Loading [MathJax]/jax/output/SVG/jax.js
Research article

Time-adaptive Lagrangian variational integrators for accelerated optimization

  • Received: 02 June 2022 Revised: 05 October 2022 Accepted: 06 October 2022 Published: 15 February 2023
  • 37M15, 37N40, 34A26, 65K10, 70H15

  • A variational framework for accelerated optimization was recently introduced on normed vector spaces and Riemannian manifolds in [1] and [2]. It was observed that a careful combination of time-adaptivity and symplecticity in the numerical integration can result in a significant gain in computational efficiency. It is however well known that symplectic integrators lose their near-energy preservation properties when variable time-steps are used. The most common approach to circumvent this problem involves the Poincaré transformation on the Hamiltonian side, and was used in [3] to construct efficient explicit algorithms for symplectic accelerated optimization. However, the current formulations of Hamiltonian variational integrators do not make intrinsic sense on more general spaces such as Riemannian manifolds and Lie groups. In contrast, Lagrangian variational integrators are well-defined on manifolds, so we develop here a framework for time-adaptivity in Lagrangian variational integrators and use the resulting geometric integrators to solve optimization problems on vector spaces and Lie groups.

    Citation: Valentin Duruisseaux, Melvin Leok. Time-adaptive Lagrangian variational integrators for accelerated optimization[J]. Journal of Geometric Mechanics, 2023, 15(1): 224-255. doi: 10.3934/jgm.2023010

    Related Papers:

    [1] Abel Cabrera Martínez, Iztok Peterin, Ismael G. Yero . Roman domination in direct product graphs and rooted product graphs. AIMS Mathematics, 2021, 6(10): 11084-11096. doi: 10.3934/math.2021643
    [2] Fu-Tao Hu, Xing Wei Wang, Ning Li . Characterization of trees with Roman bondage number 1. AIMS Mathematics, 2020, 5(6): 6183-6188. doi: 10.3934/math.2020397
    [3] Rangel Hernández-Ortiz, Luis Pedro Montejano, Juan Alberto Rodríguez-Velázquez . Weak Roman domination in rooted product graphs. AIMS Mathematics, 2021, 6(4): 3641-3653. doi: 10.3934/math.2021217
    [4] Mingyu Zhang, Junxia Zhang . On Roman balanced domination of graphs. AIMS Mathematics, 2024, 9(12): 36001-36011. doi: 10.3934/math.20241707
    [5] Jian Yang, Yuefen Chen, Zhiqiang Li . Some sufficient conditions for a tree to have its weak Roman domination number be equal to its domination number plus 1. AIMS Mathematics, 2023, 8(8): 17702-17718. doi: 10.3934/math.2023904
    [6] Saeed Kosari, Yongsheng Rao, Zehui Shao, Jafar Amjadi, Rana Khoeilar . Complexity of signed total $k$-Roman domination problem in graphs. AIMS Mathematics, 2021, 6(1): 952-961. doi: 10.3934/math.2021057
    [7] Zhibin Du, Ayu Ameliatul Shahilah Ahmad Jamri, Roslan Hasni, Doost Ali Mojdeh . Maximal first Zagreb index of trees with given Roman domination number. AIMS Mathematics, 2022, 7(7): 11801-11812. doi: 10.3934/math.2022658
    [8] Bana Al Subaiei, Ahlam AlMulhim, Abolape Deborah Akwu . Vertex-edge perfect Roman domination number. AIMS Mathematics, 2023, 8(9): 21472-21483. doi: 10.3934/math.20231094
    [9] Chang-Xu Zhang, Fu-Tao Hu, Shu-Cheng Yang . On the (total) Roman domination in Latin square graphs. AIMS Mathematics, 2024, 9(1): 594-606. doi: 10.3934/math.2024031
    [10] Abel Cabrera-Martínez, Andrea Conchado Peiró . On the $ \{2\} $-domination number of graphs. AIMS Mathematics, 2022, 7(6): 10731-10743. doi: 10.3934/math.2022599
  • A variational framework for accelerated optimization was recently introduced on normed vector spaces and Riemannian manifolds in [1] and [2]. It was observed that a careful combination of time-adaptivity and symplecticity in the numerical integration can result in a significant gain in computational efficiency. It is however well known that symplectic integrators lose their near-energy preservation properties when variable time-steps are used. The most common approach to circumvent this problem involves the Poincaré transformation on the Hamiltonian side, and was used in [3] to construct efficient explicit algorithms for symplectic accelerated optimization. However, the current formulations of Hamiltonian variational integrators do not make intrinsic sense on more general spaces such as Riemannian manifolds and Lie groups. In contrast, Lagrangian variational integrators are well-defined on manifolds, so we develop here a framework for time-adaptivity in Lagrangian variational integrators and use the resulting geometric integrators to solve optimization problems on vector spaces and Lie groups.



    In this paper, we shall only consider graphs without multiple edges or loops. Let G=(V(G),E(G)) be a graph, vV(G), the neighborhood of v in G is denoted by N(v). That is to say N(v)={u|uvE(G),uV(G)}. The degree of a vertex v is denoted by d(v), i.e. d(v)=|N(v)|. A graph is trivial if it has a single vertex. The maximum degree and the minimum degree of a graph G are denoted by Δ(G) and δ(G), respectively. Denote by Kn the complete graph on n vertices.

    A subset D of the vertex set of a graph G is a dominating set if every vertex not in D has at least one neighbor in D. The domination number γ(G) is the minimum cardinality of a dominating set of G. A dominating set D of G with |D|=γ(G) is called a γ-set of G.

    Roman domination of graphs is an interesting variety of domination, which was proposed by Cockayne et al. [6]. A Roman dominating function (RDF) of a graph G is a function f:V(G){0,1,2} such that every vertex u for which f(u)=0 is adjacent to at least one vertex v for which f(v)=2. The weight w(f) of a Roman dominating function f is the value w(f)=uV(G)f(u). The minimum weight of an RDF on a graph G is called the Roman domination number γR(G) of G. An RDF f of G with w(f)=γR(G) is called a γR-function of G. The problems on domination and Roman domination of graphs have been investigated widely, for example, see list of references [8,9,10,13] and [3,7,12], respectively.

    In 2016, Chellali et al. [5] introduced a variant of Roman dominating functions, called Roman {2}-dominating functions. A Roman {2}-dominating function (R{2}DF) of G is a function f:V{0,1,2} such that uN(v)f(u)2 for every vertex vV with f(v)=0. The weight of a Roman {2}-dominating function f is the sum vVf(v). The Roman {2}-domination number γ{R2}(G) is the minimum weight of an R{2}DF of G. Note that if f is an R{2}DF of G and v is a vertex with f(v)=0, then either there is a vertex uN(v) with f(u)=2, or at least two vertices x,yN(v) with f(x)=f(y)=1. Hence, an R{2}DF of G is also an RDF of G, which is also mentioned by Chellali et al [5]. Moreover, they showed that the decision problem for Roman {2}-domination is NP-complete, even for bipartite graphs.

    In fact, a Roman {2}-dominating function is essentially the same as a weak {2}-dominating function, which was introduced by Brešar et al. [1] and studied in literatures [2,11,14,15].

    For a mapping f:V(G){0,1,2}, let (V0,V1,V2) be the ordered partition of V(G) induced by f such that Vi={x:f(x)=i} for i=0,1,2. Note that there exists a 1-1 correspondence between the function f and the partition (V0,V1,V2) of V(G), so we will write f=(V0,V1,V2).

    Chellali et al. [4] obtained the following lower bound of Roman domination number.

    Lemma 1. (Chellali et al. [4]) Let G be a nontrivial connected graph with maximum degree Δ. Then γR(G)Δ+1Δγ(G).

    In this paper, we generalize this result on nontrivial connected graph G with maximum degree Δ and minimum degree δ. We prove that γR(G)Δ+2δΔ+δγ(G). As a corollary, we obtain that 32γ(G)γR(G)2γ(G) for any nontrivial regular graph G. Moreover, we prove that γR(G)2γ{R2}(G)1 for every graph G and there exists a graph Ik such that γ{R2}(Ik)=k and γR(Ik)=2k1 for any integer k2.

    Lemma 2. (Cockayne et al. [6]) Let f=(V0,V1,V2) be a γR-function of an isolate-free graph G with |V1| as small as possible. Then

    (i) No edge of G joins V1 and V2;

    (ii) V1 is independent, namely no edge of G joins two vertices in V1;

    (iii) Each vertex of V0 is adjacent to at most one vertex of V1.

    Theorem 3. Let G be a nontrivial connected graph with maximum degree Δ(G)=Δ and minimum degree δ(G)=δ. Then

    γR(G)Δ+2δΔ+δγ(G). (2.1)

    Moreover, if the equality holds, then

    γ(G)=n(Δ+δ)Δδ+Δ+δandγR(G)=n(Δ+2δ)Δδ+Δ+δ.

    Proof. Let f=(V0,V1,V2) be a γR-function of G with V1 as small as possible. By Lemma 2, we know that N(v)V0 for any vV1 and N(v1)N(v2)= for any v1,v2V1. So we have

    |V1||V0|δ (2.2)

    Since G is nontrivial, it follows that V2. Note that every vertex in V2 is adjacent to at most Δ vertices in V0; we have

    |V0|Δ|V2| (2.3)

    By Formulae (2.2) and (2.3), we have

    |V1|Δδ|V2| (2.4)

    By the definition of an RDF, every vertex in V0 has at least one neighbor in V2. So V1V2 is a dominating set of G. Together with Formula (2.4), we can obtain that

    γ(G)|V1|+|V2|Δδ|V2|+|V2|=Δ+δδ|V2|.

    Note that f is a γR-function of G; we have

    γR(G)=|V1|+2|V2|=(|V1|+|V2|)+|V2|γ(G)+δΔ+δγ(G)=Δ+2δΔ+δγ(G).

    Moreover, if the equality in Formula (2.1) holds, then by previous argument we obtain that |V1|=|V0|δ, |V0|=Δ|V2|, and V1V2 is a γ-set of G. Then we have

    n=|V0|+|V1|+|V2|=|V0|+|V0|δ+|V0|Δ=Δδ+Δ+δΔδ|V0|.

    Hence, we have

    |V0|=nΔδΔδ+Δ+δ,|V1|=nΔΔδ+Δ+δ, and |V2|=nδΔδ+Δ+δ.

    So

    γR(G)=|V1|+2|V2|=n(Δ+2δ)Δδ+Δ+δ and γ(G)=|V1|+|V2|=n(Δ+δ)Δδ+Δ+δ

    since V1V2 is a γ-set of G. This completes the proof.

    Now we show that the lower bound in Theorem 3 can be attained by constructing an infinite family of graphs. For any integers k2, δ2 and Δ=kδ, we construct a graph Hk from K1,Δ by adding k news vertices such that each new vertex is adjacent to δ vertices of K1,Δ with degree 1 and no two new vertices has common neighbors. Then add some edges between the neighbors of each new vertex u such that δ(Hk)=δ and the induced subetaaph of N(u) in Hk is not complete. The resulting graph Hk is a connected graph with maximum degree Δ(G)=Δ and maximum degree δ(G)=δ. It can be checked that γ(Hk)=k+1 and γR(Hk)=k+2=Δ+2δΔ+δγ(G).

    For example, if k=2, δ=3 and Δ=kδ=6, then the graph H2 constructed by the above method is shown in Figure 1, where u1 and u2 are new vertices.

    Figure 1.  An example to illustrate the construction of Hk.

    Furthermore, by Theorem 3, we can obtain a lower bound of the Roman domination number on regular graphs.

    Corollary 4. Let G be an r-regular graph, where r1. Then

    γR(G)32γ(G) (2.5)

    Moreover, if the equality holds, then

    γ(G)=2nr+2andγR(G)=3nr+2.

    Proof. Since G is r-regular, we have Δ(G)=δ(G)=r. By Theorem 3 we can obtain that this corollary is true.

    For any integer n2, denote by G2n the (2n2)-regular graph with 2n vertices, namely G2n is the graph obtained from K2n by deleting a perfect matching. It can be checked that γ(G2n)=2 and γR(G2n)=3=32γ(G) for any n2. Hence, the bound in Corollary 4 is attained.

    Note that γR(G)2γ(G) for any graph G; we can conclude the following result.

    Corollary 5. Let G be an r-regular graph, where r1. Then

    32γ(G)γR(G)2γ(G).

    Chellali et al. [5] obtain the following bounds for the Roman {2}-domination number of a graph G.

    Lemma 6. (Chellali et al. [5]) For every graph G, γ(G)γ{R2}(G)γR(G)2γ(G).

    Lemma 7. (Chellali et al. [5]) If G is a connected graph of order n and maximum degree Δ(G)=Δ, then

    γ{R2}(G)2nΔ+2.

    Theorem 8. For every graph G, γR(G)2γ{R2}(G)1. Moreover, for any integer k2, there exists a graph Ik such that γ{R2}(Ik)=k and γR(Ik)=2k1.

    Proof. Let f=(V0,V1,V2) be an γ{R2}-function of G. Then γ{R2}(G)=|V1|+2|V2| and γR(G)2|V1|+2|V2| since V1V2 is a dominating set of G. If |V2|1, then γR(G)2|V1|+2|V2|=2γ{R2}(G)2|V2|2γ{R2}(G)2. If |V2|=0, then every vertex in V0 is adjacent to at least two vertices in V1. So for any vertex uV1, f=(V0,{u},V1{u}) is an RDF of G. Then we have γR(G)1+2|V1{u}|=2|V1|1=2γ{R2}(G)1.

    For any integer k2, let Ik be the graph obtained from Kk by replacing every edge of Kk with two paths of length 2. Then Δ(Ik)=2(k1) and δ(Ik)=2. We first prove that γ{R2}(Ik)=k. Since V(Ik)=|V(Kk)|+2|E(Kk)|=k+2k(k1)2=k2, by Lemma 7 we can obtain γ{R2}(Ik)2|V(Ik)|Δ(Ik)+2=2k22(k1)+2=k. On the other hand, let f(x)=1 for each xV(Ik) with d(x)=2(k1) and f(y)=0 for each yV(Ik) with d(y)=2. It can be seen that f is an R{2}DF of Ik and w(f)=k. Hence, γ{R2}(Ik)=k.

    We now prove that γR(Ik)=2k1. Let g={V1,V2,V3} be a γR-function of Ik such that |V1| is minimum. For each 4-cycle C=v1v2v3v4v1 of Ik with d(v1)=d(v3)=2(k1) and d(v2)=d(v4)=2, we have wg(C)=g(v1)+g(v2)+g(v3)+g(v4)2. If wg(C)=2, then by Lemma 2(iii) we have g(vi){0,2} for any i{1,2,3,4}. Hence, one of v1 and v3 has value 2 and g(v2)=g(v4)=0. If wg(C)=3, then by Lemma 2(i) we have {g(v1),g(v3)}={1,2} or {g(v2),g(v4)}={1,2}. When {g(v2),g(v4)}={1,2}, let {g(v1),g(v2)}={1,2}, g(v2)=g(v4)=0 and g(x)=g(x) for any xV(Ik){v1,v2,v3,v4}. Then g is also a γR-function of Ik. If wg(C)=4, then exchange the values on C such that v1,v3 have value 2 and v2,v4 have value 0. So we obtain that Ik has a γR-function h such that h(y)=0 for any yV(Ik) with degree 2. Note that any two vertices of Ik with degree 2(k1) belongs to a 4-cycle considered above; we can obtain that there is exactly one vertex z of Ik with degree 2(k1) such that h(z)=1. Hence, γR(Ik)=w(h)=2k1.

    Note that the graph Ik constructed in Theorem 8 satisfies that γ(Ik)=k=γ{R2}(Ik). By Theorem 8, it suffices to prove that γ(Ik)=k. Let A={v:vV(Ik),d(v)=2(k1)} and B=V(Ik)A. We will prove that Ik has a γ-set containing no vertex of B. Let D be a γ-set of Ik. If D contains a vertex uB. Since the degree of u is 2, let u1 and u2 be two neighbors of u in Ik. Then d(u1)=d(u2)=2(k1) and, by the construction of Ik, u1 and u2 have two common neighbors u,u with degree 2. Hence, at least one of u,u1, and u2 belongs to D. Let D=(D{u,u}){u1,u2}. Then D is also a γ-set of Ik. Hence, we can obtain a γ-set of Ik containing no vertex of B by performing the above operation for each vertex vDB. So A is a γ-set of Ik and γ(Ik)=|A|=k.

    By Lemma 6 and Theorem 8, we can obtain the following corollary.

    Corollary 9. For every graph G, γ{R2}(G)γR(G)2γ{R2}(G)1.

    Theorem 10. For every graph G, γR(G)γ(G)+γ{R2}(G)1.

    Proof. By Lemma 6 we can obtain that γR(G)2γ(G)γ(G)+γ{R2}(G). If the equality holds, then γR(G)=2γ(G) and γ(G)=γ{R2}(G). So γR(G)=2γ{R2}(G), which contradicts Theorem 8. Hence, we have γR(G)γ(G)+γ{R2}(G)1.

    In this paper, we prove that γR(G)Δ+2δΔ+δγ(G) for any nontrivial connected graph G with maximum degree Δ and minimum degree δ, which improves a result obtained by Chellali et al. [4]. As a corollary, we obtain that 32γ(G)γR(G)2γ(G) for any nontrivial regular graph G. Moreover, we prove that γR(G)2γ{R2}(G)1 for every graph G and the bound is achieved. Although the bounds in Theorem 3 and Theorem 8 are achieved, characterizing the graphs that satisfy the equalities remain a challenge for further work.

    The author thanks anonymous referees sincerely for their helpful suggestions to improve this work. This work was supported by the National Natural Science Foundation of China (No.61802158) and Natural Science Foundation of Gansu Province (20JR10RA605).

    The author declares that they have no conflict of interest.



    [1] A. Wibisono, A. Wilson, M. Jordan, A variational perspective on accelerated methods in optimization, Proc. Natl. Acad. Sci., 113 (2016), E7351–E7358. https://doi.org/10.1073/pnas.1614734113 doi: 10.1073/pnas.1614734113
    [2] V. Duruisseaux, M. Leok, A variational formulation of accelerated optimization on Riemannian manifolds, SIAM J. Math. Data Sci., 4 (2022), 649–674. https://doi.org/10.1137/21M1395648 doi: 10.1137/21M1395648
    [3] V. Duruisseaux, J. Schmitt, M. Leok, Adaptive Hamiltonian variational integrators and applications to symplectic accelerated optimization, SIAM J. Sci. Comput., 43 (2021), A2949–A2980. https://doi.org/10.1137/20M1383835 doi: 10.1137/20M1383835
    [4] Y. Nesterov, A method of solving a convex programming problem with convergence rate O(1/k2). Sov. Math. Dokl., 27 (1983), 372–376.
    [5] Y. Nesterov, Introductory Lectures on Convex Optimization: A Basic Course, volume 87 of Applied Optimization, Kluwer Academic Publishers, Boston, MA, 2004.
    [6] W. Su, S. Boyd, E. Candes, A differential equation for modeling Nesterov's Accelerated Gradient method: theory and insights. J. Mach. Learn. Res., 17 (2016), 1–43.
    [7] M. Betancourt, M. I. Jordan, A. Wilson, On symplectic optimization. 2018. https://doi.org/10.48550/arXiv.1802.03653
    [8] C. M. Campos, A. Mahillo, D. Martín de Diego, A discrete variational derivation of accelerated methods in optimization. 2021. https://doi.org/10.48550/arXiv.2106.02700
    [9] G. França, M. I. Jordan, R. Vidal, On dissipative symplectic integration with applications to gradient-based optimization. J. Stat. Mech., 2021 (2021), 043402. https://doi.org/10.1088/1742-5468/abf5d4 doi: 10.1088/1742-5468/abf5d4
    [10] G. França, A. Barp, M. Girolami, M. I. Jordan, Optimization on manifolds: A symplectic approach, 07 2021. https://doi.org/10.48550/arXiv.2107.11231
    [11] M. I. Jordan, Dynamical, symplectic and stochastic perspectives on gradient-based optimization, In Proceedings of the International Congress of Mathematicians (ICM 2018), 523–549. https://doi.org/10.1142/9789813272880_0022
    [12] E. Hairer, C. Lubich, G. Wanner, Geometric Numerical Integration, volume 31 of Springer Series in Computational Mathematics, Springer-Verlag, Berlin, second edition, 2006.
    [13] J. P. Calvo, J. M. Sanz-Serna, The development of variable-step symplectic integrators, with application to the two-body problem, SIAM J. Sci. Comp., 14 (1993), 936–952. https://doi.org/10.1137/0914057 doi: 10.1137/0914057
    [14] B. Gladman, M. Duncan, J. Candy, Symplectic integrators for long-time integrations in celestial mechanics. Celestial Mech. Dyn. Astr., 52 (1991), 221–240. https://doi.org/10.1007/BF00048485 doi: 10.1007/BF00048485
    [15] E. Hairer, Variable time step integration with symplectic methods, Appl. Numer. Math., 25 (1997), 219–227. https://doi.org/10.1016/S0168-9274(97)00061-5 doi: 10.1016/S0168-9274(97)00061-5
    [16] K. Zare, V. G. Szebehely, Time transformations in the extended phase-space. Celestial Mech., 11 (1975), 469–482. https://doi.org/10.1007/BF01650285 doi: 10.1007/BF01650285
    [17] J. Hall, M. Leok, Spectral Variational Integrators, Numer. Math., 130 (2015), 681–740. https://doi.org/10.1007/s00211-014-0679-0 doi: 10.1007/s00211-014-0679-0
    [18] J. E. Marsden, M. West, Discrete mechanics and variational integrators. Acta Numer., 10 (2001), 357–514. https://doi.org/10.1017/S096249290100006X doi: 10.1017/S096249290100006X
    [19] T. Lee, M. Tao, M. Leok, Variational symplectic accelerated optimization on Lie groups. 2021.
    [20] M. Tao, T. Ohsawa, Variational optimization on Lie groups, with examples of leading (generalized) eigenvalue problems. In Proceedings of the 23rd International AISTATS Conference, volume 108 of PMLR, 2020.
    [21] F. Alimisis, A. Orvieto, G. Bécigneul, A. Lucchi, A continuous-time perspective for modeling acceleration in Riemannian optimization. In Proceedings of the 23rd International AISTATS Conference, volume 108 of PMLR, 1297–1307, 2020.
    [22] V. Duruisseaux, M. Leok, Accelerated optimization on Riemannian manifolds via discrete constrained variational integrators. J. Nonlinear Sci., 32 (2022). https://doi.org/10.1007/s00332-022-09795-9 doi: 10.1007/s00332-022-09795-9
    [23] V. Duruisseaux, M. Leok, Accelerated optimization on Riemannian manifolds via projected variational integrators. 2022. https://doi.org/10.48550/arXiv.2201.02904
    [24] J. Nash, The imbedding problem for Riemannian manifolds, Ann. Math., 63 (1956), 20–63. https://doi.org/10.2307/1969989 doi: 10.2307/1969989
    [25] H. Whitney, The self-intersections of a smooth n-manifold in 2n-space, Ann. Math., 45 (1944), 220–246. https://doi.org/10.2307/1969265 doi: 10.2307/1969265
    [26] H. Whitney, The singularities of a smooth n-manifold in (2n1)-space, Ann. Math., 45 (1944), 247–293. https://doi.org/10.2307/1969266 doi: 10.2307/1969266
    [27] N. Bou-Rabee, J. E. Marsden, Hamilton–Pontryagin integrators on Lie groups part Ⅰ: Introduction and structure-preserving properties, Found. Comput. Math., 9 (2009), 197–219. https://doi.org/10.1007/s10208-008-9030-4 doi: 10.1007/s10208-008-9030-4
    [28] I. I. Hussein, M. Leok, A. K. Sanyal, A. M. Bloch, A discrete variational integrator for optimal control problems on SO(3). Proceedings of the 45th IEEE Conference on Decision and Control, 6636–6641, 2006. https://doi.org/10.1109/CDC.2006.377818 doi: 10.1109/CDC.2006.377818
    [29] T. Lee, Computational geometric mechanics and control of rigid bodies. Ph.D. dissertation, University of Michigan, 2008.
    [30] T. Lee, M. Leok, N. H. McClamroch, Lie group variational integrators for the full body problem, Comput. Methods Appl. Mech. Engrg., 196 (2007), 2907–2924. https://doi.org/10.1016/j.cma.2007.01.017 doi: 10.1016/j.cma.2007.01.017
    [31] T. Lee, M. Leok, N. H. McClamroch, Lie group variational integrators for the full body problem in orbital mechanics, Celestial Mech. Dyn. Astr., 98 (2007), 121–144. https://doi.org/10.1007/s10569-007-9073-x doi: 10.1007/s10569-007-9073-x
    [32] T. Lee, N. H. McClamroch, M. Leok, A Lie group variational integrator for the attitude dynamics of a rigid body with applications to the 3d pendulum, Proceedings of 2005 IEEE Conference on Control Applications. (CCA 2005), 962–967. https://doi.org/10.1109/CCA.2005.1507254 doi: 10.1109/CCA.2005.1507254
    [33] M. Leok, Generalized Galerkin variational integrators: Lie group, multiscale, and pseudospectral methods, (preprint, arXiv: math.NA/0508360), 2004.
    [34] N. Nordkvist, A. K. Sanyal, A Lie group variational integrator for rigid body motion in SE(3) with applications to underwater vehicle dynamics, In 49th IEEE Conference on Decision and Control (CDC), 5414–5419, 2010. https://doi.org/10.1109/CDC.2010.5717622
    [35] T. Lee, M. Leok, N. H. McClamroch, Lagrangian mechanics and variational integrators on two-spheres, Int. J. Numer. Methods Eng., 79 (2009), 1147–1174. https://doi.org/10.1002/nme.2603 doi: 10.1002/nme.2603
    [36] J. E. Marsden, T. S. Ratiu, Introduction to mechanics and symmetry, volume 17 of Texts in Applied Mathematics. Springer-Verlag, New York, second edition, 1999.
    [37] S. Lall, M. West, Discrete variational Hamiltonian mechanics, J. Phys. A, 39 (2006), 5509–5519. https://doi.org/10.1088/0305-4470/39/19/S11 doi: 10.1088/0305-4470/39/19/S11
    [38] M. Leok, J. Zhang, Discrete Hamiltonian variational integrators, IMA J. Numer. Anal., 31 (2011), 1497–1532. https://doi.org/10.1093/imanum/drq027 doi: 10.1093/imanum/drq027
    [39] J. M. Schmitt, M. Leok, Properties of Hamiltonian variational integrators, IMA J. Numer. Anal., 38 (2017), 377–398. https://doi.org/10.1093/imanum/drx010 doi: 10.1093/imanum/drx010
    [40] M. Leok, T. Shingel, Prolongation-collocation variational integrators, IMA J. Numer. Anal., 32 (2012), 1194–1216. https://doi.org/10.1093/imanum/drr042 doi: 10.1093/imanum/drr042
    [41] J. M. Schmitt, T. Shingel, M. Leok, Lagrangian and Hamiltonian Taylor variational integrators, BIT Numer. Math., 58 (2018), 457–488. https://doi.org/10.1007/s10543-017-0690-9 doi: 10.1007/s10543-017-0690-9
    [42] M. Leok, T. Ohsawa, Variational and geometric structures of discrete Dirac mechanics, Found. Comput. Math., 11 (2011), 529–562. https://doi.org/10.1007/s10208-011-9096-2 doi: 10.1007/s10208-011-9096-2
    [43] H. Yoshimura, J. E. Marsden, Dirac structures in Lagrangian mechanics Part Ⅰ: Implicit Lagrangian systems, J. Geom. Phys., 57 (2006), 133–156. https://doi.org/10.1016/j.geomphys.2006.02.009 doi: 10.1016/j.geomphys.2006.02.009
    [44] H. Yoshimura, J. E. Marsden, Dirac structures in Lagrangian mechanics Part Ⅱ: Variational structures, J. Geom. Phys., 57 (2006), 209–250. https://doi.org/10.1016/j.geomphys.2006.02.012 doi: 10.1016/j.geomphys.2006.02.012
    [45] D. Kingma, J. Ba, Adam: A method for stochastic optimization, International Conference on Learning Representations, 12 2014. https://doi.org/10.48550/arXiv.1412.6980
    [46] J. Duchi, E. Hazan, Y. Singer, Adaptive subgradient methods for online learning and stochastic optimization, J. Mach. Learn. Res., 12 (2011), 2121–2159.
    [47] T. Tieleman, G. Hinton, Coursera: Neural Networks for Machine Learning - Lecture 6.5: RMSprop, 2012.
    [48] P. A. Absil, R. Mahony, R. Sepulchre, Optimization Algorithms on Matrix Manifolds, Princeton University Press, Princeton, NJ, 2008. https://doi.org/10.1515/9781400830244
    [49] N. Boumal, An introduction to optimization on smooth manifolds, 2020.
    [50] J. M. Lee, Introduction to Riemannian Manifolds, volume 176 of Graduate Texts in Mathematics, Springer, Cham, second edition, 2018.
    [51] J. Jost, Riemannian Geometry and Geometric Analysis, Universitext. Springer, Cham, 7th edition, 2017.
    [52] T. Lee, M. Leok, N. H. McClamroch, Global Formulations of Lagrangian and Hamiltonian Dynamics on Manifolds: A Geometric Approach to Modeling and Analysis, Interaction of Mechanics and Mathematics. Springer International Publishing, 2017.
    [53] J. Gallier, J. Quaintance, Differential Geometry and Lie Groups: A Computational Perspective, Geometry and Computing. Springer International Publishing, 2020.
    [54] E. Celledoni, H. Marthinsen, B. Owren, An introduction to Lie group integrators – basics, new developments and applications, J. Comput. Phys., 257 (2014), 1040–1061. https://doi.org/10.1016/j.jcp.2012.12.031 doi: 10.1016/j.jcp.2012.12.031
    [55] E. Celledoni, E. Çokaj, A. Leone, D. Murari, B. Owren, Lie group integrators for mechanical systems, Int. J. Comput. Math., 99 (2022), 58–88. https://doi.org/10.1080/00207160.2021.1966772 doi: 10.1080/00207160.2021.1966772
    [56] S. H. Christiansen, H. Z. Munthe-Kaas, B. Owren, Topics in structure-preserving discretization, Acta Numer., 20 (2011), 1–119. https://doi.org/10.1017/S096249291100002X doi: 10.1017/S096249291100002X
    [57] A. Iserles, H. Z. Munthe-Kaas, S. P. Nørsett, A. Zanna, Lie group methods, Acta Numer., 9 (2000), 215–365. https://doi.org/10.1017/S0962492900002154
    [58] P. E. Crouch, R. L. Grossman, Numerical integration of ordinary differential equations on manifolds, J. Nonlinear Sci., 3 (1993), 1–33. https://doi.org/10.1007/BF02429858 doi: 10.1007/BF02429858
    [59] D. Lewis, J. C. Simo, Conserving algorithms for the dynamics of Hamiltonian systems on Lie groups, J. Nonlinear Sci., 4 (1994), 253–299. https://doi.org/10.1007/BF02430634 doi: 10.1007/BF02430634
    [60] F. Casas, B. Owren, Cost efficient Lie group integrators in the RKMK class, BIT, 43 (2003), 723–742. https://doi.org/10.1023/B:BITN.0000009959.29287.d4 doi: 10.1023/B:BITN.0000009959.29287.d4
    [61] H. Z. Munthe-Kaas, Lie-Butcher theory for Runge-Kutta methods, BIT, 35 (1995), 572–587. https://doi.org/10.1007/BF01739828 doi: 10.1007/BF01739828
    [62] H. Z. Munthe-Kaas, Runge-Kutta methods on Lie groups, Bit Numer. Math., 38 (1998), 92–111. https://doi.org/10.1007/BF02510919 doi: 10.1007/BF02510919
    [63] H. Z. Munthe-Kaas, High order Runge-Kutta methods on manifolds, Appl. Numer. Math., 29 (1999), 115–127. https://doi.org/10.1016/S0168-9274(98)00030-0 doi: 10.1016/S0168-9274(98)00030-0
    [64] S. Blanes, F. Casas, J. A. Oteo, J. Ros, The Magnus expansion and some of its applications, Phys. Rep., 470 (2008), 151–238. https://doi.org/10.1016/j.physrep.2008.11.001 doi: 10.1016/j.physrep.2008.11.001
    [65] A. Iserles, S. P. Nørsett, On the solution of linear differential equations in Lie groups, Phil. Trans. R. Soc. A, 357 (1999), 983–1019. https://doi.org/10.1098/rsta.1999.0362 doi: 10.1098/rsta.1999.0362
    [66] A. Zanna, Collocation and relaxed collocation for the Fer and the Magnus expansions, SIAM J. Numer. Anal., 36 (1999), 1145–1182. https://doi.org/10.1137/S0036142997326616 doi: 10.1137/S0036142997326616
    [67] E. Celledoni, A. Marthinsen, B. Owren, Commutator-free Lie group methods, Future Gener. Comput. Syst., 19 (2003), 341–352. https://doi.org/10.1016/S0167-739X(02)00161-9 doi: 10.1016/S0167-739X(02)00161-9
    [68] G. Wahba, A Least Squares Estimate of Satellite Attitude, SIAM Rev., 7 (1965), 409. https://doi.org/10.1137/1007077 doi: 10.1137/1007077
    [69] V. Duruisseaux, M. Leok, Practical perspectives on symplectic accelerated optimization, 2022. https://doi.org/10.48550/arXiv.2207.11460
  • jgm-15-01-010-s001.pdf
  • This article has been cited by:

    1. Chang-Xu Zhang, Fu-Tao Hu, Shu-Cheng Yang, On the (total) Roman domination in Latin square graphs, 2024, 9, 2473-6988, 594, 10.3934/math.2024031
    2. Sakander Hayat, Raman Sundareswaran, Marayanagaraj Shanmugapriya, Asad Khan, Venkatasubramanian Swaminathan, Mohamed Hussian Jabarullah, Mohammed J. F. Alenazi, Characterizations of Minimal Dominating Sets in γ-Endowed and Symmetric γ-Endowed Graphs with Applications to Structure-Property Modeling, 2024, 16, 2073-8994, 663, 10.3390/sym16060663
    3. Tatjana Zec, On the Roman domination problem of some Johnson graphs, 2023, 37, 0354-5180, 2067, 10.2298/FIL2307067Z
    4. Jian Yang, Yuefen Chen, Zhiqiang Li, Some sufficient conditions for a tree to have its weak Roman domination number be equal to its domination number plus 1, 2023, 8, 2473-6988, 17702, 10.3934/math.2023904
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1526) PDF downloads(43) Cited by(4)

Figures and Tables

Figures(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog