Loading [MathJax]/jax/output/SVG/jax.js
Research article Special Issues

Barycentric rational collocation method for semi-infinite domain problems

  • The barycentric rational collocation method for solving semi-infinite domain problems is presented. Following the barycentric interpolation method of rational polynomial and Chebyshev polynomial, matrix equation is obtained from discrete semi-infinite domain problem. Truncation method and transformation method are presented to solve linear and nonlinear differential equation defined on the semi-infinite domain problems. At last, three numerical examples are presented to valid our theoretical analysis.

    Citation: Jin Li. Barycentric rational collocation method for semi-infinite domain problems[J]. AIMS Mathematics, 2023, 8(4): 8756-8771. doi: 10.3934/math.2023439

    Related Papers:

    [1] Kareem T. Elgindy, Hareth M. Refat . A direct integral pseudospectral method for solving a class of infinite-horizon optimal control problems using Gegenbauer polynomials and certain parametric maps. AIMS Mathematics, 2023, 8(2): 3561-3605. doi: 10.3934/math.2023181
    [2] Haoran Sun, Siyu Huang, Mingyang Zhou, Yilun Li, Zhifeng Weng . A numerical investigation of nonlinear Schrödinger equation using barycentric interpolation collocation method. AIMS Mathematics, 2023, 8(1): 361-381. doi: 10.3934/math.2023017
    [3] Zongcheng Li, Jin Li . Linear barycentric rational collocation method for solving a class of generalized Boussinesq equations. AIMS Mathematics, 2023, 8(8): 18141-18162. doi: 10.3934/math.2023921
    [4] Yangfang Deng, Zhifeng Weng . Barycentric interpolation collocation method based on Crank-Nicolson scheme for the Allen-Cahn equation. AIMS Mathematics, 2021, 6(4): 3857-3873. doi: 10.3934/math.2021229
    [5] Jin Li . Barycentric rational collocation method for fractional reaction-diffusion equation. AIMS Mathematics, 2023, 8(4): 9009-9026. doi: 10.3934/math.2023451
    [6] Jin Li . Linear barycentric rational interpolation method for solving Kuramoto-Sivashinsky equation. AIMS Mathematics, 2023, 8(7): 16494-16510. doi: 10.3934/math.2023843
    [7] Qianghua Luo, Jieyan Wang . On the density of shapes in three-dimensional affine subdivision. AIMS Mathematics, 2020, 5(5): 5381-5388. doi: 10.3934/math.2020345
    [8] A. H. Tedjani, A. Z. Amin, Abdel-Haleem Abdel-Aty, M. A. Abdelkawy, Mona Mahmoud . Legendre spectral collocation method for solving nonlinear fractional Fredholm integro-differential equations with convergence analysis. AIMS Mathematics, 2024, 9(4): 7973-8000. doi: 10.3934/math.2024388
    [9] Obaid Algahtani, M. A. Abdelkawy, António M. Lopes . A pseudo-spectral scheme for variable order fractional stochastic Volterra integro-differential equations. AIMS Mathematics, 2022, 7(8): 15453-15470. doi: 10.3934/math.2022846
    [10] Sunyoung Bu . A collocation methods based on the quadratic quadrature technique for fractional differential equations. AIMS Mathematics, 2022, 7(1): 804-820. doi: 10.3934/math.2022048
  • The barycentric rational collocation method for solving semi-infinite domain problems is presented. Following the barycentric interpolation method of rational polynomial and Chebyshev polynomial, matrix equation is obtained from discrete semi-infinite domain problem. Truncation method and transformation method are presented to solve linear and nonlinear differential equation defined on the semi-infinite domain problems. At last, three numerical examples are presented to valid our theoretical analysis.



    The differential equations of some problems are defined on infinite intervals of some engineering problems. Because of the infinite of calculation interval, how to calculate the upper boundary value problem of infinite interval becomes an important research subject for many numerical analysts.

    Semi-infinite domain problems defined on (0,) as

    F(x,u(x),u(x),u(x))=0,0<x<, (1.1)

    with the boundary condition

    u(0)=c0,u()=u (1.2)

    is considered, where F if continues function c0,c are constants and u()=limxu(x).

    It is easier to get the solution of differential equation under mathematical theory in infinite interval than in finite interval by Fourier transform and Laplace transform. Numerical method cannot directly solve the differential equation problem in infinite interval. In order to solve the differential equations in infinite interval, we need to develop new methods such as truncation method and transformation method. In the paper [1], strictly monotonic transformation is transform the [0,) into [1,1), two-point boundary value problem is solved by Chebyshev-Gauss collocation. In the paper [2], the method of weighted residuals is used to solve some problems involving boundary condition at infinity. In the paper [3], an original Petrov-Galerkin formulation of the Falkner-Skan equation is presented which is based on a judiciously chosen special basis function to capture the asymptotic behavior of the unknown. In the paper [4], based on the combination of Laplace transformation method and weighted residual method, an numerical method for the approximate solution of problems involving boundary condition at infinity is presented. Schrdinger-boussinesq system [5], nonlinear fractional K(m,n) type equation [6], nanotechnology and fractional [7,8], hirota-maccari system [9] and eneralized calogero-bogoyavlenskii-schiff equation [10] are studied. Generalized ϕ-convex functions [11], fractional integral operator [12], fractional-calculus theory [13], fractional inequalities [14], non-singular fractional integral operator [15] and differentiability in fractional calculus [16] are studied by Rashid and so on. In references [17,18], infinite cell method, the method of reconstructed kernels, Howarth's numerical solution and Runge-Kutta Fehlberg method have been used to numerically solve semi-infinite problems, respectively.

    Barycentrix interpolation collocation [19,20,21,22,23] have been developed to avoid the Runge phenomenon which is a meshfree method [24,25,26] to find approximate solutions to partial differential equations without integration. Meshless approach for the numerical solution of the nonlinear equal width equation, sine-Gordon system and sinh-Gordon equation were presented in [27,28,29], soliton wave solutions of nonlinear mathematical models, nonlinear sine-Gordon model and generalized Rosenau-KdV-RLW Equation were presented in [30,31,32]. In the recent paper, heat conduction equation [33], integral-differential equation [34], differential equation [35] and biharmonic equation [36] have been solved by linear barycentrix rational collocation methods. In the paper [37,38,39], barycentric interpolation collocation method for nonlinear problems, incompressible plane elastic problems and plane elastic problems and so on are presented.

    In this paper, we first consider the boundary value problem of linear differential equation on infinite interval for certain strictly monotone differentiable functions. By transformation of algebraic and Logarithmic, the infinite interval [0,) is transformed to finite interval [1,1), then the linear barycentric rational collocation methods (LBRCM) of finite interval problem is illustrated. We also give the truncation method, which is to cut the infinite interval into a finite interval solution. Thirdly, the LBRCM is extended to nonlinear problem by the linearized iterative collocation method for solving nonlinear boundary value problems on infinite interval.

    This paper is organized as following: In Section 2, linear boundary problems transform from semi-infinite domain into [1,1). In Section 3, the convergence and error analysis of LBRCM is proved. At last, three numerical examples are listed to illustrated our theorem.

    In order to compute the semi-infinite domain problems easily, we give the transform as

    x=ϕ(t),t[1,1),x(0,) (2.1)

    where ϕ(t) is the strictly monotone differentiable functions, then we have u(x)=u(ϕ(t))=v(t). As we have

    dxdt=ϕ(t),dtdx=1ϕ(t),

    by the rule of derivation, we have

    dudx=1ϕ(t)dvdt, (2.2)
    d2udx2=1ϕ2(t)d2vdt2ϕ(t)ϕ3(t)dvdt, (2.3)
    d3udx3=1ϕ3(t)d3vdt33ϕ2(t)ϕ4(t)d2vdt2ϕ(t)ϕ(t)3ϕ2(t)ϕ5(t)dvdt. (2.4)

    Then we transform the (0,) into (1,1) as the boundary value problems

    F(ϕ(t),v(t),1ϕ(t)dvdt,1ϕ2(t)d2vdt2ϕ(t)ϕ3(t)dvdt)=0,1t1 (2.5)

    and

    v(1)=c0,v(1)=c.

    In the following, the interval [1,1] can be partitioned t0=1,t1,,tn=1 and its semi-infinite domain c0,c as x0=1,x1,,xn= with

    xk=ϕ(tk),k=0,1,,n

    and

    u(xk)=v(tk),1t1,

    then we get the value at the mesh-point

    u(xk)=1ϕ(tk)v(tk), (2.6)
    u(xk)=1ϕ2(tk)v(tk)ϕ(t)ϕ3(t)v(tk), (2.7)

    and

    u(xk)=1ϕ3(t)v(tk)3ϕ2(t)ϕ4(t)v(tk)ϕ(t)ϕ(t)3ϕ2(t)ϕ5(t)v(tk) (2.8)

    with the help of vector form

    u(1)=diag(1ϕ(tk))v(1), (2.9)
    u(2)=diag(1ϕ2(tk))v(2)diag(ϕ(t)ϕ3(t))v(1), (2.10)
    u(3)=diag(1ϕ3(t))v(3)diag(3ϕ2(t)ϕ4(t))v(2)diag(ϕ(t)ϕ(t)3ϕ2(t)ϕ5(t))v(1), (2.11)

    where

    u=[u(x0),u(x1),,u(xn)]T,v=[v(t0),v(t1),,v(tn)]T,
    u(1)=[u(x0),u(x1),,u(xn)]T,v(1)=[v(t0),v(t1),,v(tn)]T,
    u(2)=[u(x0),u(x1),,u(xn)]T,v(2)=[v(t0),v(t1),,v(tn)]T,
    u(3)=[u(x0),u(x1),,u(xn)]T,t=[t0,t1,,tn]T.

    By the relationship of barycentric matrix at the meshpoint t0,t1,,tn, we have

    v(1)=D(1)v,v(2)=D(2)v,v(3)=D(3)v, (2.12)

    where D(m)=D(m)ij=R(m)j(xi) is the element of the differentiation matrices and Rj(x)=wjxxjnk=0wkxxk is basis function, see reference[37]. For m=2, we have

    Rj(xi)=2wj/wixixj(kiwk/wixixk+1xixj),ji, (2.13)

    where

    wk=iJk(1)ii+dj=i,jk1xkxj

    is the weight function with Jk={iI:kdik},0dn and

    Ri(xi)=jiRj(xi). (2.14)

    Then we get the differentiable matrices as

    D(1)ij=Rj(xi),D(2)ij=Rj(xi),D(3)ij=R(3)j(xi). (2.15)

    Combining the Eqs (2.10) and (2.12), we get

    u(1)=diag(1ϕ(t))D(1)v, (2.16)
    u(2)=[diag(1ϕ2(t))D(2)diag(ϕ(t)ϕ3(t))D(1)]v, (2.17)
    u(3)=[diag(1ϕ3(t))D(3)diag(3ϕ2(t)ϕ4(tk))D(2)]vdiag(ϕ(t)ϕ(t)3ϕ2(t)ϕ5(t))D(1)v. (2.18)

    Taking following linear boundary value differential problems as example,

    u(x)+p(x)u(x)+q(x)u(x)=f(x),0<x<, (2.19)

    by the transformation of (2.1) and (2.2), we have

    1ϕ(2)v(t)ϕ(t)ϕ3(t)v(t)+p(ϕ(t))ϕ(t)v(t)+q(ϕ(t))u(ϕ(t))=f(ϕ(t)),1t1. (2.20)

    Taking the meshpoint x0,x1,,xn in the Eq (2.12), we have

    u(xk)+p(xk)u(xk)+q(xk)u(xk)=f(xk),k=0,1,2,,N, (2.21)

    and its matrix form can be written as

    u(2)+diag(p(xk))u(1)+diag(q(xk))u=f(x), (2.22)

    Combining Eqs (2.16)–(2.18) and (2.22), we have

    diag(1ϕ(2))D(2)vdiag(ϕ(t)ϕ3(t))D(1)v+diag(p(ϕ(t))ϕ(t))D(1)v+diag(q(ϕ(t)))v=f(ϕ(t)), (2.23)

    where D(2) and D(1) are the barycentrix matrix, so we can not need to get the differential equation.

    In the actual calculation, we take the algebraic transformation as

    x=L1+t1t (2.24)

    and Logarithmic transformation

    x=Lln1t2=Lln21t, (2.25)

    where L is the positive constant called as amplification factor which determine the meshpoint of the semi-infinite domain.

    In order to complete the proof of convergence rate, some lemmas are given as below. Firstly, we define the error function

    e(x)=u(x)rn(x)=(xxi)(xxi+d)u[xi,xi+1,,xi+d;x] (3.1)

    and

    e(x)=ndi=0λi(x)[u(x)rn(x)]ndi=0λi(x)=A(x)B(x)=O(hd+1), (3.2)

    where A(x):=ndi=0(1)iu[xi,,xi+d;x],B(x):=ndi=0λi(x), and

    λi(x)=(1)i(xxi)(xxi+d). (3.3)

    Taking the numerical scheme

    nj=0ujRj(x)+pnj=0ujRj(x)+qnj=0ujRj(x)=f(x). (3.4)

    Combining (3.4) and (2.19), we have

    Le(x):=e(x)+pe(x)+qe(x)Rf(x), (3.5)

    where Rf(x)=f(x)f(xk),k=0,1,2,,n.

    Lemma have been proved by Jean-Paul Berrut.

    Lemma 1. (see reference [19]) For e(x) defined as (3.1), there holds

    |e(k)(x)|Chd+1k,uCd+k+2[a,b],k=0,1,. (3.6)

    Let u(x) to be the solution of (2.19) and un(x) is the numerical solution, then we have

    Lun(xk)=f(xk),k=0,1,2,,n,

    and

    limnun(x)=u(x).

    Based on the above lemma, we get the following theorem.

    Theorem 1. Let un(x):Lun(xk)=f(xk),f(x)C[a,b] and suppose L be the invertible operator, we have

    |un(x)u(x)|Chd1.

    Proof. As

    un(x)=nj=0Rj(x)uj.

    Combining the Lemma 1 and Eq (3.5), we have

    |Le(x)|=|e(x)+qe(x)+qe(x)Rf(x)||e(x)|+|qe(x)|+|qe(x)|+|Rf(x)|Chd1+Chd+Chd+1Chd1. (3.7)

    As L is invertible operator. Then we have

    |un(x)u(x)|Chd1.

    The proof is completed.

    Three examples are presented to valid our theorem. All the examples were performed on personal computer by Matlab r2013a with a (Confguration: Intel(R) Core(TM) i5-8265U CPU @ 1.60GHz 1.80 GHz).

    Example 1. Consider the boundary value problems

    u+2u2u=e2x,0<x<, (4.1)
    u(0)=1,u()=0 (4.2)

    with analysis solution

    u(x)=12(e(1+3)x+e2x).

    In Table 1, CPU running times of algebraic transformation with equidistant nodes S=5 of linear barycentric rational collocation methods are presented. From Table 1, we know that the running times is less than 3 second.

    Table 1.  CPU running times of algebraic transformation with equidistant nodes S=5.
    n d=2 d=3 d=4 d=5
    10 8.1940e-03 4.7143e-03 2.0530e-03 6.5745e-04
    20 2.9926e-03 8.2744e-04 1.5364e-04 3.4327e-06
    40 5.8635e-04 8.0910e-05 6.7069e-06 1.5838e-07
    80 9.1053e-05 6.3050e-06 2.4638e-07 4.8568e-09
    160 1.2704e-05 4.4188e-07 8.4039e-09 9.7578e-11
    320 1.6815e-06 2.9356e-08 2.7601e-10 1.6812e-12
    time(second) 2.277 3.116 2.260 2.283

     | Show Table
    DownLoad: CSV

    In Tables 2 and 3, the convergence of algebraic transformation with equidistant nodes and quasi-equidistant nodes S=5 of linear barycentric rational collocation methods are presented. In Table 2, with S=5,d=2,3,4,5, errors of equidistant nodes are O(hd+1). In Table 3, with S=5,d=2,3,4,5, errors of quasi-equidistant nodes are O(hd+2).

    Table 2.  Errors of algebraic transformation with equidistant nodes S=5.
    n d=2 d=3 d=4 d=5
    10 8.1940e-03 4.7143e-03 2.0530e-03 6.5745e-04
    20 2.9926e-03 1.4532 8.2744e-04 2.5103 1.5364e-04 3.7401 3.4327e-06 7.5814
    40 5.8635e-04 2.3516 8.0910e-05 3.3543 6.7069e-06 4.5178 1.5838e-07 4.4379
    80 9.1053e-05 2.6870 6.3050e-06 3.6817 2.4638e-07 4.7667 4.8568e-09 5.0272
    160 1.2704e-05 2.8414 4.4188e-07 3.8348 8.4039e-09 4.8737 9.7578e-11 5.6373
    320 1.6815e-06 2.9175 2.9356e-08 3.9119 2.7601e-10 4.9283 1.6812e-12 5.8590

     | Show Table
    DownLoad: CSV
    Table 3.  Errors of algebraic transformation with quasi-equidistant nodes S=5.
    n d=2 d=3 d=4 d=5
    10 2.6753e-02 1.2130e-02 3.6934e-03 7.1962e-04
    20 2.2977e-03 3.5414 5.7573e-04 4.3971 9.2680e-05 5.3166 2.9350e-06 7.9377
    40 1.7519e-04 3.7132 2.1363e-05 4.7522 1.6545e-06 5.8078 1.3132e-08 7.8042
    80 1.2976e-05 3.7551 7.5147e-07 4.8293 2.8327e-08 5.8681 1.0991e-10 6.9005
    160 9.3708e-07 3.7915 2.5684e-08 4.8708 4.7511e-10 5.8978 2.1025e-11 2.3862
    320 6.6037e-08 3.8268 8.6168e-10 4.8976 5.7275e-11 3.0523 8.8952e-10 -

     | Show Table
    DownLoad: CSV

    In Tables 4 and 5, errors of equidistant nodes and quasi-equidistant nodes log transformation d=3 of linear barycentric rational collocation methods are presented. In Table 4, errors of equidistant nodes with d=3,S=5,15,25,40,50,60 are O(hd+1). In Table 5, errors of quasi-equidistant nodes with d=3,S=5,15,25,40,50,60 are O(hd+1).

    Table 4.  Errors of equidistant nodes with log transformation d=3.
    n S=5 S=15 S=25 S=40 S=50 S=60
    10 4.3819e-05 5.0803e-04 2.1984e-03 4.9277e-03 7.8668e-03 1.0289e-02
    20 5.4907e-06 3.9227e-05 2.3810e-04 7.2881e-04 1.5591e-03 2.7012e-03
    40 7.5950e-07 2.7109e-06 1.9208e-05 6.7990e-05 1.6734e-04 3.3250e-04
    80 1.0979e-07 1.7834e-07 1.3619e-06 5.1736e-06 1.3642e-05 2.9016e-05
    160 1.6204e-08 1.1450e-08 9.0754e-08 3.5710e-07 9.7447e-07 2.1444e-06
    320 2.4156e-09 7.2589e-10 5.8623e-09 2.3479e-08 6.5185e-08 1.4592e-07

     | Show Table
    DownLoad: CSV
    Table 5.  Errors of quasi-equidistant nodes with log transformation d=3.
    n S=5 S=15 S=25 S=40 S=50 S=60
    10 1.9110e-05 3.0625e-04 1.9235e-03 6.5161e-03 1.5280e-02 2.8619e-02
    20 1.2327e-06 7.3967e-06 5.3852e-05 2.1490e-04 5.9851e-04 1.3533e-03
    40 5.5047e-08 1.7798e-07 1.4130e-06 5.9639e-06 1.7865e-05 4.2421e-05
    80 2.5152e-09 4.6691e-09 3.9511e-08 1.7260e-07 5.2290e-07 1.2650e-06
    160 1.1602e-10 1.3339e-10 1.1640e-09 5.1541e-09 1.5723e-08 3.8136e-08
    320 5.7945e-12 6.0677e-12 3.5670e-11 1.5699e-10 4.8081e-10 1.1682e-09

     | Show Table
    DownLoad: CSV

    In Tables 6 and 7, errors of truncation method with equidistant nodes and quasi-equidistant nodes d=3 of linear barycentric rational collocation methods are presented. In Table 6, errors of equidistant nodes with d=3,S=5,15,25,40,50,60 are O(hd). In Table 7, errors of quasi-equidistant nodes with d=3,S=5,15,25,40,50,60 are O(hd).

    Table 6.  Errors of truncation method with equidistant nodes d=3.
    n S=5 S=15 S=25 S=40 S=50 S=60
    10 2.1223e-02 5.6913e-02 3.9768e-02 2.1094e-02 2.0192e-02 1.9600e-02
    20 3.5188e-03 3.4810e-02 4.9520e-02 4.1346e-02 3.2513e-02 2.5230e-02
    40 3.8273e-04 8.9325e-03 2.4157e-02 4.0168e-02 4.3242e-02 4.2114e-02
    80 3.5450e-05 1.3067e-03 5.2897e-03 1.5028e-02 2.2010e-02 2.8100e-02
    160 2.3284e-05 1.4200e-04 7.0907e-04 2.7523e-03 4.9296e-03 7.6340e-03
    320 2.3284e-05 1.3380e-05 7.3950e-05 3.3526e-04 6.6710e-04 1.1485e-03

     | Show Table
    DownLoad: CSV
    Table 7.  Errors of truncation method with quasi-equidistant nodes d=3.
    n S=5 S=15 S=25 S=40 S=50 S=60
    10 2.7030e-02 3.0280e-01 4.2518e-01 3.6833e-01 3.0452e-01 2.5081e-01
    20 1.8985e-03 8.9395e-02 3.5376e-01 8.9282e-01 1.1958e+00 1.4081e+00
    40 1.0692e-04 7.2929e-03 4.3260e-02 1.8903e-01 3.5525e-01 5.7148e-01
    80 2.3284e-05 4.4342e-04 2.9492e-03 1.5790e-02 3.3935e-02 6.2143e-02
    160 2.3284e-05 2.6249e-05 1.7739e-04 9.9627e-04 2.2364e-03 4.3010e-03
    320 2.3284e-05 1.5817e-06 1.0630e-05 5.9696e-05 1.3464e-04 2.6112e-04

     | Show Table
    DownLoad: CSV

    Example 2. Consider the boundary value problems

    8u+2uu=8e14x,0<x<, (4.3)
    u(0)=1,u()=0 (4.4)

    and its analysis solution is

    u(x)=3e12x+4e34x.

    In Tables 8 and 9, errors of log transformation with equidistant nodes and quasi-equidistant nodes S=8 of linear barycentric rational collocation methods are presented. In Table 8, errors of log transformation with equidistant nodes S=8,d=2,3,4,5 are O(hd+1). In Table 9, errors of log transformation with quasi-equidistant nodes S=8,d=2,3,4,5 are O(hd+2).

    Table 8.  Errors of log transformation with equidistant nodes S=8.
    n d=2 d=3 d=4 d=5
    10 1.7920e-02 6.1866e-03 8.0099e-04 2.9488e-04
    20 2.6669e-03 2.7483 4.3639e-04 3.8255 3.2205e-05 4.6364 4.4835e-06 6.0394
    40 3.5692e-04 2.9015 2.8675e-05 3.9277 1.1054e-06 4.8647 6.8605e-08 6.0302
    80 4.5963e-05 2.9570 1.8342e-06 3.9666 3.6022e-08 4.9395 1.0604e-09 6.0156
    160 5.8252e-06 2.9801 1.1594e-07 3.9837 1.1488e-09 4.9707 1.6497e-11 6.0062
    320 7.3298e-07 2.9905 7.2873e-09 3.9919 3.6425e-11 4.9790 1.6509e-13 6.6428

     | Show Table
    DownLoad: CSV
    Table 9.  Errors of log transformation with quasi-equidistant nodes S=8.
    n d=2 d=3 d=4 d=5
    10 1.2884e-02 3.1184e-03 3.7630e-04 5.0897e-05
    20 8.9366e-04 3.8497 6.6520e-05 5.5509 4.2951e-06 6.4530 3.8046e-07 7.0637
    40 5.1689e-05 4.1118 1.4461e-06 5.5236 4.7299e-08 6.5048 2.1039e-09 7.4986
    80 3.0710e-06 4.0731 3.4891e-08 5.3731 6.1916e-10 6.2553 1.9563e-11 6.7488
    160 1.8483e-07 4.0545 9.4700e-10 5.2033 1.3292e-11 5.5417 3.9667e-11 -
    320 1.1294e-08 4.0326 2.7845e-11 5.0879 9.5279e-11 - 1.9074e-09 -

     | Show Table
    DownLoad: CSV

    In Tables 10 and 11, errors of equidistant nodes and quasi-equidistant nodes log transformation d=3 of linear barycentric rational collocation methods are presented. In Table 10, errors of equidistant nodes log transformation with d=3,S=5,15,25,40,50,60 are O(hd+1). In Table 11, errors of quasi-equidistant nodes log transformation with d=3,S=5,15,25,40,50,60 are O(hd+1).

    Table 10.  Errors of equidistant nodes log transformation with d=3.
    n S=5 S=15 S=25 S=40 S=50 S=60
    10 1.2754e-01 4.7239e-03 3.3028e-03 1.1102e-15 9.6949e-04 2.0177e-03
    20 1.0096e-01 1.5512e-03 1.0035e-03 1.5543e-15 6.7291e-05 1.2162e-04
    40 7.7020e-02 5.2958e-04 3.2856e-04 9.7700e-15 7.1866e-06 7.4030e-06
    80 5.7531e-02 1.8400e-04 1.1148e-04 1.4821e-14 1.1037e-06 4.5563e-07
    160 4.2389e-02 6.4485e-05 3.8532e-05 1.2784e-13 1.8340e-07 2.8240e-08
    320 3.0936e-02 2.2697e-05 1.3453e-05 5.0154e-13 3.1563e-08 1.7571e-09

     | Show Table
    DownLoad: CSV
    Table 11.  Errors of quasi-equidistant nodes log transformation with d=3.
    n S=5 S=15 S=25 S=40 S=50 S=60
    10 1.1024e-01 4.3445e-03 2.6631e-03 3.3307e-16 5.8846e-04 9.6881e-04
    20 1.6316e-01 1.1904e-03 6.5698e-04 2.9421e-15 2.3458e-05 1.9189e-05
    40 1.8549e-01 3.1977e-04 1.5566e-04 8.4377e-15 1.0472e-06 3.9498e-07
    80 1.4828e-01 6.4136e-05 3.0793e-05 1.6739e-13 5.4456e-08 9.3150e-09
    160 1.1057e-01 1.2704e-05 6.3129e-06 1.0436e-12 3.1336e-09 2.4767e-10
    320 8.4925e-02 2.6665e-06 1.3904e-06 4.1613e-12 1.8558e-10 7.7586e-12

     | Show Table
    DownLoad: CSV

    We consider the nonlinear boundary problems on semi-infinite domain with the Logarithmic transformation

    x=Lln1t2=Lln21t, (4.5)

    where L is the positive constant called as amplification factor

    u(1)=diag(1tL)D(1)v, (4.6)
    u(2)=[diag((1t)2L2)D(2)diag(1tL3)D(1)]v, (4.7)
    u(3)=[diag((1t)3L3)D(3)diag(3(1t)2L3)D(2)+diag(1tL3)D(1)]v. (4.8)

    Taking the notation as below,

    C(1)=diag(1tL)D(1),C(2)=diag((1t)2L2)D(2)diag(1tL3)D(1),C(3)=diag((1t)3L3)D(3)diag(3(1t)2L3)D(2)+diag(1tL3)D(1), (4.9)

    we have

    u(1)=C(1)v,u(2)=C(2)v,u(3)=C(3)v. (4.10)

    Example 3. Consider the nonlinear boundary value problems

    f(3)+ff(2)βf(1)(1+α)(f)2=0,0<x<, (4.11)
    f(0)=0,f(1)(0)=0,f()=0 (4.12)

    and its analysis solution is

    f(η)=11+β(1eη1+β).

    For the know function f0(η), (4.11) can be linearized as

    f+f0fβf(1+α)f0f=0,0<x<, (4.13)

    then we get the linearized scheme as

    f(3)n+fn1f(2)nβf(1)n(1+α)(fn1)fn=0,0η, (4.14)
    fn(0)=0,f(1)n(0)=0,fn()=0. (4.15)

    We take the transformation as

    η=Lln1t2.

    Then we get the calculation of barycentrix rational interpolation formulae as

    [C(3)+diag(vn1)C(2)βC(1)(1+α)diag(C(1)vn1)C(1)]vn=0, (4.16)
    eT1vn=0,(d(1)1)Tvn=L2,(d(1)N)Tvn=0. (4.17)

    In Tables 12 and 13, errors of log transformation with equidistant nodes and quasi-equidistant nodes d=4 of linear barycentric rational collocation methods are presented. In Table 12, errors of log transformation with equidistant nodes d=4,S=5,15,25,40,50,60 are O(hd+1). In Table 13, errors of log transformation with quasi-equidistant nodes d=4,S=5,15,25,40,50,60 are O(hd+1).

    Table 12.  Errors of log transformation with equidistant nodes d=4.
    n S=5 S=15 S=25 S=40 S=50 S=60
    10 1.1417e-01 1.1643e-03 3.8685e-04 2.6218e-03 1.4407e-02 3.3166e-02
    20 8.6017e-02 3.4701e-04 5.7745e-05 2.8848e-04 1.5798e-03 3.9883e-03
    40 6.4617e-02 9.8838e-05 7.5309e-06 2.7478e-05 1.5133e-04 4.0728e-04
    80 4.8719e-02 2.7898e-05 9.3159e-07 2.5008e-06 1.3783e-05 3.8393e-05
    160 3.6883e-02 7.8585e-06 1.1180e-07 2.2369e-07 1.2320e-06 3.4918e-06
    320 2.7996e-02 2.2227e-06 1.0890e-08 2.2044e-08 1.0968e-07 3.1330e-07

     | Show Table
    DownLoad: CSV
    Table 13.  Errors of log transformation with quasi-equidistant nodes d=4.
    n S=5 S=15 S=25 S=40 S=50 S=60
    10 1.5523e-01 5.4277e-04 9.8075e-05 5.4433e-04 3.0401e-03 7.5620e-03
    20 1.6951e-01 6.0893e-05 1.8383e-06 4.4380e-06 2.4863e-05 7.1834e-05
    40 3.6280e-01 2.0078e-05 9.6699e-08 1.1358e-07 6.0548e-07 1.7855e-06
    80 3.3942e-01 1.4406e-05 1.8173e-07 4.4643e-08 1.2382e-08 4.1055e-08
    160 7.0711e-01 7.0711e-01 7.0840e-01 7.1450e-01 7.2004e-01 7.2419e-01
    320 7.5314e-01 7.5368e-01 7.0729e-01 9.7077e-01 8.2649e-01 7.4239e-01

     | Show Table
    DownLoad: CSV

    In Tables 14 and 15, errors of truncation method with equidistant nodes and quasi-equidistant nodes truncation method d=4 of linear barycentric rational collocation methods are presented. In Table 14, errors of truncation method with equidistant nodes d=4,S=5,15,25,40,50,60 are O(hd). In Table 15, errors of truncation method with quasi-equidistant nodes d=4,S=5,15,25,40,50,60 are O(hd).

    Table 14.  Errors of truncation method with equidistant nodes d=4.
    n S=5 S=15 S=25 S=40 S=50 S=60
    10 4.0047e-02 4.2878e-01 9.6623e-01 1.8391e+00 2.4362e+00 3.0389e+00
    20 5.6161e-03 1.0508e-01 2.9263e-01 6.4704e-01 9.0921e-01 1.1798e+00
    40 5.8518e-04 1.8933e-02 6.8111e-02 1.8598e-01 2.8381e-01 3.9150e-01
    80 1.0416e-03 2.5582e-03 1.1535e-02 3.9660e-02 6.7434e-02 1.0125e-01
    160 1.1000e-03 2.8311e-04 1.4849e-03 6.1589e-03 1.1596e-02 1.9000e-02
    320 1.1055e-03 2.8011e-05 1.5973e-04 7.4542e-04 1.5086e-03 2.6428e-03

     | Show Table
    DownLoad: CSV
    Table 15.  Errors of truncation method with quasi-equidistant nodes d=4.
    n S=5 S=15 S=25 S=40 S=50 S=60
    10 8.7532e-03 1.5797e-01 3.9943e-01 8.4003e-01 1.1639e+00 1.4953e+00
    20 1.0564e-03 5.2940e-03 2.1988e-02 9.7691e-02 2.0783e-01 3.7063e-01
    40 1.1047e-03 1.7985e-04 1.1002e-03 5.7232e-03 1.4762e-02 3.3025e-02
    80 1.1060e-03 4.8801e-06 3.3783e-05 1.8744e-04 4.1176e-04 8.0327e-04
    160 1.1050e-03 1.4693e-07 9.3971e-07 5.4925e-06 1.2524e-05 2.4385e-05
    320 9.5026e-04 3.3705e-06 2.3864e-06 4.9717e-07 5.3707e-07 7.2421e-07

     | Show Table
    DownLoad: CSV

    Semi-infinite domain problems have been considered by linear barycentric interpolation method with the truncation method and transformation method. By transformation method, the semi-infinite domain [0,) was transformed into [1,1] with the function become complex. The proof of the convergence rate have been presented and numerical examples conforms the theorem analysis for both the linear and nonlinear differential equation. In the future works, infinite domain problems will be considered by the linear barycentric interpolation method.

    The work of Jin Li was supported by Natural Science Foundation of Shandong Province (Grant No. ZR2022MA003). The authors would also like to thank the referees for their constructive comments and remarks which helped improve the quality of the paper.

    The authors declare that they have no conflicts of interest.



