Distributed model predictive control of irrigation canals

  • Received: 01 September 2008 Revised: 01 December 2008
  • Primary: 68W15; Secondary: 93C99.

  • Irrigation canals are large-scale systems, consisting of many interacting components, and spanning vast geographical areas. For safe and efficient operation of these canals, maintaining the levels of the water flows close to pre-specified reference values is crucial, both under normal operating conditions as well as in extreme situations.
       Irrigation canals are equipped with local controllers, to control the flow of water by adjusting the settings of control structures such as gates and pumps. Traditionally, the local controllers operate in a decentralized way in the sense that they use local information only, that they are not explicitly aware of the presence of other controllers or subsystems, and that no communication among them takes place. Hence, an obvious drawback of such a decentralized control scheme is that adequate performance at a system-wide level may be jeopardized, due to the unexpected and unanticipated interactions among the subsystems and the actions of the local controllers.
       In this paper we survey the state-of-the-art literature on distributed control of water systems in general, and irrigation canals in particular. We focus on the model predictive control (MPC) strategy, which is a model-based control strategy in which prediction models are used in an optimization to determine optimal control inputs over a given horizon. We discuss how communication among local MPC controllers can be included to improve the performance of the overall system. We present a distributed control scheme in which each controller employs MPC to determine those actions that maintain water levels after disturbances close to pre-specified reference values. Using the presented scheme the local controllers cooperatively strive for obtaining the best system-wide performance. A simulation study on an irrigation canal with seven reaches illustrates the potential of the approach.

    Citation: Rudy R. Negenborn, Peter-Jules van Overloop, Tamás Keviczky, Bart De Schutter. Distributed model predictive control of irrigation canals[J]. Networks and Heterogeneous Media, 2009, 4(2): 359-380. doi: 10.3934/nhm.2009.4.359

    Related Papers:

    [1] Rudy R. Negenborn, Peter-Jules van Overloop, Tamás Keviczky, Bart De Schutter . Distributed model predictive control of irrigation canals. Networks and Heterogeneous Media, 2009, 4(2): 359-380. doi: 10.3934/nhm.2009.4.359
    [2] João M. Lemos, Fernando Machado, Nuno Nogueira, Luís Rato, Manuel Rijo . Adaptive and non-adaptive model predictive control of an irrigation channel. Networks and Heterogeneous Media, 2009, 4(2): 303-324. doi: 10.3934/nhm.2009.4.303
    [3] Georges Bastin, Alexandre M. Bayen, Ciro D'Apice, Xavier Litrico, Benedetto Piccoli . Preface. Networks and Heterogeneous Media, 2009, 4(2): i-v. doi: 10.3934/nhm.2009.4.2i
    [4] Xavier Litrico, Vincent Fromion . Modal decomposition of linearized open channel flow. Networks and Heterogeneous Media, 2009, 4(2): 325-357. doi: 10.3934/nhm.2009.4.325
    [5] Maya Briani, Benedetto Piccoli . Fluvial to torrential phase transition in open canals. Networks and Heterogeneous Media, 2018, 13(4): 663-690. doi: 10.3934/nhm.2018030
    [6] Qing Sun . Irrigable measures for weighted irrigation plans. Networks and Heterogeneous Media, 2021, 16(3): 493-511. doi: 10.3934/nhm.2021014
    [7] Didier Georges . Infinite-dimensional nonlinear predictive control design for open-channel hydraulic systems. Networks and Heterogeneous Media, 2009, 4(2): 267-285. doi: 10.3934/nhm.2009.4.267
    [8] Toufik Bakir, Bernard Bonnard, Jérémy Rouot . A case study of optimal input-output system with sampled-data control: Ding et al. force and fatigue muscular control model. Networks and Heterogeneous Media, 2019, 14(1): 79-100. doi: 10.3934/nhm.2019005
    [9] Michael Herty, Lorenzo Pareschi, Sonja Steffensen . Mean--field control and Riccati equations. Networks and Heterogeneous Media, 2015, 10(3): 699-715. doi: 10.3934/nhm.2015.10.699
    [10] Graziano Guerra, Michael Herty, Francesca Marcellini . Modeling and analysis of pooled stepped chutes. Networks and Heterogeneous Media, 2011, 6(4): 665-679. doi: 10.3934/nhm.2011.6.665
  • Irrigation canals are large-scale systems, consisting of many interacting components, and spanning vast geographical areas. For safe and efficient operation of these canals, maintaining the levels of the water flows close to pre-specified reference values is crucial, both under normal operating conditions as well as in extreme situations.
       Irrigation canals are equipped with local controllers, to control the flow of water by adjusting the settings of control structures such as gates and pumps. Traditionally, the local controllers operate in a decentralized way in the sense that they use local information only, that they are not explicitly aware of the presence of other controllers or subsystems, and that no communication among them takes place. Hence, an obvious drawback of such a decentralized control scheme is that adequate performance at a system-wide level may be jeopardized, due to the unexpected and unanticipated interactions among the subsystems and the actions of the local controllers.
       In this paper we survey the state-of-the-art literature on distributed control of water systems in general, and irrigation canals in particular. We focus on the model predictive control (MPC) strategy, which is a model-based control strategy in which prediction models are used in an optimization to determine optimal control inputs over a given horizon. We discuss how communication among local MPC controllers can be included to improve the performance of the overall system. We present a distributed control scheme in which each controller employs MPC to determine those actions that maintain water levels after disturbances close to pre-specified reference values. Using the presented scheme the local controllers cooperatively strive for obtaining the best system-wide performance. A simulation study on an irrigation canal with seven reaches illustrates the potential of the approach.


  • This article has been cited by:

    1. Ying Ding, Liang Wang, Yongwei Li, Daoliang Li, Model predictive control and its application in agriculture: A review, 2018, 151, 01681699, 104, 10.1016/j.compag.2018.06.004
    2. R.R. Negenborn, A. Sahiir, Z. Lukszcr, B. De Schutter, M. Morari, 2009, A non-iterative cascaded predictive control approach for control of irrigation canals, 978-1-4244-2793-2, 3552, 10.1109/ICSMC.2009.5346710
    3. João Lemos Nabais, Rudy R. Negenborn, Rafael Carmona Benítez, Miguel Ayala Botto, A Multi-Agent MPC Scheme for Vertically IntegratedManufacturing Supply Chains, 2013, 46, 14746670, 59, 10.3182/20130911-3-BR-3021.00041
    4. Tito L.M. Santos, Taniel S. Franklin, Distributed predictor-based stabilization of interconnected systems with network induced delays, 2021, 564, 00200255, 368, 10.1016/j.ins.2021.02.041
    5. Ronan Deshays, Pablo Segovia, Eric Duviella, Design of a MATLAB HEC-RAS Interface to Test Advanced Control Strategies on Water Systems, 2021, 13, 2073-4441, 763, 10.3390/w13060763
    6. J. Zárate Flórez, J. Martinez, G. Besançon, D. Faille, Decentralized-coordinated model predictive control for a hydro-power valley, 2013, 91, 03784754, 108, 10.1016/j.matcom.2012.04.005
    7. Muhammad Hammad Atique Khan, Muhammad Usman Saleem, Sajid Rashid Ahmad, Nasir Ahmad, Shahid Jamil Sameeni, Muhammad Akram, Muhammad Farooq, Role of Canal Lining on Groundwater Fluctuations: A Modeling Simulation Approach for Jaalwala Distributary, Bahawalnagar, 2017, 07, 2165-3917, 213, 10.4236/ojapps.2017.75019
    8. Jin Xin, Wang Yue, Luo Lin, Offset Free Tracking Predictive Control Based on Dynamic PLS Framework, 2017, 8, 2078-2489, 121, 10.3390/info8040121
    9. S. Mehdy Hashemy Shahdany, Abbas Roozbahani, Selecting an Appropriate Operational Method for Main Irrigation Canals within Multicriteria Decision-Making Methods, 2016, 142, 0733-9437, 10.1061/(ASCE)IR.1943-4774.0000996
    10. Le-Duy-Lai Nguyen, Ionela Prodan, Laurent Lefevre, Denis Genon-Catalot, Distributed Model Predictive Control of Irrigation Systems using Cooperative Controllers * *The work is partially supported and funded by the Artemis Ar-rowHead European project under grant agreement number 332987., 2017, 50, 24058963, 6564, 10.1016/j.ifacol.2017.08.612
    11. Le Li, Rudy R. Negenborn, Bart De Schutter, Intermodal freight transport planning – A receding horizon control approach, 2015, 60, 0968090X, 77, 10.1016/j.trc.2015.08.002
    12. A. Şahin, M. Morari, 2010, Chapter 18, 978-90-481-3597-4, 463, 10.1007/978-90-481-3598-1_18
    13. T. Arauz, P. Chanfreut, J.M. Maestre, Cyber-security in networked and distributed model predictive control, 2022, 53, 13675788, 338, 10.1016/j.arcontrol.2021.10.005
    14. R. Evans, L. Li, I. Mareels, N. Okello, M. Pham, W. Qiu, S. K. Saleem, 2012, Chapter 20, 978-0-85729-973-4, 403, 10.1007/978-0-85729-974-1_20
    15. A. Álvarez, M. A. Ridao, D. R. Ramirez, L. Sánchez, Constrained Predictive Control of an Irrigation Canal, 2013, 139, 0733-9437, 841, 10.1061/(ASCE)IR.1943-4774.0000619
    16. Joao Lemos Nabais, Rudy R. Negenborn, Rafael B. Carmona Benitez, Miguel Ayala Botto, 2013, A constrained MPC heuristic to achieve a desired transport modal split at intermodal hubs, 978-1-4799-2914-6, 714, 10.1109/ITSC.2013.6728315
    17. Anna Sadowska, Bart De Schutter, Peter-Jules van Overloop, Delivery-Oriented Hierarchical Predictive Control of an Irrigation Canal: Event-Driven Versus Time-Driven Approaches, 2015, 23, 1063-6536, 1701, 10.1109/TCST.2014.2381600
    18. S. M. Hashemy Shahdany, J. M. Maestre, P. J. van Overloop, Equitable Water Distribution in Main Irrigation Canals with Constrained Water Supply, 2015, 29, 0920-4741, 3315, 10.1007/s11269-015-1000-4
    19. Felix Berkel, Sebastian Caba, Jonas Bleich, Steven Liu, A modeling and distributed MPC approach for water distribution networks, 2018, 81, 09670661, 199, 10.1016/j.conengprac.2018.09.017
    20. L. Li, N. Okello, M. Pham, S. K. Saleem, W. Qiu, R. Evans, I. Mareels, 2011, Model predictive control of Murray-darling basin networks, 978-1-4244-8737-0, 722, 10.1109/CCDC.2011.5968277
    21. Yuping Li, 2014, On supervisory control of the Main Southern Channel, 978-1-4799-7409-2, 2165, 10.1109/CCA.2014.6981623
    22. Gregory Conde, Nicanor Quijano, Carlos Ocampo-Martinez, Modeling and control in open-channel irrigation systems: A review, 2021, 51, 13675788, 153, 10.1016/j.arcontrol.2021.01.003
    23. F. J. Muros, El control coalicional en el marco de la teoría de juegos cooperativos, 2021, 18, 1697-7920, 97, 10.4995/riai.2020.13456
    24. J. M. Igreja, J. M. Lemos, F. M. Cadete, L. M. Rato, M. Rijo, 2012, Control of a water delivery canal with cooperative distributed MPC, 978-1-4577-1096-4, 3346, 10.1109/ACC.2012.6315176
    25. Le Li, Rudy R. Negenborn, Bart De Schutter, Distributed model predictive control for cooperative synchromodal freight transport, 2017, 105, 13665545, 240, 10.1016/j.tre.2016.08.006
    26. Fernando Lejarza, Michael Baldea, Economic model predictive control for robust optimal operation of sparse storage networks, 2021, 125, 00051098, 109346, 10.1016/j.automatica.2020.109346
    27. Mohit Kumar, , 2019, Level management in connected water reservoirs employing curve fitting based PID control scheme, 978-1-7281-1261-9, 285, 10.1109/ICCES45898.2019.9002074
    28. Lihui Cen, Yugeng Xi, Dewei Li, Yigang Cen, Boundary feedback control of open canals with a Riemann invariants approach, 2015, 37, 0142-3312, 900, 10.1177/0142331213512365
    29. Pablo Segovia, Vicenç Puig, Eric Duviella, Set-membership-based distributed moving horizon estimation of large-scale systems, 2022, 128, 00190578, 402, 10.1016/j.isatra.2021.10.036
    30. João Lemos Nabais, Rudy R. Negenborn, Miguel Ayala Botto, 2012, Chapter 4, 978-3-642-33586-0, 53, 10.1007/978-3-642-33587-7_4
    31. M. D. Doan, T. Keviczky, B. De Schutter, 2014, Chapter 24, 978-94-007-7005-8, 393, 10.1007/978-94-007-7006-5_24
    32. R. Evans, L. Li, I. Mareels, N. Okello, M. Pham, W. Qiu, S.K. Saleem, Real-time Optimal Control of River Basin Networks, 2011, 44, 14746670, 11459, 10.3182/20110828-6-IT-1002.00451
    33. Xin Tian, Peter-Jules van Overloop, Rudy R. Negenborn, Nick van de Giesen, Operational flood control of a low-lying delta system using large time step Model Predictive Control, 2015, 75, 03091708, 1, 10.1016/j.advwatres.2014.10.010
    34. Jennifer Zarate Florez, John J. Martinez, Gildas Besancon, Damien Faille, 2011, Explicit coordination for MPC-based distributed control with application to Hydro-Power Valleys, 978-1-61284-801-3, 830, 10.1109/CDC.2011.6160451
    35. K. Horváth, L. Rajaoarisoa, E. Duviella, J. Blesa, M. Petreczky, K. Chuquet, 2015, Chapter 12, 978-3-319-16132-7, 211, 10.1007/978-3-319-16133-4_12
    36. Michael Cantoni, Iven Mareels, 2021, Chapter 100100, 978-3-030-44183-8, 534, 10.1007/978-3-030-44184-5_100100
    37. G.B. Caceres, P. Millan, M. Pereira, D. Lozano, 2021, Economic Model Predictive Control for Smart and Sustainable Farm Irrigation, 978-9-4638-4236-5, 1255, 10.23919/ECC54610.2021.9655201
    38. Minh Dang Doan, Pontus Giselsson, Tamás Keviczky, Bart De Schutter, Anders Rantzer, A distributed accelerated gradient algorithm for distributed model predictive control of a hydro power valley, 2013, 21, 09670661, 1594, 10.1016/j.conengprac.2013.06.012
    39. A. Viehweider, S. Chakraborty, Multi-Agent based Distributed Optimization Architecture for Energy-Management Systems with Physically Coupled Dynamic Subsystems, 2015, 48, 24058963, 251, 10.1016/j.ifacol.2015.12.386
    40. Coalitional Control: Cooperative Game Theory and Control, 2017, 37, 1066-033X, 53, 10.1109/MCS.2016.2621465
    41. José María Maestre, Paula Chanfreut, Javier García Martín, Eva Masero, Masaki Inoue, Eduardo F. Camacho, Control predictivo de sistemas ciberfísicos, 2021, 19, 1697-7920, 1, 10.4995/riai.2021.15771
    42. João Lemos Nabais, Miguel Ayala Botto, 2013, Chapter 12, 978-3-642-31352-3, 159, 10.1007/978-3-642-31353-0_12
    43. Francisco Javier Muros, José María Maestre, Encarnación Algaba, Teodoro Alamo, Eduardo F. Camacho, Networked control design for coalitional schemes using game-theoretic methods, 2017, 78, 00051098, 320, 10.1016/j.automatica.2016.12.010
    44. Nay Myo Lin, Martine Rutten, Xin Tian, Flood Mitigation through Optimal Operation of a Multi-Reservoir System by Using Model Predictive Control: A Case Study in Myanmar, 2018, 10, 2073-4441, 1371, 10.3390/w10101371
    45. Eva Masero, J. M. Maestre, Antonio Ferramosca, Mario Francisco, Eduardo F. Camacho, Robust Coalitional Model Predictive Control With Predicted Topology Transitions, 2021, 8, 2325-5870, 1869, 10.1109/TCNS.2021.3088806
    46. Panagiotis D. Christofides, Riccardo Scattolini, David Muñoz de la Peña, Jinfeng Liu, Distributed model predictive control: A tutorial review and future research directions, 2013, 51, 00981354, 21, 10.1016/j.compchemeng.2012.05.011
    47. Lai Nguyen, Laurent Lefevre, Denis Genon-Catalot, Thang Pham, Clement Raievsky, 2014, Optimal reactive control of hybrid architectures: A case study on complex water transportation systems (ETFA'2014), 978-1-4799-4845-1, 1, 10.1109/ETFA.2014.7005109
    48. Xin Tian, Yuxue Guo, Rudy R. Negenborn, Lingna Wei, Nay Myo Lin, José María Maestre, Multi-Scenario Model Predictive Control Based on Genetic Algorithms for Level Regulation of Open Water Systems under Ensemble Forecasts, 2019, 33, 0920-4741, 3025, 10.1007/s11269-019-02284-x
    49. Jose M. Igreja, Filipe M. Cadete, Joao M. Lemos, 2011, Application of distributed model predictive control to a water delivery canal, 978-1-4577-0124-5, 682, 10.1109/MED.2011.5983126
    50. Hasan Arshad Nasir, Abubakr Muhammad, Control of Very-Large Scale Irrigation Networks: A CPS Approach in a Developing-World Setting, 2011, 44, 14746670, 10739, 10.3182/20110828-6-IT-1002.03352
    51. A. Sadowska, P. J. van Overloop, C. Burt, B. De Schutter, 2015, Chapter 10, 978-3-319-16132-7, 169, 10.1007/978-3-319-16133-4_10
    52. Markus Kögel, Rolf Findeisen, Stability of NMPC with cyclic horizons, 2013, 46, 14746670, 809, 10.3182/20130904-3-FR-2041.00184
    53. J. M. Maestre, F. J. Muros, F. Fele, E. F. Camacho, 2015, An assessment of coalitional control in water systems, 978-3-9524-2693-7, 3286, 10.1109/ECC.2015.7331041
    54. Ch. Ammad Rehmat, Abubakr Muhammad, Naveed Ul Hassan, Comparative Frameworks for Risk Mitigation in Canal Networks, 2016, 154, 18777058, 1414, 10.1016/j.proeng.2016.07.513
    55. R. R. Negenborn, G. Hug-Glanzmann, B. De Schutter, G. Andersson, 2010, Chapter 10, 978-1-4419-5756-6, 251, 10.1007/978-1-4419-5757-3_10
    56. M. Xu, P.J. van Overloop, N.C. van de Giesen, Model reduction in model predictive control of combined water quantity and quality in open channels, 2013, 42, 13648152, 72, 10.1016/j.envsoft.2012.12.008
    57. Tao Ren, Jianwei Niu, Xuefeng Liu, Jiyan Wu, Xiaohui Lei, Zhao Zhang, An Efficient Model-Free Approach for Controlling Large-Scale Canals via Hierarchical Reinforcement Learning, 2021, 17, 1551-3203, 4367, 10.1109/TII.2020.3004857
    58. Mario Maiolo, Stefania Anna Palermo, Anna Chiara Brusco, Behrouz Pirouz, Michele Turco, Andrea Vinci, Giandomenico Spezzano, Patrizia Piro, On the Use of a Real-Time Control Approach for Urban Stormwater Management, 2020, 12, 2073-4441, 2842, 10.3390/w12102842
    59. S. M. Hashemy Shahdany, Y. Hasani, Y. Majidi, J. M. Maestre, Modern Operation of Main Irrigation Canals Suffering from Water Scarcity Based on an Economic Perspective, 2017, 143, 0733-9437, 10.1061/(ASCE)IR.1943-4774.0001024
    60. Markus Kögel, Rolf Findeisen, Cooperative Distributed MPC using the Alternating Direction Multiplier Method, 2012, 45, 14746670, 445, 10.3182/20120710-4-SG-2026.00159
    61. Michael Cantoni, Iven Mareels, 2020, Chapter 100100-1, 978-1-4471-5102-9, 1, 10.1007/978-1-4471-5102-9_100100-1
    62. S. M. Hashemy Shahdany, A. R. Firoozfar, Providing a Reliable Water Level Control in Main Canals under Significant Inflow Fluctuations at Drought Periods within Canal Automation, 2017, 31, 0920-4741, 3343, 10.1007/s11269-017-1671-0
    63. Lihui Cen, Ziqiang Wu, Xiaofang Chen, Yanggui Zou, Shaohui Zhang, On Modeling and Constrained Model Predictive Control of Open Irrigation Canals, 2017, 2017, 1687-5249, 1, 10.1155/2017/6257074
    64. Saad Abdul Aleem, Abubakr Muhammad, Hasan Arshad Nasir, System Identification of Distributory Canals in the Indus Basin, 2014, 47, 14746670, 8743, 10.3182/20140824-6-ZA-1003.01088
    65. Tianyu Yu, Zuhua Xu, Jun Zhao, Xi Chen, Lorenz T. Biegler, A fast, fully distributed nonlinear model predictive control algorithm with parametric sensitivity through Jacobi iteration, 2022, 110, 09591524, 133, 10.1016/j.jprocont.2021.12.010
    66. J. L. Nabais, R. R. Negenborn, R. B. Carmona-Benítez, L. F. Mendonça, M. A. Botto, 2014, Chapter 33, 978-94-007-7005-8, 535, 10.1007/978-94-007-7006-5_33
    67. Minh Dang Doan, Tamás Keviczky, Bart De Schutter, An iterative scheme for distributed model predictive control using Fenchel's duality, 2011, 21, 09591524, 746, 10.1016/j.jprocont.2010.12.009
    68. J. M. Maestre, P. J. van Overloop, M. Hashemy, A. Sadowska, E. F. Camacho, 2014, Human in the loop model Predictive Control: an irrigation canal case study, 978-1-4673-6090-6, 4881, 10.1109/CDC.2014.7040151
    69. Van Thang Pham, Laurent Lefèvre, Didier Georges, Gildas Besançon, Decentralized predictive control for 1D cascaded systems of conservation laws, 2014, 47, 14746670, 5163, 10.3182/20140824-6-ZA-1003.00424
    70. Luciano Raso, Pierre Olivier Malaterre, Combining Short-Term and Long-Term Reservoir Operation Using Infinite Horizon Model Predictive Control, 2017, 143, 0733-9437, 10.1061/(ASCE)IR.1943-4774.0001063
    71. A.T.J.R. Cobbenhagen, D.J. Antunes, M.J.G. van de Molengraft, W.P.M.H. Heemels, Opportunities for control engineering in arable precision agriculture, 2021, 51, 13675788, 47, 10.1016/j.arcontrol.2021.01.001
    72. Marzia Cescon, Erik Weyer, Modeling and Identification of Irrigation Channel Dynamics Affected by Wind, 2017, 50, 24058963, 5386, 10.1016/j.ifacol.2017.08.1071
    73. Suryakant Tyagi, Sandor Szenasi, 2022, Emotion Extraction from Speech using Deep Learning, 978-1-6654-9704-6, 000181, 10.1109/SAMI54271.2022.9780779
    74. Filiberto Fele, Jose M. Maestre, Eduardo F. Camacho, 2015, Coalitional control: A bottom-up approach, 978-1-4799-8684-2, 4074, 10.1109/ACC.2015.7171966
    75. Alfredo Núñez, Carlos Ocampo-Martinez, José María Maestre, Bart De Schutter, Time-Varying Scheme for Noncentralized Model Predictive Control of Large-Scale Systems, 2015, 2015, 1024-123X, 1, 10.1155/2015/560702
    76. Joao Lemos Nabais, Rudy R. Negenborn, Rafael B. Carmona Benitez, Miguel Ayala Botto, 2013, Setting cooperative relations among terminals at seaports using a multi-agent system, 978-1-4799-2914-6, 1731, 10.1109/ITSC.2013.6728479
    77. Ascension Zafra-Cabeza, J. M. Maestre, Miguel A. Ridao, Eduardo F. Camacho, Laura Sanchez, 2011, Hierarchical distributed model predictive control for risk mitigation: An irrigation canal case study, 978-1-4577-0081-1, 3172, 10.1109/ACC.2011.5990923
    78. P. J. van Overloop, R. R. Negenborn, D. Schwanenberg, B. De Schutter, 2011, Towards integrating water prediction and control technology, 978-1-4244-9570-2, 80, 10.1109/ICNSC.2011.5874940
    79. Jan Talsma, Wim Werkman, Arnejan van Loenen, Anticipatory Real-time Management in the Lake IJssel: Implementation and Practical Application, 2016, 154, 18777058, 49, 10.1016/j.proeng.2016.07.418
    80. P. Segovia, V. Puig, E. Duviella, L. Etienne, Distributed model predictive control using optimality condition decomposition and community detection, 2021, 99, 09591524, 54, 10.1016/j.jprocont.2021.01.007
    81. Alireza Farhadi, Ali Khodabandehlou, Distributed model predictive control with hierarchical architecture for communication: application in automated irrigation channels, 2016, 89, 0020-7179, 1725, 10.1080/00207179.2016.1145358
    82. Ningjun Zeng, Lihui Cen, Dewei Li, 2017, Distributed model predictive control for a multi-reach open-channel system, 978-1-5090-1573-3, 917, 10.1109/ASCC.2017.8287293
    83. Francisco Javier Muros, Jose Maria Maestre, Carlos Ocampo-Martinez, Encarnacion Algaba, Eduardo F. Camacho, A Game Theoretical Randomized Method for Large-Scale Systems Partitioning, 2018, 6, 2169-3536, 42245, 10.1109/ACCESS.2018.2854783
    84. Hasan Arshad Nasir, Abubakr Muhammad, 2012, Locating leaks & dumps in open channels with minimal sensing, 978-1-4673-4505-7, 1304, 10.1109/CCA.2012.6402650
    85. Distributed Model Predictive Control: An Overview and Roadmap of Future Research Opportunities, 2014, 34, 1066-033X, 87, 10.1109/MCS.2014.2320397
    86. Mathias Foo, Su Ki Ooi, Erik Weyer, 2010, Modelling of river for control design, 978-1-4244-5362-7, 1862, 10.1109/CCA.2010.5611337
    87. Zeinab Salehi, Yijun Chen, Ian R. Petersen, Elizabeth L. Ratnam, Guodong Shi, 2022, Social Shaping of Dynamic Multi-Agent Systems over a Finite Horizon, 978-1-6654-6761-2, 4553, 10.1109/CDC51059.2022.9992361
    88. Michael Kearney, Michael Cantoni, Peter M. Dower, 2011, Model predictive control for systems with scheduled load and its application to automated irrigation channels, 978-1-4244-9570-2, 186, 10.1109/ICNSC.2011.5874941
    89. Abubakr Muhammad, 2016, Managing river basins with thinking machines, 978-1-4673-8380-6, 1, 10.1109/NORBERT.2016.7547453
    90. W. Wu, J. Gao, 2010, Chapter 19, 978-90-481-3597-4, 487, 10.1007/978-90-481-3598-1_19
    91. Chujie Lu, Lihui Cen, Ningjun Zeng, Yanggui Zou, Jia Chen, 2018, Hierarchical Model Predictive Control for a Multi-reach Open-channel System, 978-1-5386-7346-1, 82, 10.1109/WCICA.2018.8630719
    92. Pedro Hespanhol, Anil Aswani, 2019, Surrogate Optimal Control for Strategic Multi-Agent Systems, 978-1-7281-1398-2, 2802, 10.1109/CDC40024.2019.9029475
    93. Paula Chanfreut, José M. Maestre, Eduardo F. Camacho, A survey on clustering methods for distributed and networked control systems, 2021, 52, 13675788, 75, 10.1016/j.arcontrol.2021.08.002
    94. A. T. J. R. Cobbenhagen, L. P. A. Schoonen, M. J. G. van de Molengraft, W. P. M. H. Heemels, Optimal Irrigation Allocation for Large-Scale Arable Farming, 2022, 30, 1063-6536, 1484, 10.1109/TCST.2021.3118296
    95. Markus Kögel, Rolf Findeisen, Set-point tracking using distributed MPC, 2013, 46, 14746670, 57, 10.3182/20131218-3-IN-2045.00097
    96. J. Herrera, A. Ibeas, M. de la Sen, Identification and control of integrative MIMO systems using pattern search algorithms: An application to irrigation channels, 2013, 26, 09521976, 334, 10.1016/j.engappai.2012.02.004
    97. João Lemos Nabais, Rudy R. Negenborn, Rafael Carmona-Benítez, Miguel Ayala Botto, 2015, Chapter 33, 978-3-319-24263-7, 478, 10.1007/978-3-319-24264-4_33
    98. H. van Ekeren, R. R. Negenborn, P. J. van Overloop, B. De Schutter, 2011, Hybrid model predictive control using time-instant optimization for the Rhine-Meuse Delta, 978-1-4244-9570-2, 215, 10.1109/ICNSC.2011.5874944
    99. Klaudia Horváth, Eduard Galvis, Manuel Gómez Valentín, José Rodellar, New offset-free method for model predictive control of open channels, 2015, 41, 09670661, 13, 10.1016/j.conengprac.2015.04.002
    100. René Schneider, Holger Scheu, Wolfgang Marquardt, Distributed MPC and partition-based MHE for distributed output feedback, 2014, 47, 14746670, 2183, 10.3182/20140824-6-ZA-1003.00559
    101. R.R. Negenborn, J.M. Maestre, 2014, Distributed Model Predictive Control: An overview of features and research opportunities, 978-1-4799-3106-4, 530, 10.1109/ICNSC.2014.6819682
    102. Human-in-the-Loop Model Predictive Control of an Irrigation Canal [Applications of Control], 2015, 35, 1066-033X, 19, 10.1109/MCS.2015.2427040
    103. Filiberto Fele, Ezequiel Debada, Jose Maria Maestre, Eduardo F. Camacho, Coalitional Control for Self-Organizing Agents, 2018, 63, 0018-9286, 2883, 10.1109/TAC.2018.2792301
    104. Marzia Cescon, Erik Weyer, 2017, Control of irrigation channels affected by wind stress, 978-1-5090-2873-3, 3425, 10.1109/CDC.2017.8264160
    105. E. Masero, J.M. Maestre, M. Francisco, E.F. Camacho, Coalitional MPC with predicted topology transitions, 2020, 53, 24058963, 3342, 10.1016/j.ifacol.2020.12.1498
    106. J. L. Nabais, R. R. Negenborn, M. A. Botto, 2013, Model predictive control for a sustainable transport modal split at intermodal container hubs, 978-1-4673-5200-0, 591, 10.1109/ICNSC.2013.6548805
    107. A. Sadowska, P.-J. van Overloop, C. Burt, B. De Schutter, Hierarchical Operation of Water Level Controllers: Formal Analysis and Application on a Large Scale Irrigation Canal, 2014, 28, 0920-4741, 4999, 10.1007/s11269-014-0785-x
    108. Claus Danielson, Francesco Borrelli, Douglas Oliver, Dyche Anderson, Tony Phillips, Constrained flow control in storage networks: Capacity maximization and balancing, 2013, 49, 00051098, 2612, 10.1016/j.automatica.2013.05.014
    109. Ascensión Zafra-Cabeza, J.M. Maestre, Miguel A. Ridao, Eduardo F. Camacho, Laura Sánchez, A hierarchical distributed model predictive control approach to irrigation canals: A risk mitigation perspective, 2011, 21, 09591524, 787, 10.1016/j.jprocont.2010.12.012
    110. Rongchao Zhang, Andong Liu, Li Yu, Wenan Zhang, Distributed Model Predictive Control Based on Nash Optimality for Large Scale Irrigation Systems∗∗This research work was supported by the National Natural Science Foundation of China under the Grants 61403344 and 61273117, and the Zhejiang Qianjiang talent project(QJD1302012)., 2015, 48, 24058963, 551, 10.1016/j.ifacol.2015.09.025
    111. Zofia Lukszo, Margot P.C. Weijnen, Rudy R. Negenborn, Bart De Schutter, Tackling challenges in infrastructure operation and control: cross-sectoral learning for process and infrastructure engineers, 2009, 5, 1475-3219, 308, 10.1504/IJCIS.2009.029111
    112. Ye He, Shaoyuan Li, Distributed model predictive control with guaranteed performance for reconfigurable power flow systems based on passivity, 2021, 23, 1561-8625, 1817, 10.1002/asjc.2333
    113. José Ramón D. Frejo, Eduardo F. Camacho, Centralized and distributed Model Predictive Control for the maximization of the thermal power of solar parabolic-trough plants, 2020, 204, 0038092X, 190, 10.1016/j.solener.2020.04.033
    114. Abhay Anand, Lakshminarayanan Samavedham, Sitanandam Sundaramoorthy, Comparative Performance Analysis of Coordinated Model Predictive Control Schemes in the Presence of Model–Plant Mismatch, 2012, 51, 0888-5885, 8273, 10.1021/ie2018405
    115. Hamed Tork, Saman Javadi, Seyed Mehdy Hashemy Shahdany, Ronny Berndtsson, Sami Ghordoyee Milan, Groundwater Extraction Reduction within an Irrigation District by Enhancing the Surface Water Distribution, 2022, 14, 2073-4441, 1610, 10.3390/w14101610
    116. Wenjun Liao, Guanghua Guan, Le Zhong, Changcheng Xiao, Ke Zhong, Huiyong Huang, X. Lei, S. Cai, Y. Yu, H. Li, Online Model Identification Of Open-Channel System With High Order IDZ Model, 2018, 246, 2261-236X, 01036, 10.1051/matecconf/201824601036
    117. J. Lemos Nabais, Rudy R. Negenborn, R. B. Carmona Benítez, Luís F. Mendonça, João Lourenço, M. Ayala Botto, 2013, Chapter 10, 978-3-642-38060-0, 94, 10.1007/978-3-642-38061-7_10
    118. Yuping Li, 2014, On a simplified distributed control of an open water channel, 978-1-4799-3274-0, 2071, 10.1109/ACC.2014.6858917
    119. Saad Abdul Aleem, Asad Khalid, Hassan Zaheer, Sarmad Jabbar, Abubakr Muhammad, 2013, System identification of Khaira distributory, 978-1-4799-3043-2, 19, 10.1109/INMIC.2013.6731318
    120. L. García, J. Barreiro-Gomez, E. Escobar, D. Téllez, N. Quijano, C. Ocampo-Martinez, Modeling and real-time control of urban drainage systems: A review, 2015, 85, 03091708, 120, 10.1016/j.advwatres.2015.08.007
    121. J. M. Maestre, M. A. Ridao, A. Kozma, C. Savorgnan, M. Diehl, M. D. Doan, A. Sadowska, T. Keviczky, B. De Schutter, H. Scheu, W. Marquardt, F. Valencia, J. Espinosa, A comparison of distributed MPC schemes on a hydro-power plant benchmark, 2015, 36, 01432087, 306, 10.1002/oca.2154
    122. J.M. Maestre, D. Muñoz de la Peña, E.F. Camacho, T. Alamo, Distributed model predictive control based on agent negotiation, 2011, 21, 09591524, 685, 10.1016/j.jprocont.2010.12.006
    123. P-J van Overloop, R. Negenborn, P. M. Torreblanca, 2013, Incorporating transport over water in the multi-objective water management of the Lake IJssel area in The Netherlands, 978-1-4673-5200-0, 649, 10.1109/ICNSC.2013.6548815
    124. Abhay Anand, Giam Ming Yao Joshua, Lakshminarayanan Samavedham, Sithanandam Sundaramoorthy, 2011, Coordinating multiple model predictive controllers for multi-reservoir management, 978-1-4244-9570-2, 1, 10.1109/ICNSC.2011.5874948
    125. F. J. Muros, J. M. Maestre, C. Ocampo-Martinez, E. Algaba, E. F. Camacho, 2018, Partitioning of Large-Scale Systems using Game-Theoretic Coalitional Methods, 978-3-9524-2698-2, 2517, 10.23919/ECC.2018.8550096
    126. Rafael P. Costa, Joao M. Lemos, Joao F. C. Mota, Joao M. F. Xavier, 2014, D-ADMM based distributed MPC with input-output models, 978-1-4799-7409-2, 699, 10.1109/CCA.2014.6981422
    127. Y. Liu, A. H. Weerts, M. Clark, H.-J. Hendricks Franssen, S. Kumar, H. Moradkhani, D.-J. Seo, D. Schwanenberg, P. Smith, A. I. J. M. van Dijk, N. van Velzen, M. He, H. Lee, S. J. Noh, O. Rakovec, P. Restrepo, Advancing data assimilation in operational hydrologic forecasting: progresses, challenges, and emerging opportunities, 2012, 16, 1607-7938, 3863, 10.5194/hess-16-3863-2012
    128. Hasan Arshad Nasir, Erik Weyer, System identification of the upper part of Murray River, 2016, 52, 09670661, 70, 10.1016/j.conengprac.2016.04.006
    129. P.J. van Overloop, R.R. Negenborn, S.V. Weijs, W. Malda, M.R. Bruggers, B. De Schutter, 2010, Linking water and energy objectives in lowland areas through the application of model predictive control, 978-1-4244-5362-7, 1887, 10.1109/CCA.2010.5611147
    130. M. Xu, R.R. Negenborn, P.J. van Overloop, N.C. van de Giesen, De Saint-Venant equations-based model assessment in model predictive control of open channel flow, 2012, 49, 03091708, 37, 10.1016/j.advwatres.2012.07.004
    131. Filiberto Fele, José M. Maestre, S. Mehdy Hashemy, David Muñoz de la Peña, Eduardo F. Camacho, Coalitional model predictive control of an irrigation canal, 2014, 24, 09591524, 314, 10.1016/j.jprocont.2014.02.005
    132. F. López Rodríguez, K. Horváth, J. García Martín, J.M. Maestre, Mobile Model Predictive Control for the Évora irrigation test canal, 2017, 50, 24058963, 6570, 10.1016/j.ifacol.2017.08.614
    133. Rafael Bernardo Carmona-Paredes, Rafael Bernardo Carmona-Benítez, Pressure Management in Water Distribution Systems Using a Self-Tuning Controller to Distribute the Available Potable Water with Equality, 2018, 32, 0920-4741, 1651, 10.1007/s11269-017-1896-y
    134. Lihui Cen, Yugeng Xi, Dewei Li, Boundary Feedback Stabilization and Control of Star-shaped Open Canals, 2013, 46, 14746670, 100, 10.3182/20130708-3-CN-2036.00083
    135. I. Alvarado, D. Limon, D. Muñoz de la Peña, J.M. Maestre, M.A. Ridao, H. Scheu, W. Marquardt, R.R. Negenborn, B. De Schutter, F. Valencia, J. Espinosa, A comparative analysis of distributed MPC techniques applied to the HD-MPC four-tank benchmark, 2011, 21, 09591524, 800, 10.1016/j.jprocont.2011.03.003
    136. R. R. Negenborn, 2014, Chapter 27, 978-94-007-7005-8, 437, 10.1007/978-94-007-7006-5_27
    137. Felipe Valencia, Jairo J. Espinosa, Bart De Schutter, Kateřina Staňková, Feasible-Cooperation Distributed Model Predictive Control Scheme Based on Game Theory, 2011, 44, 14746670, 386, 10.3182/20110828-6-IT-1002.02231
    138. Antonio Cembellín, Mario Francisco, Pastora Vega, Distributed Model Predictive Control Applied to a Sewer System, 2020, 8, 2227-9717, 1595, 10.3390/pr8121595
    139. M. Giuliani, A. Castelletti, Assessing the value of cooperation and information exchange in large water resources systems by agent-based optimization, 2013, 49, 00431397, 3912, 10.1002/wrcr.20287
    140. Offtake Feedforward Compensation for Irrigation Channels With Distributed Control, 2014, 22, 1063-6536, 1991, 10.1109/TCST.2013.2294683
    141. Nay Myo Lin, Martine Rutten, Optimal Operation of a Network of Multi-purpose Reservoir: A Review, 2016, 154, 18777058, 1376, 10.1016/j.proeng.2016.07.504
    142. Bozuo Zhao, Rui Kong, Wei Miao, Sang-Bing Tsai, Information Security of New Media Art Platform of Distributed System Based on Blockchain Technology, 2021, 2021, 1875-905X, 1, 10.1155/2021/6607130
    143. José María Maestre, Hideaki Ishii, A PageRank based coalitional control scheme, 2017, 15, 1598-6446, 1983, 10.1007/s12555-016-0336-8
    144. Reetik Kumar Sahu, Dennis B. McLaughlin, An Ensemble Optimization Framework for Coupled Design of Hydropower Contracts and Real‐Time Reservoir Operating Rules, 2018, 54, 0043-1397, 8401, 10.1029/2018WR022753
    145. B. Dekens, A.D. Sadowska, P.J. van Overloop, D. Schwanenberg, B. De Schutter, 2014, Gradient-based hybrid model predictive control using Time Instant Optimization for Dutch regional water systems, 978-3-9524269-1-3, 1343, 10.1109/ECC.2014.6862511
    146. Jennifer Zárate Flórez, Gildas Besançon, John J. Martinez, Frans Davelaar, Explicit price method for coordinated control and hydro-power production example, 2012, 45, 14746670, 699, 10.3182/20120902-4-FR-2032.00122
    147. Qiang Zhu, Kexin Wang, Zhijiang Shao, Lorenz T. Biegler, Distributed Dynamic Optimization for Chemical Process Networks Based on Differential Games, 2020, 59, 0888-5885, 2441, 10.1021/acs.iecr.9b04663
    148. J.M. Maestre, D. Muñoz de la Peña, A. Jiménez Losada, E. Algaba, E. F. Camacho, A coalitional control scheme with applications to cooperative game theory, 2014, 35, 01432087, 592, 10.1002/oca.2090
    149. Minh Dang Doan, Tamás Keviczky, Bart De Schutter, Application of Distributed and Hierarchical Model Predictive Control in Hydro Power Valleys, 2012, 45, 14746670, 375, 10.3182/20120823-5-NL-3013.00044
    150. L. Li, R. R. Negenborn, B. De Schutter, 2014, Multi-agent cooperative transport planning of intermodal freight transport, 978-1-4799-6078-1, 2465, 10.1109/ITSC.2014.6958085
    151. S. M. Hashemy Shahdany, E. Adib Majd, A. Firoozfar, J. M. Maestre, Improving Operation of a Main Irrigation Canal Suffering from Inflow Fluctuation within a Centralized Model Predictive Control System: Case Study of Roodasht Canal, Iran, 2016, 142, 0733-9437, 10.1061/(ASCE)IR.1943-4774.0001087
    152. Francisco Javier Muros, 2019, Chapter 1, 978-3-030-10488-7, 1, 10.1007/978-3-030-10489-4_1
    153. P. J. van Overloop, R. R. Negenborn, B. De Schutter, N. C. van de Giesen, 2010, Chapter 17, 978-90-481-3597-4, 439, 10.1007/978-90-481-3598-1_17
    154. Teresa Arauz, José M. Maestre, Xin Tian, Guanghua Guan, Design of PI Controllers for Irrigation Canals Based on Linear Matrix Inequalities, 2020, 12, 2073-4441, 855, 10.3390/w12030855
    155. A. van Loenen, M. Xu, 2015, Chapter 5, 978-3-319-16132-7, 75, 10.1007/978-3-319-16133-4_5
    156. Muhammad Umer Tariq, Hasan Arshad Nasir, Abubakr Muhammad, Marilyn Wolf, 2012, Model-Driven Performance Analysis of Large Scale Irrigation Networks, 978-1-4673-1537-1, 151, 10.1109/ICCPS.2012.23
    157. Charles M. Burt, Kyle E. Feist, Xianshu Piao, Accelerated Irrigation Canal Flow Change Routing, 2018, 144, 0733-9437, 10.1061/(ASCE)IR.1943-4774.0001307
    158. Nadia Rosero, Jose M. Ramirez, John J. Martinez, 2013, Minimization of water losses for optimal hydroelectric power generation, 978-1-4799-0997-1, 1322, 10.1109/MED.2013.6608891
    159. Tao Ren, Jianwei Niu, Jiahe Cui, Zhenchao Ouyang, Xuefeng Liu, An application of multi-objective reinforcement learning for efficient model-free control of canals deployed with IoT networks, 2021, 182, 10848045, 103049, 10.1016/j.jnca.2021.103049
    160. Maarten Breckpot, Oscar Mauricio Agudelo, Bart De Moor, Flood Control with Model Predictive Control for River Systems with Water Reservoirs, 2013, 139, 0733-9437, 532, 10.1061/(ASCE)IR.1943-4774.0000577
    161. Maoyuan Feng, Pan Liu, Yuliang Zhou, Xiaoqi Zhang, Rihui An, Examining various control strategies for the nexus across water supply, power generation and environment systems in Hehuang, China, 2022, 615, 00221694, 128609, 10.1016/j.jhydrol.2022.128609
    162. Andrea Castelletti, Andrea Ficchì, Andrea Cominola, Pablo Segovia, Matteo Giuliani, Wenyan Wu, Sergio Lucia, Carlos Ocampo-Martinez, Bart De Schutter, José María Maestre, Model Predictive Control of water resources systems: A review and research agenda, 2023, 13675788, 10.1016/j.arcontrol.2023.03.013
    163. Yongfang Xie, Ningjun Zeng, Shaohui Zhang, Lihui Cen, Xiaofang Chen, PDE‐constrained model predictive control of open‐channel systems, 2024, 18, 1751-8644, 160, 10.1049/cth2.12554
    164. Francisco Lopez-Rodriguez, Francisco Javier Muros, Kazem Shahverdi, José María Maestre, 2023, Multi-Scenario Tube-Based Model Predictive Control for Irrigation Canals with Human Interventions* , 979-8-3503-2806-6, 3927, 10.23919/ACC55779.2023.10156021
    165. Suryakant Tyagi, Sándor Szénási, Semantic speech analysis using machine learning and deep learning techniques: a comprehensive review, 2023, 83, 1573-7721, 73427, 10.1007/s11042-023-17769-6
    166. Rajani Pandey, G R Jayanth, M.S Mohan Kumar, Comprehensive mathematical model for efficient and robust control of irrigation canals, 2024, 178, 13648152, 106083, 10.1016/j.envsoft.2024.106083
    167. Shaoyuan Li, Yi Zheng, Binqiang Xue, 2023, Chapter 1, 978-981-99-0267-5, 1, 10.1007/978-981-99-0268-2_1
    168. Panagiotis Georgakis, Charalampos P. Bechlioulis, 2024, Modeling, Simulation and Control of Irrigation Canal Networks, 979-8-3315-3181-2, 33, 10.1109/ICSC63929.2024.10928957
    169. Leonardo Pedroso, Pedro Batista, W.P.M.H. (Maurice) Heemels, Distributed design of ultra large-scale control systems: Progress, Challenges, and Prospects, 2025, 59, 13675788, 100987, 10.1016/j.arcontrol.2025.100987
  • Reader Comments
  • © 2009 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(7592) PDF downloads(548) Cited by(169)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog