Citation: Paul H. Rabinowitz. On a class of reversible elliptic systems[J]. Networks and Heterogeneous Media, 2012, 7(4): 927-939. doi: 10.3934/nhm.2012.7.927
[1] | Paul H. Rabinowitz . On a class of reversible elliptic systems. Networks and Heterogeneous Media, 2012, 7(4): 927-939. doi: 10.3934/nhm.2012.7.927 |
[2] | Patrizia Donato, Olivier Guibé, Alip Oropeza . Corrector results for a class of elliptic problems with nonlinear Robin conditions and $ L^1 $ data. Networks and Heterogeneous Media, 2023, 18(3): 1236-1259. doi: 10.3934/nhm.2023054 |
[3] | Francesca Alessio, Piero Montecchiari, Andrea Sfecci . Saddle solutions for a class of systems of periodic and reversible semilinear elliptic equations. Networks and Heterogeneous Media, 2019, 14(3): 567-587. doi: 10.3934/nhm.2019022 |
[4] | Leonid Berlyand, Volodymyr Rybalko, Nung Kwan Yip . Renormalized Ginzburg-Landau energy and location of near boundary vortices. Networks and Heterogeneous Media, 2012, 7(1): 179-196. doi: 10.3934/nhm.2012.7.179 |
[5] | Mickaël Dos Santos, Oleksandr Misiats . Ginzburg-Landau model with small pinning domains. Networks and Heterogeneous Media, 2011, 6(4): 715-753. doi: 10.3934/nhm.2011.6.715 |
[6] | Michał Kowalczyk, Yong Liu, Frank Pacard . Towards classification of multiple-end solutions to the Allen-Cahn equation in $\mathbb{R}^2$. Networks and Heterogeneous Media, 2012, 7(4): 837-855. doi: 10.3934/nhm.2012.7.837 |
[7] | Ken-Ichi Nakamura, Toshiko Ogiwara . Periodically growing solutions in a class of strongly monotone semiflows. Networks and Heterogeneous Media, 2012, 7(4): 881-891. doi: 10.3934/nhm.2012.7.881 |
[8] | Timothy Blass, Rafael de la Llave . Perturbation and numerical methods for computing the minimal average energy. Networks and Heterogeneous Media, 2011, 6(2): 241-255. doi: 10.3934/nhm.2011.6.241 |
[9] | Maria Colombo, Gianluca Crippa, Stefano Spirito . Logarithmic estimates for continuity equations. Networks and Heterogeneous Media, 2016, 11(2): 301-311. doi: 10.3934/nhm.2016.11.301 |
[10] | Arnaud Ducrot, Michel Langlais, Pierre Magal . Multiple travelling waves for an $SI$-epidemic model. Networks and Heterogeneous Media, 2013, 8(1): 171-190. doi: 10.3934/nhm.2013.8.171 |
[1] |
S. Aubry and P. Y. LeDaeron, The discrete Frenkel-Kantorova model and its extensions I-Exact results for the ground states, Physica, 8D, (1983), 381-422. doi: 10.1016/0167-2789(83)90233-6
![]() |
[2] |
J. Mather, Existence of quasi-periodic orbits for twist homeomorphisms of the annulus, Topology, 21, (1982), 457-467. doi: 10.1016/0040-9383(82)90023-4
![]() |
[3] | J. Mather, Variational construction of connecting orbits, Ann. Inst. Fourier ;(Grenoble), 43, (1993), 1349-1386. |
[4] | J. Moser, Minimal solutions of variational problems on a torus, Ann. Inst. Poincare, Anal. Non Lineaire, 3 (1986), 229-272. |
[5] | V. Bangert, On minimal laminations of the torus, Ann. Inst. H. Poincaré, Anal. Non Lineaire, 6 (1989), 95-138. |
[6] |
P. Rabinowitz and E. Stredulinsky, "Extensions of Moser-Bangert Theory: Locally Minimal Solutions," Progress in Nonlinear Differential Equations and Their Applications, 81, Birkhauser, Boston, 2011. doi: 10.1007/978-0-8176-8117-3
![]() |
[7] |
U. Bessi, Many solutions of elliptic problems on $\mathbbR^n$ of irrational slope, Comm. Partial Differential Equations, 30 (2005), 1773-1804. doi: 10.1080/03605300500299992
![]() |
[8] |
U. Bessi, Slope-changing solutions of elliptic problems on $\mathbbR^n$, Nonlinear Anal., 68 (2008), 3923-3947. doi: 10.1016/j.na.2007.04.031
![]() |
[9] |
F. Alessio, L. Jeanjean and P. Montecchiari, Stationary layered solutions in $\mathbbR^{2}$ for a class of non autonomous Allen-Cahn equations, Calc. Var. Partial Differential Equations, 11 (2000), 177-202. doi: 10.1007/s005260000036
![]() |
[10] |
F. Alessio, L. Jeanjean and P. Montecchiari, Existence of infinitely many stationary layered solutions in $\mathbbR^{2}$ for a class of periodic Allen-Cahn equations, Comm. Partial Differential Equations, 27 (2002), 1537-1574. doi: 10.1081/PDE-120005848
![]() |
[11] |
F. Alessio and P. Montecchiari, Entire solutions in $\mathbbR^{2}$ for a class of Allen-Cahn equations, ESAIM Control Optim. Calc. Var., 11 (2005), 633-672. doi: 10.1051/cocv:2005023
![]() |
[12] | F. Alessio and P. Montecchiari, Multiplicity of entire solutions for a class of almost periodic Allen-Cahn type equations, Adv. Nonlinear Stud., 5 (2005), 515-549. |
[13] |
M. Novaga and E. Valdinoci, Bump solutions for the mesoscopic Allen-Cahn equation in periodic media, Calc. Var. Partial Differential Equations, 40 (2011), 37-49. doi: 10.1007/s00526-010-0332-4
![]() |
[14] |
R. de la Llave and E. Valdinoci, Multiplicity results for interfaces of Ginzburg-Landau Allen-Cahn equations in periodic media, Adv. Math., 215 (2007), 379-426. doi: 10.1016/j.aim.2007.03.013
![]() |
[15] |
R. de la Llave and E. Valdinoci, A generalization of Aubry-Mather theory to partial differential equations and pseudo-differential equations, Ann. Inst. H. Poincaré Anal. Non Lineaire, 26 (2009), 1309-1344. doi: 10.1016/j.anihpc.2008.11.002
![]() |
[16] |
E. Valdinoci, Plane-like minimizers in periodic media: Jet flows and Ginzburg-Landau-type functionals, J. Reine Angew. Math., 574 (2004), 147-185. doi: 10.1515/crll.2004.068
![]() |
[17] | D. Gilbarg and N. Trudinger, "Elliptic Partial Differential Equations of Second Order," Second edition, Grundlehren, 224, Springer, Berlin, Heidelberg, New York and Tokyo, 1983. |
[18] |
P. Rabinowitz and E. Stredulinsky, On some results of Moser and of Bangert, Ann. Inst. H. Poincare Anal. Non Lineaire, 21 (2004), 673-688. doi: 10.1016/j.anihpc.2003.10.002
![]() |
[19] | P. Rabinowitz and E. Stredulinsky, On some results of Moser and of Bangert. II, Adv. Nonlinear Stud., 4 (2004), 377-396. |
[20] | S. Bolotin, Existence of homoclinic motions. (Russian), Vestnik Moskov. Univ., Ser. I Mat. Mekh., (1983), 98-103. |
[21] | A. Anane, O. Chakrone, Z. El Allali and I. Hadi., A unique continuation property for linear elliptic systems and nonresonance problems, Electron. J. Differential Equations, (2001), 20 pp. (electronic). |
[22] | M. Protter, Unique continuation for elliptic equations, Trans. Amer. Math. Soc., 95 (1960), 81-91. |
[23] | R. Pederson, On the unique continuation theorem for certain second and fourth order equations, Comm. Pure Appl. Math., 11 (1958), 67-80. |
[24] |
P. Rabinowitz, Heteroclinics for a reversible Hamiltonian system, Ergodic Theory Dynam. Systems, 14 (1994), 817-829. doi: 10.1017/S0143385700008178
![]() |
[25] | P. Rabinowitz, A note on a class of reversible Hamiltonian systems, Adv. Nonlinear Stud., 9 (2009), 815-823. |
[26] |
T. Maxwell, Heteroclinic chains for a reversible Hamiltonian system, Nonlinear Analysis, T.M.A., 28 (1997), 871-887. doi: 10.1016/0362-546X(95)00193-Y
![]() |
[27] | R. Adams, "Sobolev Spaces," Pure and Applied Mathematics, 65, Academic Press, New York and London, 1975. |
1. | Francesca Alessio, Piero Montecchiari, Multiplicity of layered solutions for Allen–Cahn systems with symmetric double well potential, 2014, 257, 00220396, 4572, 10.1016/j.jde.2014.09.001 | |
2. | Piero Montecchiari, Paul H. Rabinowitz, Solutions of mountain pass type for double well potential systems, 2018, 57, 0944-2669, 10.1007/s00526-018-1400-4 | |
3. | Jaeyoung Byeon, Piero Montecchiari, Paul H. Rabinowitz, A double well potential system, 2016, 9, 1948-206X, 1737, 10.2140/apde.2016.9.1737 | |
4. | Peter Poláčik, Darío A. Valdebenito, The Existence of Partially Localized Periodic–Quasiperiodic Solutions and Related KAM-Type Results for Elliptic Equations on the Entire Space, 2022, 34, 1040-7294, 3035, 10.1007/s10884-020-09925-5 | |
5. | Peter Poláčik, Darío A. Valdebenito, Further results on quasiperiodic partially localized solutions of homogeneous elliptic equations on RN+1, 2022, 282, 00221236, 109457, 10.1016/j.jfa.2022.109457 | |
6. | Francesca Alessio, Piero Montecchiari, Brake orbit solutions for semilinear elliptic systems with asymmetric double well potential, 2017, 19, 1661-7738, 691, 10.1007/s11784-016-0370-4 | |
7. | Paul H. Rabinowitz, Piero Montecchiari, On the existence of multi-transition solutions for a class of elliptic systems, 2016, 33, 0294-1449, 199, 10.1016/j.anihpc.2014.10.001 | |
8. | Piero Montecchiari, Paul H. Rabinowitz, A Variant of the Mountain Pass Theorem and Variational Gluing, 2020, 88, 1424-9286, 347, 10.1007/s00032-020-00318-3 |