    [1] M. Maleki, I. Hashim, S. Abbasbandy, Analysis of IVPs and BVPs on semi-infinite domains via collocation methods, J. Appl. Math., 2012 (2012), 1–21. https://doi.org/10.1155/2012/696574 doi: 10.1155/2012/696574
    [2] S. A. Odejide, Y. A. S. Aregbesola, Applications of method of weighted residuals to problems with Semi-infinite domain, Rom. J. Phys., 56 (2011), 14–24.
    [3] F. Auteri, L. Quartapelle, Galerkin-Laguerre spectral solution of self-similar boundary layer problems, Commun. Comput. Phys., 12 (2012), 1329–1358. https://doi.org/10.4208/cicp.130411.230911a doi: 10.4208/cicp.130411.230911a
    [4] A. O. Adewumi, S. O. Akindeinde, A. A. Aderogba, Laplace-weighted residual method for problems with semi-infinite domain, J. Mod. Method Numer. Math., 7 (2016), 59–66.
    [5] H. F. Ismael, H. Bulut, H. M. Baskonus, W. Gao, Dynamical behaviors to the coupled schrdinger-boussinesq system with the beta derivative, AIMS Math., 6 (2021), 7909–7928. https://doi.org/10.3934/math.2021459 doi: 10.3934/math.2021459
    [6] H. Jafari, N. Kadkhoda, D. Baleanu, Lie group theory for nonlinear fractional K(m, n) type equation with variable coefficients, Meth. Math. Model. Comput. Complex Syst., 2021,207–227. https://doi.org/10.1007/978-3-030-77169-0_8
    [7] D. Baleanu, Z. B. Guvenc, J. Machado, New trends in nanotechnology and fractional calculus applications, Springer Netherlands, 2010. https://doi.org/10.1007/978-90-481-3293-5
    [8] A. Atangana, D. Baleanu, A. Alsaedi, New properties of conformable derivative, Open Math., 13 (2015), 1–10. https://doi.org/10.1515/math-2015-0081 doi: 10.1515/math-2015-0081
    [9] Gulnur Yel, C. Cattani, H. M. Baskonus, W. Gao, On the complex simulations with dark-bright to the hirota-maccari system, J. Comput. Nonlinear Dyn., 6 (2021), 16. https://doi.org/ 10.1115/1.4050677 doi: 10.1115/1.4050677
    [10] Y. M. Li, H. M. Baskonus, A. M. Khudhur, Investigations of the complex wave patterns to the generalized calogero-bogoyavlenskii-schiff equation, Soft Comput., 25 (2021), 6999–7008. https://doi.org/10.1007/s00500-021-05627-2 doi: 10.1007/s00500-021-05627-2
    [11] S. Rashid, S. Parveen, H. Ahmad, Y. M. Chu, New quantum integral inequalities for some new classes of generalized ϕ-convex functions and their scope in physical systems, Open Phys., 19 (2021), 35–50. https://doi.org/10.1515/phys-2021-0001 doi: 10.1515/phys-2021-0001
    [12] S. Rashid, D. Baleanu, Y. M. Chu, Some new extensions for fractional integral operator having exponential in the kernel and their applications in physical systems, Open Phys., 18 (2020), 478–491. https://doi.org/10.1515/phys-2020-0114 doi: 10.1515/phys-2020-0114
    [13] L. Xu, Y. M. Chu, S. Rashid, A. A. El-Deeb, K. S. Nisar, On new unified bounds for a family of functions via fractional-calculus theory, J. Funct. Space., 2020 (2020), 1–9. https://doi.org/10.1155/2020/4984612 doi: 10.1155/2020/4984612
    [14] S. Rashid, M. Can, D. Baleanu, M. C. Yu, Generation of new fractional inequalities via n polynomials s-type convexity with applications, Adv. Differential Equ., 2020 (2020), 1–20. https://doi.org/10.1186/S13662-020-02720-Y doi: 10.1186/S13662-020-02720-Y
    [15] S. Rashid, Z. Hammouch, D. Baleanu, M. C. Yu, New generalizations in the sense of the weighted non-singular fractional integral operator, Fractalsy, 28 (2020), 2040003. https://doi.org/10.1142/S0218348X20400034 doi: 10.1142/S0218348X20400034
    [16] S. Rashid, H. Kalsoom, Z. Hammouch, R. Ashraf, Y. M. Chu, New multi-parametrized estimates having pth-order differentiability in fractional calculus for predominating-convex functions in hilbert space, Symmetry, 12 (2020), 222. https://doi.org/10.1016/s0362-546x(01)00646-0 doi: 10.1016/s0362-546x(01)00646-0
    [17] Y. B. Yang, S. R. Kuo, H. H. Hung, Frequency-independent infinite elements for analysing semi-infinite problems, Int. J. Numer. Method Eng., 39 (1996), 3553–3569. https://doi.org/10.1002/(SICI)1097-0207(19961030)39:20<3553::AID-NME16>3.0.CO;2-6 doi: 10.1002/(SICI)1097-0207(19961030)39:20<3553::AID-NME16>3.0.CO;2-6
    [18] A. Akgül, A novel method for the solution of Blasius equation in semi-infinite domains, IJOCTA, 7 (2017), 225–233. https://doi.org/10.11121/ijocta.01.2017.00363 doi: 10.11121/ijocta.01.2017.00363
    [19] P. Berrut, M. S. Floater, G. Klein, Convergence rates of derivatives of a family of barycentric rational interpolants, Appl. Numer. Math., 61 (2011), 989–1000. https://doi.org/10.1016/j.apnum.2011.05.001 doi: 10.1016/j.apnum.2011.05.001
    [20] J. P. Berrut, S. A. Hosseini, G. Klein, The linear barycentric rational quadrature method for Volterra integral equations, SIAM J. Sci. Comput., 36 (2014), 105–123. https://doi.org/10.1137/120904020 doi: 10.1137/120904020
    [21] M. Floater, H. Kai, Barycentric rational interpolation with no poles and high rates of approximation, Numer. Math., 107 (2007), 315–331. https://doi.org/10.1007/s00211-007-0093-y doi: 10.1007/s00211-007-0093-y
    [22] G. Klein, J. Berrut, Linear rational finite differences from derivatives of barycentric rational interpolants, SIAM J. Numer. Anal., 50 (2012), 643–656. https://doi.org/10.1137/110827156 doi: 10.1137/110827156
    [23] G. Klein, J. Berrut, Linear barycentric rational quadrature, BIT Numer. Math., 52 (2012), 407–424. https://doi.org/10.1007/s10543-011-0357-x doi: 10.1007/s10543-011-0357-x
    [24] L. H. Wang, M. H. Hu, Z. Zhong, F. Yang, Stabilized lagrange interpolation collocation method: A meshfree method incorporating the advantages of finite element method, Comput. Method. Appl. M., 404 (2023), 115780. https://doi.org/10.1016/j.cma.2022.115780 doi: 10.1016/j.cma.2022.115780
    [25] Z. H. Qian, L. H. Wang, A meshfree stabilized collocation method (SCM) based on reproducing kernel approximation, Comput. Method. Appl. M., 371 (2020), 113303. https://doi.org/10.1016/j.cma.2020.113303 doi: 10.1016/j.cma.2020.113303
    [26] Z. H. Qian, L. H. Wang, Y. Gu, C. Z. Zhang, An efficient meshfree gradient smoothing collocation method (GSCM) using reproducing kernel approximation, Comput. Method. Appl. M., 374 (2021), 113573. https://doi.org/10.1016/j.cma.2020.113573 doi: 10.1016/j.cma.2020.113573
    [27] M. N. Rasoulizadeh, M. J. Ebadi, Z. Avazzadeh, O. Nikan, An efficient local meshless method for the equal width equation in fluid mechanics, Eng. Anal. Bound. Elem., 131 (2021), 258–268. https://doi.org/10.1016/j.enganabound.2021.07.001 doi: 10.1016/j.enganabound.2021.07.001
    [28] O. Nikan, Avazzadeh, An efficient localized meshless technique for approximating nonlinear sinh-Gordon equation arising in surface theory, Eng. Anal. Bound. Elem., 130 (2021), 268–285. https://doi.org/10.1016/j.enganabound.2021.05.019 doi: 10.1016/j.enganabound.2021.05.019
    [29] O. Nikan, Z. Avazzadeh, A locally stabilized radial basis function partition of unity technique for the sine-Gordon system in nonlinear optics, Math. Comput. Simul., 199 (2022), 394–413. https://doi.org/10.1016/j.matcom.2022.04.006 doi: 10.1016/j.matcom.2022.04.006
    [30] O. Nikan, Z. Avazzadeh, M. N. Rasoulizadeh, Soliton wave solutions of nonlinear mathematical models in elastic rods and bistable surfaces, Eng. Anal. Bound. Elem., 143 (2022), 14–27. https://doi.org/10.1016/j.enganabound.2022.05.026 doi: 10.1016/j.enganabound.2022.05.026
    [31] O. Nikan, Z. Avazzadeh, M. N. Rasoulizadeh, Soliton solutions of the nonlinear sine-Gordon model with Neumann boundary conditions arising in crystal dislocation theory, Nonlinear Dyn., 106 (2021), 783–813. https://doi.org/10.1007/s11071-021-06822-4 doi: 10.1007/s11071-021-06822-4
    [32] Z. Avazzadeh, O. Nikan, J. A. T. Machado, Solitary wave solutions of the generalized Rosenau-KdV-RLW equation, Mathematics, 8 (2020), 1601. https://doi.org/10.3390/math8091601 doi: 10.3390/math8091601
    [33] J. Li, Y. Cheng, Linear barycentric rational collocation method for solving heat conduction equation, Numer. Meth. Part. D. E., 37 (2021), 533–545. https://doi.org/10.1002/num.22539 doi: 10.1002/num.22539
    [34] J. Li, Y. Cheng, Linear barycentric rational collocation method for solving second-order Volterra integro-differential equation, Comput. Appl. Math., 39 (2020). https://doi.org/10.1007/s40314-020-1114-z
    [35] J. Li, Y. L. Cheng, Z. C. Li, Z. K. Tian, Linear barycentric rational collocation method for solving generalized Poisson equations, MBE, 20 (2023), 4782–4797. https://doi.org/10.3934/mbe.2023221 doi: 10.3934/mbe.2023221
    [36] J. Li, Y. Cheng, Barycentric rational method for solving biharmonic equation by depression of order, Numer. Meth. Part. D. E., 37 (2021), 1993–2007. https://doi.org/10.1002/num.22638 doi: 10.1002/num.22638
    [37] Z. Wang, S. Li, Barycentric interpolation collocation method for nonlinear problems, National Defense Industry Press, Beijing, 2015.
    [38] Z. Wang, Z. Xu, J. Li, Mixed barycentric interpolation collocation method of displacement-pressure for incompressible plane elastic problems, Chin. J. Appl. Mech., 35 (2018), 195–201.
    [39] Z. Wang, L. Zhang, Z. Xu, J. Li, Barycentric interpolation collocation method based on mixed displacement-stress formulation for solving plane elastic problems, Chin. J. Appl. Mech., 35 (2018), 304–309.
  • This article has been cited by:

    1. Jin Li, Yongling Cheng, Barycentric rational interpolation method for solving time-dependent fractional convection-diffusion equation, 2023, 31, 2688-1594, 4034, 10.3934/era.2023205
    2. Jin Li, Linear barycentric rational interpolation method for solving Kuramoto-Sivashinsky equation, 2023, 8, 2473-6988, 16494, 10.3934/math.2023843
    3. Xiumin Lyu, Jin Li, Wanjun Song, Numerical solution of a coupled Burgers' equation via barycentric interpolation collocation method, 2025, 33, 2688-1594, 1490, 10.3934/era.2025070
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1674) PDF downloads(76) Cited by(3)

Figures and Tables

Tables(15)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog