Loading [Contrib]/a11y/accessibility-menu.js

Spectral theory for nonconservative transmission line networks

  • Received: 01 August 2010 Revised: 01 April 2011
  • Primary: 34B45.

  • The global theory of transmission line networks with nonconservative junction conditions is developed from a spectral theoretic viewpoint. The rather general junction conditions lead to spectral problems for nonnormal operators. The theory of analytic functions which are almost periodic in a strip is used to establish the existence of an infinite sequence of eigenvalues and the completeness of generalized eigenfunctions. Simple eigenvalues are generic. The asymptotic behavior of an eigenvalue counting function is determined. Specialized results are developed for rational graphs.

    Citation: Robert Carlson. Spectral theory for nonconservative transmission line networks[J]. Networks and Heterogeneous Media, 2011, 6(2): 257-277. doi: 10.3934/nhm.2011.6.257

    Related Papers:

    [1] Robert Carlson . Spectral theory for nonconservative transmission line networks. Networks and Heterogeneous Media, 2011, 6(2): 257-277. doi: 10.3934/nhm.2011.6.257
    [2] Robert Carlson . Dirichlet to Neumann maps for infinite quantum graphs. Networks and Heterogeneous Media, 2012, 7(3): 483-501. doi: 10.3934/nhm.2012.7.483
    [3] Serge Nicaise, Cristina Pignotti . Asymptotic analysis of a simple model of fluid-structure interaction. Networks and Heterogeneous Media, 2008, 3(4): 787-813. doi: 10.3934/nhm.2008.3.787
    [4] Delio Mugnolo . Gaussian estimates for a heat equation on a network. Networks and Heterogeneous Media, 2007, 2(1): 55-79. doi: 10.3934/nhm.2007.2.55
    [5] Serge Nicaise, Julie Valein . Stabilization of the wave equation on 1-d networks with a delay term in the nodal feedbacks. Networks and Heterogeneous Media, 2007, 2(3): 425-479. doi: 10.3934/nhm.2007.2.425
    [6] Jacek Banasiak, Adam Błoch . Telegraph systems on networks and port-Hamiltonians. Ⅱ. Network realizability. Networks and Heterogeneous Media, 2022, 17(1): 73-99. doi: 10.3934/nhm.2021024
    [7] Travis G. Draper, Fernando Guevara Vasquez, Justin Cheuk-Lum Tse, Toren E. Wallengren, Kenneth Zheng . Matrix valued inverse problems on graphs with application to mass-spring-damper systems. Networks and Heterogeneous Media, 2020, 15(1): 1-28. doi: 10.3934/nhm.2020001
    [8] Naoki Sato, Toyohiko Aiki, Yusuke Murase, Ken Shirakawa . A one dimensional free boundary problem for adsorption phenomena. Networks and Heterogeneous Media, 2014, 9(4): 655-668. doi: 10.3934/nhm.2014.9.655
    [9] Dilip Sarkar, Shridhar Kumar, Pratibhamoy Das, Higinio Ramos . Higher-order convergence analysis for interior and boundary layers in a semi-linear reaction-diffusion system networked by a $ k $-star graph with non-smooth source terms. Networks and Heterogeneous Media, 2024, 19(3): 1085-1115. doi: 10.3934/nhm.2024048
    [10] Regino Criado, Julio Flores, Alejandro J. García del Amo, Miguel Romance . Structural properties of the line-graphs associated to directed networks. Networks and Heterogeneous Media, 2012, 7(3): 373-384. doi: 10.3934/nhm.2012.7.373
  • The global theory of transmission line networks with nonconservative junction conditions is developed from a spectral theoretic viewpoint. The rather general junction conditions lead to spectral problems for nonnormal operators. The theory of analytic functions which are almost periodic in a strip is used to establish the existence of an infinite sequence of eigenvalues and the completeness of generalized eigenfunctions. Simple eigenvalues are generic. The asymptotic behavior of an eigenvalue counting function is determined. Specialized results are developed for rational graphs.


    [1] A. Agarwal, S. Das and D. Sen, Power dissipation for systems with junctions of multiple quantum wires, Physical Review B, 81 (2010).
    [2] L. Ahlfors, "Complex Analysis," McGraw-Hill, New York, 1966.
    [3] F. Ali Mehmeti, "Nonlinear Waves in Networks," Akademie Verlag, Berlin, 1994.
    [4] R. Carlson, Inverse eigenvalue problems on directed graphs, Transactions of the American Mathematical Society, 351 (1999), 4069-4088. doi: 10.1090/S0002-9947-99-02175-3
    [5] R. Carlson, Linear network models related to blood flow, in Quantum Graphs and Their Applications, Contemporary Mathematics, 415 (2006), 65-80.
    [6] C. Cattaneo and L. Fontana, D'Alembert formula on finite one-dimensional networks, J. Math. Anal. Appl., 284 (2003), 403-424. doi: 10.1016/S0022-247X(02)00392-X
    [7] G. Chen, S. Krantz, D. Russell, C. Wayne, H. West and M. Coleman, Analysis, designs, and behavior of dissipative joints for coupled beams, SIAM Journal on Applied Mathematics., 49 (1989), 1665-1693. doi: 10.1137/0149101
    [8] S. Cox and E. Zuazua, The rate at which energy decays in a string damped at one end, Indiana Univ. Math. J., 44 (1995), 545-573. doi: 10.1512/iumj.1995.44.2001
    [9] E. B. Davies, Eigenvalues of an elliptic system, Math. Z., 243 (2003), 719-743. doi: 10.1007/s00209-002-0464-0
    [10] E. B. Davies, P. Exner and J. Lipovsky, Non-Weyl asymptotics for quantum graphs with general coupling conditions, J. Phys. A, 43 (2010).
    [11] Y. Fung, "Biomechanics," Springer, New York, 1997.
    [12] I. Herstein, "Topics in Algebra," Xerox College Publishing, Waltham, 1964.
    [13] B. Jessen and H. Tornhave, Mean motions and zeros of almost periodic functions, Acta Math., 77 (1945), 137-279. doi: 10.1007/BF02392225
    [14] T. Kato, "Perturbation Theory for Linear Operators," Springer-Verlag, New York, 1995.
    [15] V. Kostrykin, J. Potthoff and R. Schrader, Contraction semigroups on metric graphs, in Analysis on Graphs and Its Applications, PSUM, 77 (2008), 423-458.
    [16] T. Kottos and U. Smilansky, Periodic orbit theory and spectral statistics for quantum graphs, Ann. Phys., 274 (1999), 76-124. doi: 10.1006/aphy.1999.5904
    [17] M. Kramar and E. Sikolya, Spectral properties and asymptotic periodicity of flows in networks, Math. Z., 249 (2005), 139-162. doi: 10.1007/s00209-004-0695-3
    [18] M. Kramar Fijavz, D. Mugnolo and E. Sikolya, Variational and semigroup methods for waves and diffusions in networks, Appl. Math. Optim., 55 (2007), 219-240. doi: 10.1007/s00245-006-0887-9
    [19] M. Krein and A. Nudelman, Some spectral properties of a nonhomogeneous string with a dissipative boundary condition, J. Operator Theory, 22 (1989), 369-395.
    [20] B. Levin, "Distribution of Zeros of Entire Functions," American Mathematical Society, Providence, 1980.
    [21] S. Lang, "Algebra," Addison-Wesley, 1984.
    [22] G. Lumer, "Equations de Diffusion Generales sur des Reseaux Infinis," Seminar Goulaouic-Schwartz, 1980.
    [23] G. Lumer, "Connecting of Local Operators and Evolution Equations on Networks," Lecture Notes in Math., 787, Springer, 1980.
    [24] P. Magnusson, G. Alexander, V. Tripathi and A. Weisshaar, "Transmission Lines and Wave Propagation," CRC Press, Boca Raton, 2001.
    [25] G. Miano and A. Maffucci, "Transmission Lines and Lumped Circuits," Academic Press, San Diego, 2001.
    [26] L. J. Myers and W. L. Capper, A transmission line model of the human foetal circulatory system, Medical Engineering and Physics, 24 (2002), 285-294. doi: 10.1016/S1350-4533(02)00019-X
    [27] S. Nicaise, Spectre des reseaux topologiques finis, Bulletin des sciences mathematique, 111 (1987), 401-413.
    [28] J. Ottesen, M. Olufsen and J. Larsen, "Applied Mathematical Models in Human Physiology," SIAM, 2004. doi: 10.1137/1.9780898718287
    [29] A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differential Equations," Springer, New York, 1983.
    [30] S. Sherwin, V. Franke, J. Peiro and K. Parker, One-dimensional modeling of a vascular network in space-time variables, Journal of Engineering Mathematics, 47 (2003), 217-250. doi: 10.1023/B:ENGI.0000007979.32871.e2
    [31] J. von Below, A characteristic equation associated to an eigenvalue problem on C2 networks, Lin. Alg. Appl., 71 (1985), 309-325. doi: 10.1016/0024-3795(85)90258-7
    [32] L. Zhou and G. Kriegsmann, A simple derivation of microstrip transmission line equations, SIAM J. Appl. Math., 70 (2009), 353-367. doi: 10.1137/080737563
  • This article has been cited by:

    1. Serge Nicaise, Control and stabilization of 2 × 2 hyperbolic systems on graphs, 2017, 7, 2156-8499, 53, 10.3934/mcrf.2017004
    2. Serge Nicaise, Stability and asymptotic properties of dissipative evolution equations coupled with ordinary differential equations, 2023, 13, 2156-8472, 265, 10.3934/mcrf.2021057
    3. Klaus-Jochen Engel, Marjeta Kramar Fijavž, Flows on metric graphs with general boundary conditions, 2022, 513, 0022247X, 126214, 10.1016/j.jmaa.2022.126214
    4. Georges Bastin, Jean-Michel Coron, Exponential stability of networks of density-flow conservation laws under PI boundary control, 2013, 46, 14746670, 221, 10.3182/20130925-3-FR-4043.00029
    5. Marjeta Kramar Fijavž, Delio Mugnolo, Serge Nicaise, Linear hyperbolic systems on networks: well-posedness and qualitative properties, 2021, 27, 1292-8119, 7, 10.1051/cocv/2020091
    6. Marjeta Kramar Fijavž, Delio Mugnolo, Serge Nicaise, Dynamic transmission conditions for linear hyperbolic systems on networks, 2021, 21, 1424-3199, 3639, 10.1007/s00028-021-00715-0
  • Reader Comments
  • © 2011 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4404) PDF downloads(102) Cited by(6)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog