‖2L2(Q)≥K′δ}+P{∫T0‖uϵt(t)‖pW1,p0(Q)dt≥L′δ}+P{supθ≤μn∫T0‖uϵt(t+θ)−uϵt(t)‖p′W−1,p(Q)dt≥νnM′δ}. $
|
Again thanks to 19, we obtain
$ P{uϵt∉Bδ}≤1K′δEsup0≤t≤T‖uϵt(t)‖2L2(Q)+1L′δE∫T0‖uϵt(t)‖pW1,p0(Q)dt+∑∞n=01νnM′δE{supθ≤μn∫T0‖uϵt(t+θ)−uϵt(t)‖p′W−1,p(Q)dt}≤CK′δ+CL′δ+CM′δ∑μp′/pnνn=δ3δ, $
|
for
From Lemmas 3.2 and 3.5, there exist a subsequence
$ Πϵj⇀Π $
|
weakly. From lemma 3.3, there exist a probability space
$ (Wϵj,uϵj,uϵjt)→(˜W,u,ut)inX,˜P−a.s.. $
|
(20) |
Let us define the filtration
$ ~Ft=σ{˜W(s),u(s),ut(s)}0≤s≤t. $
|
We show that
In this section, we state some key facts about the powerful two-scale convergence invented by Nguetseng [32].
Definition 4.1. A sequence
$ limϵ→0∫T0∫Qvϵψϵdxdt=1|Y|∫T0∫Q×Yv(t,x,y)ψ(t,x,y)dydxdt, $
|
(21) |
where
The following result deals with some of the properties of the test functions which we are considering; it is a modification of Lemma 9.1 from [17,p.174].
Lemma 4.2. (i) Let
$ ‖ψ(⋅,⋅,⋅ϵ)‖Lp(0,T;Lp(Q))≤‖ψ(⋅,⋅,⋅)‖Lp((0,T)×Q;Cper(Y)) $
|
(22) |
and
$ ψ(⋅,⋅,⋅ϵ)⇀1|Y|∫Yψ(⋅,⋅,y)dyweakly inLp(0,T;Lp(Q)). $
|
Furthermore if
$ limϵ→0∫T0∫Q[ψ(t,x,xϵ)]2dxdt=1|Y|∫T0∫Q×Y[ψ(t,x,y)]2dtdxdy. $
|
(23) |
(ii) If
$ 1r+1s=1p, $
|
then
$ ψ(⋅,⋅,⋅ϵ)⇀ψ1(⋅,⋅)|Y|∫Yψ2(y)dyweakly inLp(0,T;Lp(Q)). $
|
The following theorems are of great importance in obtaining the homogenization result; for their proofs, we refer to [4], [17] and [26].
Theorem 4.3. Let
$ ‖uϵ‖L2(0,T;L2(Q))<∞. $
|
(24) |
Then up to a subsequence
Theorem 4.4. Let
$ ‖uϵ‖L2(0,T;H10(Q))<∞. $
|
Then, up to a subsequence, there exists a couple of functions
$ uϵ→u 2−s inL2(0,T;L2(Q)), $
|
(25) |
$ ∇uϵ→∇xu+∇yu1 2−s inL2(0,T;L2(Q)). $
|
(26) |
The following lemma is crucial in obtaining the convergence of the stochastic integral in the next section
Lemma 4.5. The oscillating data given in (A5) satisfies the following convergence
$ g(t,x,xε,uεt)⇀˜g(t,x,ut)=:1|Y|∫Yg(t,x,y,ut)dy weakly in L2((0,T)×Q), ˜P−a.s.. $
|
(27) |
Proof. Test with
$ ∫T0∫Qg(t,x,xε,uεt)ψ(t,x,xε)dxdt=Iε1+Iε2, $
|
where
$ Iε1=∫T0∫Q[g(t,x,xε,uεjt)−g(t,x,xε,ut)]ψ(t,x,xε)dxdt,Iε2=∫T0∫Qg(t,x,xε,ut)ψ(t,x,xε)dxdt. $
|
Then
$ Iε1≤||ψ(t,x,xε)||L2((0,T)×Q)||g(t,x,xε,uεt)−g(t,x,xε,ut)||L2((0,T)×Q)≤C||uεt−ut||L2((0,T)×Q), $
|
thanks to the Lipschitz condition on
Now we can apply 2-scale convergence for the limit of
$ limε→0Iε2=∫T0∫Q∫Yg(t,x,y,ut)ψ(t,x,y)dxdt,˜P−a.s. $
|
Therefore
$ g(t,x,xε,uεt)2−s→g(t,x,y,ut), ˜P−a.s. $
|
(28) |
and this implies the result.
Remark 1. From the assumption (A5), 28 and 23, we have the following strong convergence
$ limϵ→0∫T0∫Q[g(t,x,xϵ,uϵt)]2dxdt=1|Y|∫T0∫Q×Y[g(t,x,y,ut)]2dtdxdy. $
|
(29) |
We will now study the asymptotic behaviour of the problem
Theorem 5.1. Suppose that the assumptions on the data are satisfied. Let
$ aϵj⇀a,weakly inH10(Q), $
|
(30) |
$ bϵj⇀b,weakly inL2(Q). $
|
(31) |
Then there exist a probability space
Proof. From estimates 3 and 4 and assumption
$ uϵj⇀uweakly inL∞(0,T;H10(Q))ˆP−a.s, $
|
(32) |
$ uϵjt⇀utweakly inL∞(0,T;L2(Q))ˆP−a.s, $
|
(33) |
$ uϵjt⇀utweakly inLp(0,T;W1,p0(Q))ˆP−a.s, $
|
(34) |
$ B(t,uϵjt)⇀χweakly inLp′(0,T;W−1,p′(Q))ˆP−a.s.. $
|
(35) |
Now let us identify the limit in 35. By arguing as in [38,Lemma 2.6,p. 51], we get
$ ∫t0⟨B(s,uϵjt),uϵjt⟩ds→∫t0⟨χ,ut⟩ds,weakly inL1(Ω), ∀t∈[0,T]. $
|
(36) |
Having this in hand, let
$ χϵj=ˆE∫T0⟨B(t,uϵjt)−B(t,v),uϵjt−v⟩dt. $
|
(37) |
From the monotonicity assumption
$ ˆE∫T0⟨χ−B(t,v),ut−v⟩dt≥0. $
|
For
$ ˆE∫T0⟨χ−B(t,ut(t)−λw(t)),w(t)⟩dt≥0. $
|
(38) |
Using the hemicontinuty assumption
$ ⟨χ−B(t,ut(t)−λw(t)),w(t)⟩⟶⟨χ−B(t,ut(t)),w(t)⟩, as λ⟶0, ˆP−a.s.. $
|
Now, from assumptions
$ ˆE∫T0⟨χ−B(t,ut(t)),w(t)⟩dt≥0. $
|
(39) |
But the inequality 39 is true for all
$ χ=B(t,ut(t),ˆP−a.s.. $
|
Testing problem
$ −∫T0∫QuϵjtΦt(t,x)dxdt+∫T0∫QAϵj∇uϵj∇Φdxdt+∫T0∫Q⟨Bϵj(t,uϵjt),Φ⟩dxdt=∫T0∫Qfϵj(t,x,∇uϵj)Φdxdt+∫T0∫Qgϵj(t,x,uϵjt)ΦdxdWϵj, $
|
(40) |
Using estimate 3, the convergence 20 and Theorems 4.3 and 4.4, we show the two-scale convergence
$ ∇uϵj→∇xu+∇yu1 2-s in,L2(0,T;L2(Q)). $
|
Let
$ −∫T0∫Quϵjt(t,x)[ϕt(t,x)+ϵjϕ1t(t,x,xϵj)]dxdt+∫T0∫QAϵj(x)∇uϵj(x,t)[∇xϕ(t,x)+ϵj∇xϕ1(t,x,xϵj)+∇yϕ1(t,x,xϵj)]dxdt+∫T0∫Q⟨B(t,uϵjt),[ϕt(t,x)+ϵjϕ1t(t,x,xϵj)]⟩dxdt=∫T0∫Qfϵj(t,x,∇uϵj)[ϕ(t,x)+ϵjϕ1(t,x,xϵj)]dxdt+∫T0∫Qgϵj(t,uϵjt)[ϕ(t,x)+ϵjϕ1(t,x,xϵj)]dxdWϵj. $
|
(41) |
Let us deal with these terms one by one, when
$ limϵj→0∫T0∫Quϵjt(t,x)[ϕt(t,x)+ϵjϕ1t(t,x,xϵj)]dxdt=limϵj→0∫T0∫Quϵjt(t,x)ϕt(t,x)dxdt+limϵj→0ϵj∫T0∫Quϵjt(t,x)ϕ1t(t,x,xϵj)dxdt=∫T0∫Qut(t,x)ϕt(t,x)dxdt,˜P−a.s.. $
|
The second term can be written as follows,
$ limϵj→0∫T0∫Q∇uϵj(x,t)Aϵj[∇xϕ(t,x)+∇yϕ1(t,x,xϵj)]dxdt+limϵj→0ϵj∫T0∫QAϵj∇uϵj(x,t)∇xϕ1(t,x,xϵj)dxdt. $
|
(42) |
Since
$ limϵj→0∫T0∫Q∇uϵj(x,t)Aϵj[∇xϕ(t,x)+∇yϕ1(t,x,xϵj)]dxdt=1|Y|∫T0∫Q×YA(y)[∇xu(t,x)+∇yu1(t,x,y)][∇xϕ(t,x)+∇yϕ1(t,x,y)]dydxdt. $
|
Thanks to H
$ limϵj→0ϵj∫T0∫QAϵj∇uϵj(x,t)∇xϕ1(t,x,xϵj)dxdt=0,˜P−a.s.. $
|
Again, thanks to estimate 22 and convergence 35, we have
$ limϵj→0∫T0∫Q⟨B(t,uϵjt),[ϕt(t,x)+ϵjϕ1t(t,x,xϵj)]⟩dxdt=limϵj→0∫T0∫Q⟨B(t,uϵjt),ϕt(t,x)⟩dxdt+limϵj→0ϵj∫T0∫Q⟨B(t,uϵjt),ϕ1t(t,x,xϵj)⟩dxdt=∫T0∫Q⟨B(t,ut),ϕt(t,x)⟩dxdt,˜P−a.s.. $
|
Let us write
$ limϵj→0∫T0∫Qfϵj(t,x,∇uϵj)[ϕ(t,x)+ϵjϕ1(t,x,xϵj)]dxdt=limϵj→0∫T0∫QFϵj(t,x)⋅∇uϵj[ϕ(t,x)+ϵjϕ1(t,x,xϵj)]dxdt=limϵj→0∫T0∫QFϵj(t,x)⋅∇uϵjϕ(t,x)dxdt+limϵj→0ϵj∫T0∫QFϵj(t,x).∇uϵjϕ1(t,x,xϵj)dxdt, $
|
(43) |
where we have used the assumption (A3). It is easy to see that the second term in 43, converges to zero. For the first term in the right-hand side of 43, we readily have
$ limϵj→0∫T0∫QFϵj(t,x)⋅∇uϵjϕ(t,x)dxdt=1|Y|∫T0∫Q×YF(t,x,y)⋅[∇xu+∇yu1]ϕ(t,x)dxdydt,˜P−a.s.. $
|
(44) |
Concerning the stochastic integral, we have
$ ˜E∫T0∫Qgϵj(t,x,uϵjt)[ϕ(t,x)+ϵjϕ1(t,x,xϵj)]dxdWϵj=˜E∫T0∫Qgϵj(t,x,uϵjt)ϕ(t,x)dxdWϵj+˜Eϵj∫T0∫Qgϵj(t,x,uϵjt)ϕ1(t,x,xϵj)dxdWϵj. $
|
(45) |
We deal with the term involving
$ ˜E∫T0∫Qϕ(t,x)g(t,x,xε,uεt)dWεt=˜E∫T0∫Qϕ(t,x)g(t,x,xε,uεt)d(Wεt−˜Wt)+˜E∫T0∫Qϕ(t,x)g(t,x,xε,uεt)d˜Wt. $
|
(46) |
In view of the unbounded variation of
$ gελ(uε)(t)=1λ∫T0ρ(−t−sλ)g(s,x,xε,uεs(s))ds for λ>0, $
|
(47) |
where
We have that
$ ˜E∫T0||gελ(uε)(t)||2L2(Q)dt≤˜E∫T0||g(t,x,xε,uεt(t))||2L2(Q)dt, for any λ>0, $
|
(48) |
and for any
$ gελ(uε)(t)→gε(t,x,uεt(t)) strongly in L2(˜Ω,˜F,˜P,L2((0,T)×Q)) as λ→0. $
|
(49) |
We split the first term in the right-hand side of 46 as
$ ˜E∫T0∫Qϕ(t,x)gε(t,x,uεt(t))dxd(Wεt−˜Wt)=˜E∫T0∫Qϕ(t,x)gελ(uε)(t)dxd(Wεt−˜Wt)+˜E∫T0∫Qϕ(t,x)[gε(t,x,uεt(t))−gελ(uε)(t)]dxd(Wεt−˜Wt). $
|
(50) |
Owing to 49, and Burkholder-Davis-Gundy's inequality, it readily follows that the second term in 50 is bounded by a function
$ ˜E∫T0∫Qϕ(t,x)gελ(uε)(t)d(Wεt−˜Wt)=˜E∫T0∫Q(Wεt−˜Wt)∂∂t[ϕ(t,x)gελ(uε)(t)]dt+˜E∫Qϕ(T,x)gελ(uε)(T)(WεT−˜WT). $
|
(51) |
Thanks to the conditions on
$ Wεt→˜Wt uniformly in C([0,T]), ˜P−a.s., $
|
(52) |
we get that both terms on the right-hand side of 51 are bounded by the product
$ |˜E∫T0∫Qϕ(t,x)gε(t,x,uεt(t))dxd(Wεt−˜Wt)|≤σ1(λ)+σ2(λ)η1(ε). $
|
(53) |
Thus, we infer from 46 that
$ |˜E∫T0∫Qϕ(t,x)g(t,x,xε,uεt)dxdWεt−˜E∫T0∫Qϕ(t,x)g(t,x,xε,uεt)d˜Wt|≤σ1(λ)+σ2(λ)η1(ε) $
|
(54) |
Taking the limit in 54 as
$ limε→0|˜E∫T0∫Qϕ(t,x)g(t,x,xε,uεt)dxdWεt−˜E∫T0∫Qϕ(t,x)g(t,x,xε,uεt)d˜Wt|≤σ1(λ); $
|
but the left-hand side of this relation being independent of
$ limε→0˜E∫T0∫Qϕ(t,x)g(t,x,xε,uεt)dxdWεt=limε→0˜E∫T0∫Qϕ(t,x)g(t,x,xε,uεt)d˜Wt. $
|
(55) |
Owing to 27; that is
$ g(t,x,xε,uεt)⇀˜g(t,x,ut) weakly in L2((0,T)×Q), ˜P−a.s., $
|
we can call upon the convergence theorem for stochastic integrals due to Rozovskii [39,Theorem 4,p. 63] to claim that
$ ˜E∫T0∫Qϕ(t,x)g(t,x,xε,uεt)dWt→˜E∫T0∫Qϕ(t,x)˜g(t,x,ut)d˜Wt. $
|
Hence, we deduce from 55 that,
$ ∫T0∫Qϕ(t,x)g(t,x,xε,uεt)dWεt→∫T0∫Qϕ(t,x)˜g(t,x,ut)d˜Wt, ˜P−a.s.. $
|
(56) |
For the second term in 45, thanks to Burkholder-Davis-Gundy's inequality, the assumptions on
$ limϵj→0ϵj˜Esupt∈[0,T]|∫t0∫Qϕ1(t,x,xε)g(t,x,xε,uεt)dxdWϵjt|≤Climϵj→0ϵj˜E(∫T0(∫Qϕ1(t,x,xε)g(t,x,xε,uεt)dx)2dt)12≤Climϵj→0ϵj˜E(∫T0‖g(t,x,xε,uεt)‖L2(Q)‖ϕ1(t,x,xϵj)‖L2(Q)dt)12≤Climϵj→0ϵj(∫T0‖g(t,x,xε,uεt)‖L2(Q)dt)12→0,˜P−a.s. $
|
Combining the above convergences, we obtain
$ −∫T0∫Qut(t,x)ϕt(t,x)dxdt+1|Y|∫T0∫Q×YA(y)[∇xu(t,x)+∇yu1(t,x,y)]⋅[∇xϕ(t,x)+∇yϕ1(t,x,y)]dydxdt+∫T0∫Q⟨B(t,ut),ϕ(t,x)⟩dxdt=1|Y|∫T0∫Q×YF(t,x,y).[∇xu(t,x)+∇yu1(t,x,y)]ϕ(t,x)dxdydt+∫T0∫Q˜g(t,x,ut)ϕ(t,x)˜Wdx. $
|
(57) |
Choosing in the first stage
$ ∫T0∫Q×YA(y)[∇xu(t,x)+∇yu1(t,x,y)][∇yϕ1(t,x,y)]dydxdt=0, $
|
(58) |
and
$ −∫T0∫Qut(t,x)ϕt(t,x)dxdt+∫T0∫Q×YA(y)[∇xu(t,x)+∇yu1(t,x,y)][∇xϕ(t,x)]dydxdt+∫T0∫Q⟨B(t,ut),ϕ(t,x)⟩dxdt=1|Y|∫T0∫Q×YF(t,x,y).[∇xu(t,x)+∇yu1(t,x,y)]ϕ(t,x)dxdydt+∫T0∫Q˜g(t,x,ut)ϕ(t,x)d˜Wdx. $
|
(59) |
By standard arguments (see [17]), equation 58 has a unique solution given by
$ u1(t,x,y)=−χ(y)⋅∇xu(t,x)+~u1(t,x), $
|
(60) |
where
$ {divy(A(y)∇yχ(y))=∇y⋅A(y),inY,χisYperiodic. $
|
(61) |
As for the uniqueness of the solution of 59, we prove it as follows. Using 60 in 59, one obtains that 59 is the weak formulation of the equation
$ dut−A0Δudt+B(t,ut)dt=˜f(t,x,∇u)dt+˜g(t,x,ut)d˜W, $
|
(62) |
where
$A0=1|Y|∫Y(A(y)−A(y)∇yχ(y))dy,˜f(t,x,∇u)=1|Y|∫YF(t,x,y)⋅[∇xu(t,x)+∇yu1(t,x,y)]dy, $
|
(63) |
and
$ ˜g(t,x,ut)=1|Y|∫Yg(t,x,y,ut)dy. $
|
But the initial boundary value problem corresponding to 62 has a unique solution by [38]. It remains to show that
$ −∫T0∫Quϵjt(t,x)[ϕt(t,x)+ϵjϕ1t(t,x,xϵj)]dxdt+∫T0∫QAϵj(x)∇uϵj(x,t)⋅[∇xϕ(t,x)+ϵj∇xϕ1(t,x,xϵj)+∇yϕ1(t,x,xϵj)]dxdt+∫T0∫Q⟨B(t,uϵt),[ϕ(t,x)+ϵjϕ1(t,x,xϵj)]⟩dxdt=∫T0∫Qfϵj(t,x,∇uϵj)[ϕ(t,x)+ϵjϕ1(t,x,xϵj)]dxdt+∫T0∫Qgϵj(t,x,uϵt)[ϕ(t,x)+ϵjϕ1(t,x,xϵj)]dxdWϵj+∫Quϵjt(x,0)v(x)dx, $
|
where we pass to the limit, to get
$ −∫T0∫Qut(t,x)ϕt(t,x)dxdt+∫T0∫Q×YA(y)[∇xu(t,x)+∇yu1(t,x,y)]⋅[∇xϕ(t,x)+∇yϕ1(t,x,y)]dydxdt+∫T0∫Q⟨B(t,ut),ϕ(t,x)⟩dxdt=1|Y|∫T0∫Q×YF(t,x,y)⋅[∇xu(t,x)+∇yu1(t,x,y)]ϕ(t,x)dxdydt+∫T0∫Q˜g(t,x,ut)ϕ(t,x)˜Wdxdt+∫Qb(x)v(x)dx. $
|
The integration by parts, in the first term gives
$ ∫T0∫Qdut(t,x)ϕ(t,x)dx+∫Qut(x,0)v(x)dx+∫T0∫Q×YA(y)[∇xu(t,x)+∇yu1(t,x,y)]⋅[∇xϕ(t,x)+∇yϕ1(t,x,y)]dydxdt+∫T0∫Q⟨B(t,ut),ϕ(t,x)⟩dxdt=1|Y|∫T0∫Q×YF(t,x,y)⋅[∇xu(t,x)+∇yu1(t,x,y)]ϕ(t,x)dxdydt+∫T0∫Q˜g(t,x,ut)ϕ(t,x)˜Wdxdt+∫Qb(x)v(x)dx. $
|
In view of equation 57, we deduce that
$ ∫Qut(x,0)v(x)dx=∫Qb(x)v(x)dx, $
|
for any
$ ∫T0∫Quϵj(t,x)[ϕtt(t,x)+ϵjϕ1tt(t,x,xϵj)]dxdt+∫T0∫QAϵj(x)∇uϵj(x,t)⋅[∇xϕ(t,x)+ϵj∇xϕ1(t,x,xϵj)+∇yϕ1(t,x,xϵj)]dxdt+∫T0∫Q⟨B(t,uϵt),[ϕ(t,x)+ϵjϕ1(t,x,xϵj)]⟩dxdt=∫T0∫Qfϵj(t,x,∇uϵj)[ϕ(t,x)+ϵjϕ1(t,x,xϵj)]dxdt+∫T0∫Qgϵj(t,x,uϵt)[ϕ(t,x)+ϵjϕ1(t,x,xϵj)]dxdWϵj−∫Quϵj(x,0)v(x)dx. $
|
Passing to the limit in this equation, we obtain
$ ∫T0∫Qu(t,x)ϕtt(t,x)dxdt+∫T0∫Q×YA(y)[∇xu(t,x)+∇yu1(t,x,y)]⋅[∇xϕ(t,x)+∇yϕ1(t,x,y)]dydxdt+∫T0∫Q⟨B(t,ut),ϕ(t,x)⟩dxdt=1|Y|∫T0∫Q×,YF(t,x,y)⋅[∇xu(t,x)+∇yu1(t,x,y)]ϕ(t,x)dxdydt+∫T0∫Q˜g(t,x,ut)ϕ(t,x)˜Wdxdt−∫Qa(x)v(x)dx. $
|
We integrate by parts again to obtain
$ −∫T0∫Qut(t,x)ϕt(t,x)dxdt−∫Qu(x,0)v(x)dx+∫T0∫Q×YA(y)[∇xu(t,x)+∇yu1(t,x,y)]⋅[∇xϕ(t,x)+∇yϕ1(t,x,y)]dydxdt+∫T0∫Q⟨B(t,ut),ϕ(t,x)⟩dxdt=1|Y|∫T0∫Q×YF(t,x,y)⋅[∇xu(t,x)+∇yu1(t,x,y)]ϕ(t,x)dxdydt+∫T0∫Q˜g(t,x,ut)ϕ(t,x)˜Wdxdt−∫Qa(x)v(x)dx. $
|
Using the same argument as before, we show that
Let us introduce the energies associated with the problems (
$ Eϵj(uϵj)(t)=12˜E‖uϵjt(t)‖2L2(Q)+12˜E∫QAϵj∇uϵj(x,t)⋅∇uϵj(x,t)dx+˜E∫t0⟨B(s,uϵjt),uϵjt⟩dsE(u)(t)=12˜E‖ut(t)‖2L2(Q)+12˜E∫QA0∇u(x,t)⋅∇u(x,t)dx+˜E∫t0⟨B(s,ut),ut⟩ds. $
|
But from It
$ 12˜E‖uϵjt(t)‖2L2(Q)+12˜E∫QAϵj∇uϵj(t)⋅∇uϵj(t)dx+˜E∫t0⟨B(s,uϵjt),uϵjt⟩ds=˜E[12‖uϵj1‖2L2(Q)+12∫QAϵj∇uϵj0⋅∇uϵj0dx+∫t0(fϵj(s,x,∇uϵj),uϵjt)ds+12∫t0‖gϵj(s,uϵjt)‖2L2(Q)ds+∫t0(gϵj(s,uϵjt),uϵjt)dWϵj]. $
|
Thus
$ Eϵj(uϵj)(t)=12˜E‖uϵj1‖2L2(Q)+12˜E∫QAϵj∇uϵj0⋅∇uϵj0dx+˜E∫t0(fϵj(s,x,∇uϵj),uϵjt)ds+12˜E∫t0‖gϵj(s,uϵjt)‖2L2(Q)ds, $
|
(64) |
$ E(u)(t)=12˜E‖u1‖2L2(Q)+12˜E∫QA0∇u0⋅∇u0dx+˜E∫t0(˜f(s,x,∇u),ut)ds+12˜E∫t0‖˜g(s,x,ut)‖2L2(Q)ds. $
|
(65) |
The vanishing of the expectation of the stochastic integrals is due to the fact that
Theorem 6.1. Assume that the assumptions of Theorem 5.1 are fulfilled and
$ −div(Aϵj∇aϵj)→−div(A0∇a),strongly inH−1(Q), $
|
(66) |
$ bϵj→b, strongly inL2(Q). $
|
(67) |
Then
$ Eϵj(uϵj)(t)→E(u)(t)inC([0,T]), $
|
where
Proof. Thanks to the convergences 20, 44, 29, 66 and 67, we show that
$ Eϵj(uϵj)(t)→E(u)(t),∀t∈[0,T]. $
|
Now we need to show that
$ |Eϵj(uϵj)(t)|≤12˜E‖bϵj‖2L2(Q)+α2˜E‖aϵj‖H10+˜E∫t0|(fϵj(s,x,∇uϵj),uϵjt)|ds+12∫t0‖gϵj(s,uϵjt)‖2L2(Q)ds. $
|
Thanks to the assumptions on the data
$ |Eϵj(uϵj)(t)|≤C,∀t∈[0,T]. $
|
For any
$ |Eϵj(uϵj)(t+h)−Eϵj(uϵj)(t)|≤˜E∫t+ht|(fϵj(s,x,∇uϵj),uϵjt)|ds+12˜E∫t+ht‖gϵj(s,uϵjt)‖2L2(Q)ds. $
|
Again assumptions (A3), (A5) and Cauchy-Schwarz's inequality, give
$ |Eϵj(uϵj)(t+h)−Eϵj(uϵj)(t)|≤C(h+h12). $
|
This implies the equicontinuity of the sequence
In this section, we establish a corrector result stated in the following
Theorem 7.1. Let the assumptions of Theorems 5.1 and 6.1 be fulfilled. Assume that
$ 1r+1s=12. $
|
Then
$ uϵjt−ut−ϵju1t(⋅,⋅,⋅ϵj)→0 strongly inL2(0,T;L2(Q))˜P−a.s., $
|
(68) |
$ uϵj−u−ϵju1(⋅,⋅,⋅ϵj)→0 strongly inL2(0,T;H1(Q))˜P−a.s.. $
|
(69) |
Proof. It is easy to see that
$ limϵj→0ϵju1t(⋅,⋅,⋅ϵj)→0inL2(0,T;L2(Q))˜P−a.s.. $
|
Then convergence 20 gives
$ uϵjt−ut−ϵju1t(⋅,⋅,.ϵj)→0inL2(0,T;L2(Q))˜P−a.s.. $
|
Thus 68 holds. Similarly we show that
$ uϵj−u−ϵju1(⋅,⋅,⋅ϵj)→0strongly inL2(0,T;L2(Q))˜P−a.s.. $
|
It remains to show that
$ ∇(uϵj−u−ϵju1(⋅,⋅,⋅ϵj))→0strongly inL2(0,T;[L2(Q)]n)˜P−a.s.. $
|
We have
$ ∇(uϵj−u−ϵju1(⋅,⋅,⋅ϵj))=∇uϵj−∇u−∇yu1(⋅,⋅,⋅ϵj))−ϵj∇u1(⋅,⋅,⋅ϵj)). $
|
Again
$ limϵj→0ϵj∇u1(⋅,⋅,⋅ϵj)→0inL2(0,T;[L2(Q)]n),˜P−a.s.. $
|
Now from the ellipticity assumption on the matrix
$ αE∫T0‖∇uϵj−∇u−∇yu1(⋅,⋅,⋅ϵj)‖2L2(Q)dt≤E∫T0∫QA(xϵj)(∇uϵj−∇u−∇yu1(⋅,⋅,⋅ϵj))⋅(∇uϵj−∇u−∇yu1(⋅,⋅,⋅ϵj))dxdt=E∫T0∫QAϵj∇uϵj⋅∇uϵjdxdt−2E∫T0∫Q∇uϵjA(xϵj)⋅(∇u+∇yu1(⋅,⋅,⋅ϵj))dxdt+E∫T0∫QA(xϵj)(∇u+∇yu1(⋅,⋅,⋅ϵj))⋅(∇u+∇yu1(⋅,⋅,⋅ϵj))dxdt. $
|
(70) |
Let us pass to the limit in this inequality. We start with
$ E∫QAϵj∇uϵj⋅∇uϵjdx. $
|
From the convergence of the energies in Theorem 6.1 and using 63 and 60, we have
$ limϵj→0E∫QAϵj∇uϵj⋅∇uϵjdx=E∫Q×YA(y)⋅[∇xu(t,x)+∇yu1(t,x,y)]⋅[∇xu(t,x)+∇yu1(t,x,y)]dydx. $
|
(71) |
Next, using the two-scale convergence of
$ limϵj→0∫T0∫Q∇uϵj(t,x)⋅A(xϵj)⋅(∇u+∇yu1(t,x,xϵj))dxdt=∫T0∫Q×Y(∇u(t,x)+∇yu1(t,x,y))⋅A(y)⋅(∇u(t,x)+∇yu1(t,x,y))dxdydt. $
|
(72) |
Now, let us write
$ ψ(t,x,y)=A(y)(∇u(t,x)+∇yu1(t,x,y))⋅(∇u(t,x)+∇yu1(t,x,y))=A(y)∇u(t,x)⋅∇u(t,x)+2A(y)∇u(t,x)⋅∇yu1(t,x,y)+A(y)∇yu1(t,x,y)⋅∇yu1(t,x,y). $
|
For
$ ψ(t,x,y)=A(y)∇u(t,x)⋅∇u(t,x)−2A(y)∇u(t,x)⋅∇y[χ(y)⋅∇xu(t,x)]+A(y)∇y[χ(y)⋅∇xu(t,x)]∇y[χ(y)⋅∇xu(t,x)]. $
|
Now using
$ limϵj→0∫T0∫QA(xϵj)(∇u(t,x)+∇yu1(t,x,xϵj))⋅(∇u(t,x)+∇yu1(t,x,yϵj))dxdt=∫T0∫Q×YA(y)(∇u(t,x)+∇yu1(t,x,y))⋅(∇u(t,x)+∇yu1(t,x,y))dxdydt. $
|
(73) |
Combining 71, 72 and 73 with 70, we deduce that
$ limϵj→0E∫T0‖∇uϵj−∇u−∇yu1(.,.,.ϵj)‖2L2(Q)dt=0˜P−a.s.. $
|
Thus the proof is complete.
As a closing remark, we note that our results can readily be extended to the case of infinite dimensional Wiener processes taking values in appropriate Hilbert spaces; for instance cylindrical Wiener processes.
The authors express their deepest gratitude to the reviewers for their careful reading of the paper and their insightful comments which have improved the paper. Part of this work was conducted when the first author visited the African Institute for Mathematical Sciences (AIMS), South Africa, he is grateful to the generous hospitality of AIMS.
[1] |
Finite element heterogeneous multiscale method for the wave equation. SIAM, Multiscale Modeling and Simulation (2011) 9: 766-792. ![]() |
[2] |
The heterogeneous multiscale method. Acta Numer. (2012) 21: 1-87. ![]() |
[3] |
Numerical methods for stochastic partial differential equations with multiple scales. J. Comput. Phys. (2012) 231: 2482-2497. ![]() |
[4] |
Homogenization and two-scale convergence. SIAM J. Math. Anal. (1992) 23: 1482-1518. ![]() |
[5] | G. Allaire, Two-scale convergence: A new method in periodic homogenization. Nonlinear partial differential equations and their applicationsapplications, Collge de France Seminar, Vol. XII (Paris, 1991—1993), 1-14, Pitman Res. Notes Math. Ser., 302, Longman Sci. Tech., Harlow, 1994. |
[6] |
N. Bakhvalov and G. Panasenko, Homogenisation: Averaging Processes in Periodic Media. Mathematical Problems in the Mechanics of Composite Materials, Translated from the Russian by D. Lei(tes. Mathematics and its Applications (Soviet Series), 36. Kluwer Academic Publishers Group, Dordrecht, 1989. doi: 10.1007/978-94-009-2247-1
![]() |
[7] | A. Bensoussan, Some existence results for stochastic partial differential equations., Stochastic Partial Differential Equations and Applications (Trento, 1990), 37—53, Pitman Res. Notes Math. Ser., 268, Longman Sci. Tech., Harlow, 1992. |
[8] | A. Bensoussan, Homogenization of a class of stochastic partial differential equations. Composite Media and Homogenization Theory (Trieste, 1990), 47-65, Progr. Nonlinear Differential Equations Appl., 5, Birkhuser Boston, Boston, MA, 1991. |
[9] |
A. Bensoussan, J.-L. Lions and G. Papanicolaou, Asymptotic Analysis for Periodic Structures, Corrected reprint of the 1978 original., AMS Chelsea Publishing, Providence, RI, 2011. doi: 10.1090/chel/374
![]() |
[10] |
Homogenization of Brinkman flows in heterogeneous dynamic media. Stoch. Partial Differ. Equ. Anal. Comput. (2015) 3: 479-505. ![]() |
[11] |
Homogenization of the evolution Stokes equation in a perforated domain with a stochastic Fourier boundary condition. Netw. Heterog. Media (2015) 10: 343-367. ![]() |
[12] |
P. Billingsley, Convergence of Probability Measures, John Wiley & Sons, Inc., New York, 1999. doi: 10.1002/9780470316962
![]() |
[13] | Stochastic two-scale convergence in the mean and applications. J. Reine Angew. Math. (1994) 456: 19-51. |
[14] |
A. Bourgeat and A. L. Piatnitski, Averaging of a singular random source term in a diffusion convection equation, SIAM J. Math. Anal., 42 (2010), 2626—2651. doi: 10.1137/080736077
![]() |
[15] |
Averaging principle for systems of reaction-diffusion equations with polynomial nonlinearities perturbed by multiplicative noise. SIAM J. Math. Anal. (2011) 43: 2482-2518. ![]() |
[16] |
Averaging principle for a class of stochastic reaction-diffusion equations. Probab. Theory Related Fields (2009) 144: 137-177. ![]() |
[17] | D. Cioranescu and P. Donato, An Introduction to Homogenization. Oxford Lecture Series in Mathematics and its Applications, 17. The Clarendon Press, Oxford University Press, New York, 1999. |
[18] | Nonlinear stochastic homogenization and ergodic theory. J.Rei. Ang. Math. B. (1986) 368: 28-42. |
[19] | M. A. Diop and E. Pardoux, Averaging of a parabolic partial differential equation with random evolution. Seminar on Stochastic Analysis, Random Fields and Applications IV, Progr. Probab., 58, Birkh user, Basel, (2004), 111-128. |
[20] |
Homogenization for rigid suspensions with random velocity-dependent interfacial forces. J. Math. Anal. Appl. (2014) 420: 632-668. ![]() |
[21] |
Homogenization problem for stochastic partial differential equations of Zakai type. Stoch. Stoch. Rep. (2004) 76: 243-266. ![]() |
[22] |
V. V. Jikov, S. M. Kozlov and O. A. Oleinik, Homogenization of Differential Operators and Integral Functionals, Translated from the Russian by G. A. Yosifian. Springer-Verlag, Berlin, 1994. doi: 10.1007/978-3-642-84659-5
![]() |
[23] |
E. Y. Khruslov, Homogenized models of composite media, Composite Media and Homogenization Theory (Trieste, 1990), 159-182, Progr. Nonlinear Differential Equations Appl., 5, Birkhuser Boston, Boston, MA, 1991. doi: 10.1007/978-1-4684-6787-1_10
![]() |
[24] | S. M. Kozlov, The averaging of random operators, Mat. Sb. (N.S.), 109(151) (1979), 188-202, 327. |
[25] |
Small perturbation of stochastic parabolic equations: A power series analysis. J. Funct. Anal. (2002) 193: 94-115. ![]() |
[26] | Two-scale convergence. Int. J. Pure Appl. Math. (2002) 2: 35-86. |
[27] | Homogenization of linear hyperbolic stochastic partial differential equation with rapidly oscillating coefficients: The two scale convergence method. Asymptotic Analysis (2015) 91: 341-371. |
[28] |
Homogenization of Neumann problem for hyperbolic stochastic partial differential equations in perforated domains. Asymptotic Analysis (2016) 97: 301-327. ![]() |
[29] |
M. Mohammed and M. Sango, A Tartar approach to periodic homogenization of linear hyperbolic stochastic partial differential equation, Int. J. Mod. Phys. B, 30 (2016), 1640020, 9 pp. doi: 10.1142/S0217979216400208
![]() |
[30] |
Homogenization of nonlinear hyperbolic stochastic equation via Tartar's method. J. Hyper. Differential Equations (2017) 14: 323-340. ![]() |
[31] | H-convergence in Topics in the mathematical Modelling of composite Materials. ed. A. Cherkaev and Kohn. Birkhauser. Boston (1997) 31: 21-43. |
[32] |
G. Nguetseng, A general convergence result for a functional related to the theory of homogenization, SIAM J. Math. Anal., 20 (1989), 608-623. doi: 10.1137/0520043
![]() |
[33] |
Reiterated ergodic algebras and applications. Comm. Math. Phys. (2010) 300: 835-876. ![]() |
[34] | O. A. Oleinik, A. S. Shamaev and G. A. Yosifian, Mathematical Problems in elasticity and Homogenization, Studies in Mathematics and its Applications, 26. North-Holland Publishing Co., Amsterdam, 1992. |
[35] |
Uniqueness for stochastic evolution equations in Banach spaces. Dissertationes Mathematicae (2004) 426: 1-63. ![]() |
[36] |
A. Pankov, G-Convergence and Homogenization of Nonlinear Partial Differential Operators, Mathematics and its Applications, Kluwer Academic Publishers, Dordrecht, 1997. doi: 10.1007/978-94-015-8957-4
![]() |
[37] | G. Papanicolaou and S. R. S. Varadhan, Boundary value problems with rapidly oscillating random coefficients, Random Fields, Vol. I, II (Esztergom, 1979), 835-873, Colloq. Math. Soc. Janos Bolyai, 27, North-Holland, Amsterdam-New York, 1981. |
[38] | E. Pardoux, Équations aux dérivées Partielles Stochastiques Non Linéaires Monotones, Thèse, Université Paris XI, 1975. |
[39] |
B. L. Rozovskiĭ, Stochastic Evolution Systems. Linear Theory and Applications to Nonlinear Filtering, Translated from the Russian by A. Yarkho. Mathematics and its Applications (Soviet Series), 35. Kluwer Academic Publishers Group, Dordrecht, 1990. xviii+315 pp doi: 10.1007/978-94-011-3830-7
![]() |
[40] | E. Sanchez-Palencia, Non-Homogeneous Media and Vibration Theory (Lecture Notes in Physics), Springer, 1980. |
[41] |
E. Sanchez-Palencia and A. Zaoui, Homogenization Techniques for Composite Media, Lecture Notes in Physics, 272. Springer-Verlag, Berlin, 1987. doi: 10.1007/3-540-17616-0
![]() |
[42] |
Splitting-up scheme for nonlinear stochastic hyperbolic equations. Forum Math. (2013) 25: 931-965. ![]() |
[43] |
Homogenization of stochastic semilinear parabolic equations with non-Lipschitz forcings in domains with fine grained boundaries. Commun. Math. Sci. (2014) 12: 345-382. ![]() |
[44] |
Asymptotic behavior of a stochastic evolution problem in a varying domain. Stochastic Anal. Appl. (2002) 20: 1331-1358. ![]() |
[45] |
J. Simon, Compact sets in the space Lp(0, T; B), Ann. Mat. Pura Appl., IV. Ser., 146 (1987), 65-96. doi: 10.1007/BF01762360
![]() |
[46] | I. V. Skrypnik, Methods for Analysis of Nonlinear Elliptic Boundary Value Problems, Nauka, Moscow, 1990. English translation in: Translations of Mathematical Monographs, AMS, Providence, 1994. |
[47] | Stochastic homogenization of Hamilton-Jacobi equations and some applications. Asymptotic Analysis. IOS Press (1999) 20: 1-11. |
[48] |
Multiscale stochastic homogenization of monotone operators. Netw. Heterog. Media (2007) 2: 181-192. ![]() |
[49] | L. Tartar, Quelques remarques sur l'homogénésation, in Functional Analysis and Numerical Analysis, Proc. Japan-France Siminar 1976, ed. H. Fujitaa, Japanese Society for the Promotion of Science, (1977), 468-486. |
[50] |
L. Tartar, The General Theory of Homogenization, A personalized introduction. Lecture Notes of the Unione Matematica Italiana, 7. Springer-Verlag, Berlin; UMI, Bologna, 2009. doi: 10.1007/978-3-642-05195-1
![]() |
1. | Hermano Frid, Kenneth H. Karlsen, Daniel Marroquin, Homogenization of stochastic conservation laws with multiplicative noise, 2022, 283, 00221236, 109620, 10.1016/j.jfa.2022.109620 | |
2. | Mogtaba Mohammed, Well-Posedness for Nonlinear Parabolic Stochastic Differential Equations with Nonlinear Robin Conditions, 2022, 14, 2073-8994, 1722, 10.3390/sym14081722 | |
3. | Mogtaba Mohammed, Homogenization of nonlinear hyperbolic problem with a dynamical boundary condition, 2023, 8, 2473-6988, 12093, 10.3934/math.2023609 | |
4. | Mogtaba Mohammed, Noor Ahmed, Homogenization and correctors of Robin problem for linear stochastic equations in periodically perforated domains, 2020, 120, 18758576, 123, 10.3233/ASY-191582 | |
5. | Chigoziem Emereuwa, Mogtaba Mohammed, Homogenization of a stochastic model of a single phase flow in partially fissured media, 2022, 129, 18758576, 413, 10.3233/ASY-211735 | |
6. | Mogtaba Mohammed, Waseem Asghar Khan, Homogenization and Correctors for Stochastic Hyperbolic Equations in Domains with Periodically Distributed Holes, 2021, 12, 1756-9737, 10.1142/S1756973721500086 | |
7. | Hakima Bessaih, Mogtaba Mohammed, Ismail M. Tayel, Homogenization and corrector results for a stochastic coupled thermoelastic model, 2024, 0, 1078-0947, 0, 10.3934/dcds.2024168 |