Processing math: 50%
Research article Special Issues

Analyzing the relationship between the vitamin D deficiency and COVID-19 mortality rate and modeling the time-delay interactions between body's immune healthy cells, infected cells, and virus particles with the effect of vitamin D levels

  • Received: 16 April 2022 Revised: 13 June 2022 Accepted: 14 June 2022 Published: 21 June 2022
  • This paper presents some recent views on the aspects of vitamin D levels in relation to the COVID-19 infections and analyzes the relationship between the prevalence rates of vitamin D deficiency and COVID-19 death rates per million of various countries in Europe and Asia using the data from the PubMed database. The paper also discusses a new mathematical model of time-delay interactions between the body's immune healthy cells, infected cells, and virus particles with the effect of vitamin D levels. The model can be used to monitor the timely progression of healthy immune cells with the effects of the levels of vitamin D and probiotics supplement. It also can help to predict when the infected cells and virus particles free state can ever be reached as time progresses. The consideration of the time delay in the modeling due to effects of the infected cells or virus particles and the growth of healthy cells is also an important factor that can significantly change the outcomes of the body's immune cells as well as the infections.

    Citation: Hoang Pham. Analyzing the relationship between the vitamin D deficiency and COVID-19 mortality rate and modeling the time-delay interactions between body's immune healthy cells, infected cells, and virus particles with the effect of vitamin D levels[J]. Mathematical Biosciences and Engineering, 2022, 19(9): 8975-9004. doi: 10.3934/mbe.2022417

    Related Papers:

    [1] Saif Ur Rehman, Iqra Shamas, Shamoona Jabeen, Hassen Aydi, Manuel De La Sen . A novel approach of multi-valued contraction results on cone metric spaces with an application. AIMS Mathematics, 2023, 8(5): 12540-12558. doi: 10.3934/math.2023630
    [2] Dong Ji, Yao Yu, Chaobo Li . Fixed point and endpoint theorems of multivalued mappings in convex b-metric spaces with an application. AIMS Mathematics, 2024, 9(3): 7589-7609. doi: 10.3934/math.2024368
    [3] Yan Han, Shaoyuan Xu, Jin Chen, Huijuan Yang . Fixed point theorems for b-generalized contractive mappings with weak continuity conditions. AIMS Mathematics, 2024, 9(6): 15024-15039. doi: 10.3934/math.2024728
    [4] Shaoyuan Xu, Yan Han, Suzana Aleksić, Stojan Radenović . Fixed point results for nonlinear contractions of Perov type in abstract metric spaces with applications. AIMS Mathematics, 2022, 7(8): 14895-14921. doi: 10.3934/math.2022817
    [5] Mohamed Gamal, Tahair Rasham, Watcharaporn Cholamjiak, Fu-Gui Shi, Choonkil Park . New iterative scheme for fixed point results of weakly compatible maps in multiplicative GMmetric space via various contractions with application. AIMS Mathematics, 2022, 7(8): 13681-13703. doi: 10.3934/math.2022754
    [6] Abdullah Shoaib, Tahair Rasham, Giuseppe Marino, Jung Rye Lee, Choonkil Park . Fixed point results for dominated mappings in rectangular b-metric spaces with applications. AIMS Mathematics, 2020, 5(5): 5221-5229. doi: 10.3934/math.2020335
    [7] Pragati Gautam, Vishnu Narayan Mishra, Rifaqat Ali, Swapnil Verma . Interpolative Chatterjea and cyclic Chatterjea contraction on quasi-partial b-metric space. AIMS Mathematics, 2021, 6(2): 1727-1742. doi: 10.3934/math.2021103
    [8] Qing Yang, Chuanzhi Bai . Fixed point theorem for orthogonal contraction of Hardy-Rogers-type mapping on O-complete metric spaces. AIMS Mathematics, 2020, 5(6): 5734-5742. doi: 10.3934/math.2020368
    [9] Muhammad Nazam, Aftab Hussain, Asim Asiri . On a common fixed point theorem in vector-valued b-metric spaces: Its consequences and application. AIMS Mathematics, 2023, 8(11): 26021-26044. doi: 10.3934/math.20231326
    [10] Mohammed Shehu Shagari, Akbar Azam . Integral type contractions of soft set-valued maps with application to neutral differential equations. AIMS Mathematics, 2020, 5(1): 342-358. doi: 10.3934/math.2020023
  • This paper presents some recent views on the aspects of vitamin D levels in relation to the COVID-19 infections and analyzes the relationship between the prevalence rates of vitamin D deficiency and COVID-19 death rates per million of various countries in Europe and Asia using the data from the PubMed database. The paper also discusses a new mathematical model of time-delay interactions between the body's immune healthy cells, infected cells, and virus particles with the effect of vitamin D levels. The model can be used to monitor the timely progression of healthy immune cells with the effects of the levels of vitamin D and probiotics supplement. It also can help to predict when the infected cells and virus particles free state can ever be reached as time progresses. The consideration of the time delay in the modeling due to effects of the infected cells or virus particles and the growth of healthy cells is also an important factor that can significantly change the outcomes of the body's immune cells as well as the infections.



    Let H be a real Hilbert space and K is a nonempty closed and convex subset of a real Hilbert space H. The equilibrium problem (EP) is to find an element uK such that

    f(u,v)0,vK (1.1)

    where f:K×KR is a bifunction and satisfying f(z,z)=0 for all zH, and EP(f,K) is denoted for a solution set of EP (1.1). EP (1.1) generalizes many various problems in optimization problems such as variational inequalities problems, Nash equilibrium problems, linear programming problems, among others.

    To solve the problem EP (1.1), the two-step extragradient method (TSEM) was proposed by Tran et al. [25] in 2008 which is inspired by the concept ideas to solve variational inequalities of Korpelevich [10]. Under the Lipschitz condition of the bifunction f the convergence theorem was proved. However, only weak convergence was obtained in Hilbert spaces. For obtaining strong convergence, this goal was completed by Hieu [8] with Halpern subgradient extragradient method (HSEM) which was modified from the HSEM of Kraikaew and Saejung [11] for variational inequalities. This method is defined by uH and

    {yi=argminyK{λf(xi,y)+12xiy2},Ti={vH:(xiλti)yi,vyi0}, ti2f(xi,yi),zi=argminyTi{λf(yi,y)+12xiy2},xi+1=αiu+(1αi)zi, (1.2)

    where λ is still some constant depending on the interval that makes the bifunction f satisfies the Lipschitz condition and {αi}(0,1) which satisfies the principle conditions

    limiαi=0,  i=1αi=. (1.3)

    Very recently, Muangchoo [14] combined a viscosity-type method with the extragradient algorithm for obtaining strong convergence theorem of the EP (1.1). This method is defined by

    {vi=argminvK{λif(zi,v)+12ziv2},εi={tH:ziλiωivi,tvi0}, ωi2f(zi,vi),ti=argminvεi{μλif(vi,v)+12ziv2},zi+1=αig(zi)+(1αi)ti, (1.4)

    where μ(0,σ)(0,min{1,12c1,12c2}), g is a contraction function on H with contraction constant ξ[0,1)(g(x)g(y)ξxy, x,yH), {αi} satisfies the principle conditions limiαi=0 and +iαi=+, and the step-sizes {λi} is developed by updating the step-sizes method without knowing the Lipschitz-type constants of the bifunction f which satisfies the following:

    λi+1={min{σ,μf(vi,ti)Ki},                     if μf(vi,ti)Ki>0,λ0,                                       otherwise, (1.5)

    where Ki=f(zi,ti)f(zi,vi)c1zivi2c2tivi2+1.

    Finding technique to speed up the convergence of the algorithm is the way that many mathematicians are interested. One of that is an inertial which was first introduced by Polyak [16]. Very recently, Shehu et al. [22] modified the inertial technique with the Halpern-type algorithm and subgradient extragradient method for obtaining strong convergence to a solution of EP(f,K) such that f is pseudomonotone. This method is defined by γH and

    {wi=αiγ+(1αi)zi+δi(zizi1),vi=argminvK{λif(wi,v)+12wiv2},εi={tH:(wiλiωi)vi,tvi},  ωi2f(wi,vi),ti=argminvεi{λf(vi,v)+12wiv2},zi+1=τwi+(1τ)ti, (1.6)

    where the inertial parameter δi[0,13), τ(0,12], the update step-size {λi} satisfies the following:

    λi+1={min{μ2wivi2+tivi2f(wi,ti)f(wi,vi)f(vi,ti),λi},         if f(wi,ti)f(wi,vi)f(vi,ti)>0,λi,                                               otherwise, (1.7)

    and {αi} still satisfies the principle conditions limiαi=0 and iαi=. This update step-size {λi} is limited in the computation and can not be modified in another way.

    In this paper, motivated and inspired by the above works in literature, we introduce a modified inertial viscosity extragradient type method for solving equilibrium problems. Moreover, we apply our main result to solve a data classification problem in machine learning and show the performance of our algorithm by comparing with many existing methods.

    Let us begin with some concepts of monotonicity of a bifunction [2,15]. Let K be a nonempty, closed and convex subset of H. A bifunction f:H×HR is said to be:

    (i) strongly monotone on K if there exists a constant γ>0 such that

    f(x,y)+f(y,x)γxy2, x,yK;

    (ii) mototone on K if f(x,y)f(y,x),x,yK;

    (iii) pseudomonotone on K if f(x,y)0f(y,x)0,x,yK;

    (iv) satisfying Lipschitz-type condition on K if there exist two positive constants c1,c2 such that

    c1xy2+c2yz2f(x,z)f(x,y)f(y,z),x,y,zK.

    The normal cone NK to K at a point xK is defined by NK(x)={wH:w,xy0,yK}. For every xH, the metric projection PKx of x onto K is the nearest point of x in K, that is, PKx=argmin{yx:yK}. Since K is nonempty, closed and convex, PKx exists and is unique. For each x,zH, by 2f(z,x), we denote the subdifferential of convex function f(z,.) at x, i.e.,

    2f(z,x)={uH:f(z,y)u,yx+f(z,x), yH}.

    In particular, for zK,

    2f(z,z)={uH:f(z,y)u,yz, yH}.

    For proving the convergence of the proposed algorithm, we need the following lemmas.

    Lemma 2.1. [1] For each xH and λ>0,

    1λxproxλg(x),yproxλg(x)g(y)g(proxλg(x)), yK,

    where proxλg(x)=argmin{λg(y)+12xy2:yK}.

    For any point uH, there exists point PKuK such that

    uPKuuy, yK.

    PK is called the metric projection of H onto K. We know that PK is a nonexpansive mapping of H onto K, that is, PKxPKyxy, x,yK.

    Lemma 2.2. [18] Let g:KR be a convex, subdifferentiable and lower semicontinuous function on K. Suppose the convex set K has nonempty interior, or g is continuous at a point xK. Then, x is a solution to the following convex problem min{g(x):xK} if and only if 0g(x)+NK(x), where g(.) denotes the subdifferential of g and NK(x) is the normal cone of K at x.

    Lemma 2.3. [19,22] Let SR be a nonempty, closed, and convex subset of a real Hilbert space H. Let uH be arbitrarity given, z=PSu, and Ω={xH:xu,xz0}. Then ΩS={z}.

    Lemma 2.4. [28] Let {ai} and {ci} be nonnegative sequences of real numbers such that i=1ci<, and let {bi} be a sequence of real numbers such that lim supibi0. If for any iN such that

    ai+1(1γi)ai+γibi+ci,

    where {γi} is a sequence in (0,1) such that i=1γi=, then limiai=0.

    Lemma 2.5. [29] Let {ai}, {bi} and {ci} be positive sequences, such that

    ai+1(1+ci)ai+bi, i1.

    If i=1ci<+ and i=1bi<+; then, limi+ai exists.

    The convergence of Algorithm 3.1 will be given under the conditions that

    Condition 2.6. (A1) f is pseudomonotone on K with int(K) or f(x,.) is continuous at some zK for every xK;

    (A2) f satisfies Lipschitz-type condition on H with two constants c1 and c2;

    (A3) f(.,y) is sequentially weakly upper semicontinuous on K for each fixed point yK, i.e., if {xi}K is a sequence converging weakly to xK, then f(x,y)lim supif(xi,y);

    (A4) for xH, f(x,.) is convex and lower semicontinuous, subdifferentiable on H;

    (A5) V:HH is contraction with contraction constant α.

    Now, we are in a position to present a modification of algorithm (EGM) in [25] for equilibrium problems.

    Algorithm 3.1. (Modified viscosity type inertial extragradient algorithm for EPs)
    Initialization. Let x0,x1H, 0<λiλ<12max{c1,c2}, τ(0,12].
    Step 1. Given the current iterates xi1 and xi(i1) and αi(0,1), θi[0,13), compute
    wi=αiV(xi)+(1αi)xi+θi(xixi1),yi=argminyK{λif(wi,y)+12ywi2}.
    If yi=wi then stop and yi is a solution. Otherwise, go to Step 2.
    Step 2. Compute
    zi=argminyK{λif(yi,y)+12ywi2}.
    Step 3. Compute
    xi+1=(1τ)wi+τzi.
    Set i=i+1 and return to Step 1.

    In this section, we will analyse the convergence of Algorithm 3.1.

    For the rest of this paper, we assume the following condition.

    Condition 3.2. (i) {αi}(0,1] is non-increasing with limiαi=0 and i=1αi=;

    (ii) 0θiθi+1θ<13 and limiθiαixixi1=0;

    (iii) EP(f,K).

    Before we prove the strong convergence result, we need some lemmas below.

    Lemma 3.3. Assume that Conditions 2.6 and 3.2 hold. Let {xi} be generated by Algorithm 3.1. Then there exists N>0 such that

    xi+1u2wiu2xi+1wi2, uEP(f,K), iN. (3.1)

    Proof. By the definition of yi, and Lemma 2.1, we have

    1λiwiyi,yyif(wi,y)f(wi,yi), yK. (3.2)

    Putting y=zi into (3.2), we obtain

    1λiyiwi,yizif(wi,zi)f(wi,yi). (3.3)

    By the definition of zi, we have

    1λiwizi,yzif(yi,y)f(yi,zi), yK. (3.4)

    (3.3) and (3.4) imply that

    2λiwizi,yzi+2λiyiwi,yizi2f(yi,y)+2(f(wi,zi)f(wi,yi)f(yi,zi)). (3.5)

    If f(wi,zi)f(wi,yi)f(yi,zi)>0, then

    f(wi,zi)f(wi,yi)f(yi,zi)c1wiyi2+c2ziyi2 (3.6)

    Observe that (3.6) is also satisfied if f(wi,zi)f(wi,yi)f(yi,zi)0. By (3.5) and (3.6), we have

    wizi,yzi+yiwi,yiziλif(yi,y)+λic1wiyi2+λic2ziyi2. (3.7)

    Note that

    wizi,ziy=12(wiy2wizi2ziy2). (3.8)

    and

    wiyi,ziyi=12(wiyi2+ziyi2wizi2). (3.9)

    Using (3.8) and (3.9) in (3.7), we obtain, for all yK,

    ziy2wiy2(12λic1)wiyi2(12λic2)ziyi2+2λif(yi,y). (3.10)

    Taking y=uEP(f,K)K, one has f(u,yi)0,i. By (A1), we obtain f(yi,u)0, i. Hence, we obtain from (3.10) that

    ziu2wiu2(12λic1)wiyi2(12λic2)ziyi2. (3.11)

    It follows from λi(0,12max{c1,c2}) and (3.11), we have

    ziuwiu. (3.12)

    On the other hand, we have

    xi+1u2=(1τ)wiu2+τziu2(1τ)τziwi2. (3.13)

    Substituting (3.11) into (3.13), we obtain

    xi+1u2wiu2τwiu2+τwiu2τ(12λic1)wiyi2τ(12λic2)ziyi2(1τ)τziwi2. (3.14)

    Moreover, we have ziwi=1τ(xi+1wi), which together with (3.14) gives

    xi+1u2wiu2τ(12λic1)wiyi2τ(12λic2)ziyi2(1τ)τ1τ2xi+1wi2wiu21ττxi+1wi2wiu2ϵxi+1wi2, iN, (3.15)

    where ϵ=1ττ.

    Lemma 3.4. Assume that Conditions 2.6 and 3.2 hold. Let {xi} be generated by Algorithm 3.1. Then, for all uEP(f,K),

    2αixiu,xiV(xi)xi+1u2xiu2+2θi+1xi+1xi22θixixi12+αi+1V(xi)xi+12αixiV(xi)2θixiu2+θi1xi1u2+(13θi+1αi)xixi+12. (3.16)

    Proof. By Lemma 2.5, we have

    xi+1u2wiu2xi+1wi2. (3.17)

    Moreover, from the definition of wi, we obtain that

    wiu2=xiu2+θi(xixi1)αi(xiV(xi))2+2xiu,θi(xixi1)αi(xiV(xi))=xiu2+θi(xixi1)αi(xiV(xi))2+2θixiu,xixi12αixiu,xiV(xi). (3.18)

    Replacing u by xi+1 in (3.18), we have

    wixi+12=xixi+12+αi(xiV(xi))θi(xixi1)2+2θixixi+1,xixi12αixixi+1,xiV(xi). (3.19)

    Substituting (3.18) and (3.19) into (3.17), we have

    xi+1u2xiu2+θi(xixi1)αi(xiV(xi))2+2θixiu,xixi12αixiu,xiV(xi)xixi+122θixixi+1,xixi1+2αixixi+1,xiV(xi)αi(xiV(xi))θi(xixi1)2=xiu2xixi+12+2θixiu,xixi12αixiu,xiV(xi)+2αixixi+1,xiV(xi)+θixixi+12+θixixi12θixixi+1+(xixi1)2. (3.20)

    Therefore, we obtain

    xi+1u2xiu2θixixi12+xixi+12θixixi+122θixiu,xixi12αixiu,xiV(xi)+2αixixi+1,xiV(xi)=2αixiu,xiV(xi)θixi1u2+θixiu2+θixixi12αiV(xi)xi+12+αixi+1xi2+αixiV(xi)2. (3.21)

    It follows that

    2αixiu,xiV(xi)xi+1u2xiu2θixixi12+xixi+12θixixi+12+θixi1u2θixiu2θixixi12+αiV(xi)xi+12αixi+1xi2αixiV(xi)2xi+1u2xiu2+2θi+1xi+1xi22θixixi12+θi(xi1u2xiu2)+αi(V(xi)xi+12xiV(xi)2)+(1θi2θi+1αi)xi+1xi2. (3.22)

    Since θi is non-decreasing and αi is non-increasing, we then obtain

    2αixiu,xiV(xi)xi+1u2xiu2+2θi+1xi+1xi22θixixi12+αi+1V(xi)xi+12αixiV(xi)2θixiu2+θi1xi1u2+(13θi+1αi)xixi+12.

    Lemma 3.5. Assume that Conditions 2.6 and 3.2 hold. Then {xi} generated by Algorithm 3.1 is bounded.

    Proof. From (3.15) and Condition 3.2 (ii), there exists K>0 such that

    xi+1uwiu=αiV(xi)+(1αi)xi+θi(xixi1)uαiV(xi)u+(1αi)xiu+θixixi1=αiV(xi)u+(1αi)xiu+αiθiαixixi1 (3.23)
    αiV(xi)u+(1αi)xiu+αiKαi(V(xi)V(u)+V(u)u)+(1αi)xiu+αiK (3.24)
    (1αi(1α))xiu+αi(1α)(V(u)u+K1α) (3.25)
    max{xiu,V(u)u+K1α}. (3.26)

    This implies that xi+1umax{x1u,V(u)u+K1α}. This shows that {xi} is bounded.

    Lemma 3.6. Assume that Conditions 2.6 and 3.2 hold. Let {xi} be generated by Algorithm 3.1. For each i1, define

    ui=xiu2θi1xi1u2+2θixixi12+αixiV(xi)2.

    Then ui0.

    Proof. Since {θi} is non-decreasing with 0θi<13, and 2x,y=x2+y2xy2 for all x,yH, we have

    ui=xiu2θi1[xi1xi2+xiu2+2xi1xi,xiu]+2θixixi12+αixiV(xi)2=xiu2θi1[2xi1xi2+2xiu2xi12xi+u2]+2θixixi12+αixiV(xi)2xiu22θixi1xi223xiu2+θi1xi12xi+u2+2θixixi12+αixiV(xi)213xiu2+αixiV(xi)20.

    This completes the proof.

    Lemma 3.7. Assume that Conditions 2.6 and 3.2 hold. Let {xi} be generated by Algorithm 3.1. Suppose

    limixi+1xi=0,

    and

    limi(xi+1u2θixiu2)=0.

    Then {xi} converges strongly to uEP(f,K).

    Proof. By our assumptions, we have

    0=limi(xi+1u2θixiu2)=limi[(xi+1u+θixiu)(xi+1uθixiu)]. (3.27)

    In the case

    limi(xi+1u+θixiu)=0,

    this implies that {xi} converges strongly to u immediately. Assume this limit does not hold. Then there is a subset NN and a constant ρ>0 such that

    xi+1u+θixiuρ, iN. (3.28)

    Using (3.27) and θiθ<1. For iN, it then follows that

    0=limi(xi+1uθixiu)lim supi(xiuxi+1xiθixiu)lim supi((1θ)xiuxi+1xi)=(1θ)lim supixiulimixi+1xi=(1θ)lim supixiu.

    Consequently, we have lim supixiu0. Since lim infixiu0 obviously holds, it follows that limixiu=0. This implies (by (3.28))

    xi+1xixi+1uxiu=xi+1u+θixiu(1+θi)xiuρ2,

    for all iN sufficiently large, a contradiction to the assumption that limixi+1xi=0. This completes the proof.

    We now give the following strong convergence result of Algorithm 3.1.

    Theorem 3.8. Assume that Conditions 2.6 and 3.2 hold. Then {xi} generated by Algorithm 3.1 strongly converges to the solution u=PEP(f,K)V(u).

    Proof. From Lemma 3.6 and (3.16), we have

    ui+1uiαi+1xi+1V(xi+1)2+αi+1V(xi)xi+12+(13θi+1αi)xixi+122αixiu,xiV(xi). (3.29)

    Since PEP(f,K)V is contraction, by the Banach fixed point theorem, there exist unique u=PEP(f,K)V(u). It follow from Lemma 3.3 that

    xi+1u2wiu2=αi(V(xi)u)+(1αi)(xiu)+θi(xixi1)2(1αi)(xiu)+θi(xixi1)2+2αi(V(xi)u),wiu=(1αi)(xiu)+θi(xixi1)2+2αiV(xi)V(u),wiu+2αiV(u)u,wiu(1αi)(xiu)+θi(xixi1)2+2αiV(u)u,wiu+2αiαxiuwiu(1αi)(xiu)+θi(xixi1)2+2αiV(u)u,wiu+αiα(xiu2+wiu2)11αiα((1αi)(xiu)+θi(xixi1)2+αiαxiu2+2αiV(u)u,wiu)11αiα((1αi)(xiu)2+2θi(xixi1),(1αi)(xiu)+θi(xixi1)+αiαxiu2+2αiV(u)u,wiu)=(1αi)2+αiα1αiαxiu2+11αiα(2θi(xixi1),(1αi)(xiu)+θi(xixi1)+2αiV(u)u,wiu)=(1(2αi(1α)1αiα(αi)21αiα))xiu2+11αiα(2θi(xixi1),(1αi)(xiu)+θi(xixi1)+2αiV(u)u,wiu)(12αi(1α)1αiα)xiu2+2αi(1α)1αiα(αi2(1α)xiu2+1αi(1α)θi(xixi1),(1αi)(xiu)+θi(xixi1)+11αV(u)u,wiu). (3.30)

    We will consider into 2 cases.

    Case 1. In the case of ui+1ui+ti for all ii0 for some i0N, ti0 and i=1ti<+. Then ui0, i1 by Lemma 2.5, we have limiui=limiui+1 exists. Since {xi} is bounded by Lemma 3.5, there exists M1>0 such that 2|xiu,xiV(xi)|M1 and M2>0 such that xi+1V(xi+1)2+V(xi)xi+12M2. Since 0θiθi+1θ<13 and limiαi=0, there exist NN and γ1>0 such that 13θi+1αiγ1 for all iN. Therefore, for iN, we obtain from (3.29) that

    γ1xi+1xi2αiM1+αi+1M2+uiui+10, (3.31)

    as  i. Hence limixi+1xi=0. For uEP(f,K), we have

    wiu2=αiV(xi)+(1αi)xi+θi(xixi1)u2αiV(xi)+(1αi)xiu2+2θi(xixi1),wiuαiV(xi)u2+(1αi)xiu2+2θixixi1wiuαiV(xi)u2+(1αi)xiu2+2θiαixixi1wiuαiV(xi)u2+xiu2+2θiαixixi1wiu, (3.32)

    and from (3.14), we have

    xi+1u2=wiu2τ(12λic1)wiyi2τ(12λic2)ziyi2(1τ)τ1τ2xi+1wi2αiV(xi)u2+xiu2+2θiαixixi1wiuτ(12λic1)wiyi2τ(12λic2)ziyi21ττxi+1wi2. (3.33)

    This implies that

    τ(12λic1)wiyi2+τ(12λic2)ziyi2+1ττxi+1wi2αiV(xi)u2+xiu2+2θiαixixi1wiuxi+1u2. (3.34)

    By our condition and (3.31), we obtain

    limiwiyi=limiziyi=limixi+1wi=0. (3.35)

    Since {xi} is bounded, that is, there exits a subsequence {xik} of {xi} such that xikx for some xH. From (3.31) and (3.35), we get wikx and yikx as k.

    By the definition of zi and (3.6), we have

    λikf(yik,y)λikf(yik,zik)+wikzik,yzikλikf(wik,zik)λikf(wik,yik)c1wikyik2c2zikyik2+wikzik,yzikyikwik,yikzik+wikzik,yzikc1wikyik2c2zikyik2.

    It follows from {zik} is bounded, 0<λikλ<12max{c1,c2} and Condition 2.6 (A3) that 0lim supkf(yik,y)f(x,y) for all yH. This implies that f(x,y)0 for all yK, this shows that xEP(f,K). Then, we have

    lim supiV(u)u,wiu=limkV(u)u,wiku=V(u)u,xu0, (3.36)

    by u=PEP(f,K)V(u). Applying (3.36) to the inequality (3.30) with Lemma 2.4, we can conclude that xiu=PEP(f,K)V(u) as i.

    Case 2. In another case of {ui}, we let ϕ:NN be the map defined for all ii0 (for some i0N large enough) by

    ϕ(i)=max{kN:ki,uk+tkuk+1}. (3.37)

    Clearly, ϕ(i) is a non-decreasing sequence such that ϕ(i) for i and uϕ(i)+tϕ(i)uϕ(i)+1 for all ii0. Hence, similar to the proof of Case 1, we therefore obtain from (3.31) that

    γ1xϕ(i)+1xϕ(i)2αϕ(i)M1+αϕ(i)+1M2+uϕ(i)uϕ(i)+10 (3.38)

    for some constant M1,M2>0. Thus

    limixϕ(i)+1xϕ(i)=0. (3.39)

    By the same proof of Case 1, one also derive

    limixϕ(i)+1wϕ(i)=limiwϕ(i)xϕ(i)=limixϕ(i)zϕ(i)=0. (3.40)

    Again observe that for j0 by (3.29), we have uj+1<uj+tj when xjΩ={xH:xx0,xu0}. Hence xϕ(i)Ω for all ii0 since uϕ(i)+tϕ(i)uϕ(i)+1. Sine {xϕ(i)} is bounded, there exist subsequence {xϕ(i)} of {xϕ(i)} which converges weakly to some xH. As Ω is a closed and convex set, it is then weakly closed and so xΩ. Using (3.40), one can see as in Case 1 that zϕ(i)x and xEP(f,K) contains u as its only element. We therefore have x=u. Furthermore,

    xϕ(i)u2=xϕ(i)V(xi),xϕ(i)uuV(xi),xϕ(i)uuV(xi),xϕ(i)u,

    due to xϕ(i)Ω. This gives

    lim supixϕ(i)u0.

    Hence

    limixϕ(i)u=0. (3.41)

    By definition, uϕ(i)+1, we have

    uϕ(i)+1=xϕ(i)+1u2θϕ(i)xϕ(i)u2+2θϕ(i)+1xϕ(i)+1xϕ(i)2+αϕ(i)+1xϕ(i)+1Vϕ(i)+12(xϕ(i)+1xϕ(i)+xϕ(i)u)2θϕ(i)xϕ(i)u2+2θϕ(i)+1xϕ(i)+1xϕ(i)2+αϕ(i)+1xϕ(i)+1Vϕ(i)+12. (3.42)

    By our Condition 3.2 (i), (3.39) and (3.41), we obtain limiuϕ(i)+1=0. We next show that we actually have limiui=0. To this end, first observe that, for ii0, one has ui+tiuϕ(i)+1 if iϕ(i). It follows that for all ii0, we have uimax{uϕ(i),uϕ(i)+1}=uϕ(i)+10, since limiti=0, hence lim supiui0. On the other hand, Lemma 3.6 implies that lim infiui0. Hence, we obtain limiui=0. Consequently, the boundedness of {xi}, limiαi=0, and (3.29) show that xixi+10, as i. Hence the definition of ui yields (xi+1u2θixiu2)0, as i. By using Lemma 3.7, we obtain the desired conclusion immediately.

    Setting V(x)=x0, xH, then we obtain the following modified Halpern inertial extragradient algorithm for EPs:

    Algorithm 3.9. (Modified Halpern inertial extragradient algorithm for EPs)
    Initialization. Let x0,x1H, 0<λiλ<12max{c1,c2}, τ(0,12].
    Step 1. Given the current iterates x_{i-1} and x_i (i \geqslant 1) and \alpha_i \in (0, 1) , \theta_i \in [0, \frac{1}{3}) , compute
    \begin{align*} w_i & = \alpha_i x_0 + (1-\alpha_i)x_i + \theta_i(x_i-x_{i-1}), \\ y_i & = \arg\min_{y \in \mathcal{K}} \{ \lambda_i f(w_i, y) + \frac{1}{2} \|y-w_i\|^2 \}. \end{align*}
    If y_i = w_i then stop and y_i is a solution. Otherwise, go to Step 2.
    Step 2. Compute
    \begin{align*} z_i = \arg\min_{y \in \mathcal{K}} \{ \lambda_i f(y_i, y) + \frac{1}{2} \|y-w_i\|^2 \}. \end{align*}
    Step 3. Compute
    \begin{align*} x_{i+1} = (1-\tau)w_i + \tau z_i. \end{align*}
    Set i = i+1 and return to Step 1.

     | Show Table
    DownLoad: CSV

    From Algorithm 3.1, the convergence depends on the parameter \{\lambda_i\} with the condition 0 < \lambda_{i}\leq\lambda < \frac{1}{2\max\{c_1, c_2\}} . So, the step size \{\lambda_i\} can be considered in many ways. Applying step size concept of Shehu et al. [22], we then obtain the following modified viscosity type inertial extragradient stepsize algorithm for EPs:

    Algorithm 3.10. (Modified viscosity type inertial extragradient stepsize algorithm for EPs)
    Initialization. Let x_0, x_1 \in H , \lambda_1 \in (0, \frac{1}{2\max\{c_1, c_2\}}) , \mu \in (0, 1) , \tau \in (0, \frac{1}{2}] .
    Step 1. Given the current iterates x_{i-1} and x_i (i \geqslant 1) and \alpha_i \in (0, 1) , \theta_i \in [0, \frac{1}{3}) , compute
    \begin{align*} w_i & = \alpha_i V(x_i) + (1-\alpha_i)x_i + \theta_i(x_i-x_{i-1}), \\ y_i & = \arg\min_{y \in \mathcal{K}} \{ \lambda_i f(w_i, y) + \frac{1}{2} \|y-w_i\|^2 \}. \end{align*}
    If y_i = w_i then stop and y_i is a solution. Otherwise, go to Step 2.
    Step 2. Compute
    \begin{align*} z_i = \arg\min_{y \in \mathcal{K}} \{ \lambda_i f(y_i, y) + \frac{1}{2} \|y-w_i\|^2 \}. \end{align*}
    Step 3. Compute
    \begin{align*} x_{i+1} = (1-\tau)w_i + \tau z_i, \end{align*}
    and
    \begin{align*} \lambda_{i+1} = \begin{cases} \min \{ \frac{\mu}{2} \frac{\|w_i-y_i\|^2 + \|z_i-y_i\|^2}{f(w_i, z_i) - f(w_i, y_i) - f(y_i, z_i)}, \lambda_i \}, & \ {\text{if}} \ f(w_i, z_i) - f(w_i, y_i) - f(y_i, z_i) > 0, \cr \lambda_i, & \ {\text{Otherwise}}. \end{cases} \end{align*}
    Set i = i+1 and return to Step 1.

    Remark 3.11. (i) Since V(x) = x_0, \ \forall x\in \mathcal{H} is contraction, thus the modified Halpern inertial extragradient Algorithm 3.9 converges strongly to x^* = P_{EP(f, \mathcal{K})}x_0 with Conditions 2.6 and 3.2;

    (ii) Since the step size \{\lambda_i\} in Algorithm 3.10 is a monotonically decreasing sequence with lower bound \min\{\lambda_1, \frac{1}{2\max\{c_1, c_2\}}\} [22], thus Algorithm 3.10 converges strongly to the solution u = P_{EP(f, \mathcal{K})} V(u) by Theorem 3.8.

    We now give an example in infinitely dimensional spaces L_2[0, 1] to support the main theorem.

    Example 3.12. Let V : L_2[0, 1] \rightarrow L_2[0, 1] be defined by V(x(t)) = \frac{x(t)}{2} where x(t) \in L_2[0, 1] . We can choose x_0(t) = \frac{sin(t)}{2} and x_1(t) = sin(t) . The stopping criterion is defined by \|x_i-x_{i-1}\| < 10^{-2} .

    We set the following parameters for each algorithm, as seen in Table 1.

    Table 1.  Chosen parameters of each algorithm.
    Algorithm 3.1 Algorithm 3.9 Algorithm 3.10
    \lambda_i 0.1 0.1 -
    \lambda_1 - - 0.12
    \theta_i 0.29 0.29 0.29
    \alpha_i \frac{1}{100i+1} \frac{1}{100i+1} \frac{1}{100i+1}
    \tau_i 0.15 0.1 0.15
    \mu - - 0.2

     | Show Table
    DownLoad: CSV

    Next, we compare the performance of Algorithms 3.1, 3.9 and 3.10. We obtain the results as seen in Table 2.

    Table 2.  The performance of each algorithm.
    Algorithm 3.1 Algorithm 3.9 Algorithm 3.10
    CPU Time 1.2626 1.2010 177.9459
    Iter. No. 2 2 2

     | Show Table
    DownLoad: CSV

    From Figure 1, we see that the performance of Algorithm 3.10 is better than Algorithms 3.1 and 3.9.

    Figure 1.  The Cauchy error plotting number of iterations.

    According to the International Diabetes Federation (IDF), there are approximately 463 million people with diabetes worldwide, and it is estimated that by 2045 there will be 629 million people with diabetes. In Thailand, the incidence of diabetes is continuously increasing. There are about 300,000 new cases per year, and 3.2 million people with diabetes are registered in the Ministry of Public Health's registration system. They are causing huge losses in health care costs. Only one disease of diabetes causes the average cost of treatment costs up to 47,596 million baht per year. This has led to an ongoing campaign about the dangers of the disease. Furthermore, diabetes mellitus makes additional noncommunicable diseases that present a high risk for the patient, as they easily contact and are susceptible to infectious diseases such as COVID-19 [23]. Because it is a chronic disease that cannot be cured. There is a chance that the risk of complications spreading to the extent of the loss of vital organs of the body. By the International Diabetes Federation and the World Health Organization (WHO) has designated November 14 of each year as World Diabetes Day to recognize the importance of this disease.

    In this research, we used the PIMA Indians diabetes dataset which was downloaded from Kaggle (https://www.kaggle.com/uciml/pima-indians-diabetesdatabase) and is available publicly on UCI repository for training processing by our proposed algorithm. The dataset contains 768 pregnant female patients which 500 were non-diabetics and 268 were diabetics. There were 9 variables present inside the dataset; eight variables contain information about patients, and the 9th variable is the class predicting the patients as diabetic and nondiabetic. This dataset contains the various attributes that are Number of times pregnant; Plasma glucose concentration at 2 Hours in an oral glucose tolerance test (GTIT); Diastolic Blood Pressure (mm Hg); Triceps skin fold thickness (mm); 2-Hour Serum insulin (lh/ml); Body mass index [weight in kg/(Height in m)]; Diabetes pedigree function; Age (years); Binary value indicating non-diabetic /diabetic. For the implementation of machine learning algorithms, 614 were used as a training dataset and 154 were used as a testing training dataset by using 5-fold cross-validation [12]. For benchmarking classifier, we consider the following various methods which have been proposed to classify diabetes (see Table 3):

    Table 3.  Classification accuracy of different methods with literature.
    Authors Methods Accuracy (%)
    Li [13] Ensemble of SVM, ANN, and NB 58.3
    Brahim-Belhouari and Bermak [4] NB, SVM, DT 76.30
    Smith et al.[24] Neural ADAP algorithm 76
    Quinlan [17] C4.5 Decision trees 71.10
    Bozkurt et al.[3] Artificial neural network 76.0
    Sahan et al.[20] Artificial immune System 75.87
    Smith et al.[24] Ensemble of MLP and NB 64.1
    Chatrati et al.[5] Linear discriminant analysis 72
    Deng and Kasabov [7] Self-organizing maps 78.40
    Deng and Kasabov [7] Self-organizing maps 78.40
    Choubey et al. [6] Ensemble of RF and XB 78.9
    Saxena et al. [21] Feature selection of KNN, RF, DT, MLP 79.8
    Our Algorithm 3.1 Extreme learning machine 80.03

     | Show Table
    DownLoad: CSV

    We focus on extreme learning machine (ELM) proposed by Huang et al. [9] for applying our algorithms to solve data classification problems. It is defined as follows:

    Let E : = \{(\mathbf{x}_n, \mathbf{t}_n) : \mathbf{x}_n\in\mathbb{R}^n, \mathbf{t}_n\in\mathbb{R}^m, n = 1, 2, ..., P\} be a training set of P distinct samples where \mathbf{x}_n is an input training data and \mathbf{t}_n is a training target. The output function of ELM for single-hidden layer feed forward neural networks (SLFNs) with M hidden nodes and activation function U is

    \begin{equation*} \mathbf{O}_n = \sum\limits_{j = 1}^{M}\Theta_jU(w_j, b_j, \mathbf{x}_n), \end{equation*}

    where w_j and b_j are parameters of weight and finally the bias, respectively and \Theta_j is the optimal output weight at the j -th hidden node. The hidden layer output matrix H is defined as follows:

    H = \left[ \begin{array}{ccc} U(w_1, b_1, \mathbf{x}_1) & \ldots & U(w_M, b_M, \mathbf{x}_1) \\ \vdots & \ddots & \vdots \\ U(w_1, b_1, \mathbf{x}_P) & \ldots & U(w_M, b_M, \mathbf{x}_P) \end{array} \right]

    To solve ELM is to find optimal output weight \Theta = [\Theta^T_1, ..., \Theta^T_M]^T such that H \Theta = T , where T = [\mathbf{t}^T_1, ..., \mathbf{t}^T_P]^T is the training data. In some cases, finding \Theta = H^{\dagger} T , where H^{\dagger} is the Moore-Penrose generalized inverse of H . However, if H does not exist, then, finding such a solution \Theta through convex minimization can overcome such difficulty.

    In this section, we process some experiments on the classification problem. This problem can be seen as the following convex minimization problem:

    \begin{equation} \min\limits_{\Theta\in\mathbb{R}^M}\{\|H\Theta-T\|_2^2+\lambda\|\Theta\|_1\}, \end{equation} (4.1)

    where \lambda is a regularization parameter. This problem is called the least absolute shrinkage and selection operator (LASSO) [26]. Setting f(\Theta, \zeta) = \langle H^T(H\Theta-T), \zeta-\Theta\rangle and V(x) = Cx where C is constant in (0, 1).

    The binary cross-entropy loss function along with sigmoid activation function for binary classification calculates the loss of an example by computing the following average:

    \begin{equation} \label{acc} Loss = -\frac{1}{K} \sum\limits_{j = 1}^{K}y_j\log \hat{y}_j+(1-y_j)\log(1-\hat{y}_j)\nonumber \end{equation}

    where \hat{y}_j is the j -th scalar value in the model output, y_j is the corresponding target value, and K is the number of scalar values in the model output.

    In this work, the performance of machine learning techniques for all classes is accurately measured. The accuracy is calculated by adding the total number of correct predictions to the total number of predictions. The performance parameter calculation of precision and recall are measured. The formulation of three measures [27] are defined as follow:

    \begin{equation} \text{Precision(Pre)} = \frac{\mathsf{TP}}{\mathsf{TP}+\mathsf{FP}}. \end{equation} (4.2)
    \begin{equation} \text{Recall(Rec)} = \frac{\mathsf{TP}}{\mathsf{TP}+\mathsf{FN}}. \end{equation} (4.3)
    \begin{equation} \text{Accuracy(Acc)} = \frac{\mathsf{TP}+\mathsf{TN}}{\mathsf{TP}+\mathsf{FP}+\mathsf{TN}+\mathsf{FN}}\times100\%, \end{equation} (4.4)

    where a confusion matrix for original and predicted classes are shown in terms of \mathsf{TP} , \mathsf{TN} , \mathsf{FP} , and \mathsf{FN} are the True Positive, True Negative, False Positives, and False Negatives, respectively. Similarly, \mathsf{P} and \mathsf{N} are the Positive and Negative population of Malignant and Benign cases, respectively.

    For starting our computation, we set the activation function as sigmoid, hidden nodes M = 160 , regularization parameter \lambda = 1\times10^{-5} , \theta_i = 0.3 , \alpha_i = \frac{1}{i+1} , \tau = 0.5 , \mu = 0.2 for Algorithms 3.1, 3.9 and 3.10 and C = 0.9999 for Algorithms 3.1 and 3.10. The stopping criteria is the number of iteration 250. We obtain the results of the different parameters S when \lambda_i = \frac{S}{max(eigenvalue(A^{T}A))} for Algorithms 3.1, 3.9 and the different parameters \lambda_1 for Algorithm 3.10 as seen in Table 4.

    Table 4.  Training and validation loss and training time of the different parameter \lambda_i and \lambda_1 .
    Loss
    S , \lambda_1 Training Time Training Validation
    0.2 0.4164 0.286963 0.275532
    0.4 0.4337 0.283279 0.273650
    Algorithm 3.1 0.6 0.4164 0.286963 0.275532
    0.9 0.4459 0.278714 0.272924
    0.99 0.4642 0.278144 0.272921
    0.2 0.4283 0.291883 0.279878
    0.4 0.5293 0.288831 0.277365
    Algorithm 3.9 0.6 0.4246 0.286890 0.276099
    0.9 0.4247 0.284851 0.275079
    0.99 0.5096 0.284356 0.274879
    0.2 1.3823 0.286963 0.275532
    0.4 1.5652 0.283279 0.273650
    Algorithm 3.10 0.6 1.4022 0.281060 0.273120
    0.9 1.9170 0.278714 0.272924
    0.99 1.3627 0.278144 0.272921

     | Show Table
    DownLoad: CSV

    We can see that \lambda_i = \lambda_1 = 0.99 greatly improves the performance of Algorithms 3.1, 3.9 and 3.10. Therefore, we choose it as the default inertial parameter for next computation.

    We next choose \lambda_i = \frac{0.99}{max(eigenvalue(A^{T}A))} , \alpha_i = \frac{1}{i+1} , \tau = 0.5 for Algorithms 3.1 and 3.9 and C = 0.9999 for Algorithm 3.1 with \lambda_1 = \frac{0.99}{max(eigenvalue(A^{T}A))} , \alpha_i = \frac{1}{i+1} , \tau = 0.5 , C = 0.9999 , and \mu = 0.2 for Algorithm 3.10. The stopping criteria is the number of iteration 250. We consider the different initialization parameter \theta where

    \begin{equation*} \theta_i = \left\{ \begin{array}{ll} \theta \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ if \ x_i = x_{i-1} \ and \ i\leq N, \\ \frac{\theta}{i^2\|x_i- x_{i-1}\|} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ otherwise, \\ \end{array} \right. \end{equation*}

    where N is a number of iterations that we want to stop. We obtain the numerical results as seen in Table 5.

    Table 5.  Training and validation loss and training time of the different parameter \theta .
    Loss
    \theta Training Time Training Validation
    0.1 0.4608 0.279629 0.272965
    0.2 0.4515 0.278938 0.272931
    Algorithm 3.1 0.3 0.4523 0.278144 0.272921
    \frac{1}{i} 0.4591 0.280107 0.273004
    \frac{1}{\|x_i-x_{i-1}\|+i^2} 0.5003 0.280221 0.273015
    0.1 0.4723 0.284808 0.274993
    0.2 0.4641 0.284587 0.274935
    Algorithm 3.9 0.3 0.4634 0.284356 0.274879
    \frac{1}{i} 0.5297 0.285004 0.275049
    \frac{1}{\|x_i-x_{i-1}\|+i^2} 0.4825 0.285019 0.275053
    0.1 1.4071 0.279629 0.272965
    0.2 1.3505 0.278938 0.272931
    Algorithm 3.10 0.3 1.4819 0.278144 0.272921
    \frac{1}{i} 1.3276 0.280107 0.273004
    \frac{1}{\|x_i-x_{i-1}\|+i^2} 1.4228 0.280221 0.273015

     | Show Table
    DownLoad: CSV

    We can see that \theta = 0.3 greatly improves the performance of Algorithms 3.1, 3.9 and 3.10. Therefore, we choose it as the default inertial parameter for next computation.

    We next set \lambda_i = \frac{0.99}{max(eigenvalue(A^{T}A))} , \theta_i = 0.3 , \tau = 0.5 for Algorithms 3.1 and 3.9 and C = 0.9999 for Algorithm 3.1 with \lambda_1 = \frac{0.99}{max(eigenvalue(A^{T}A))} , \theta_i = 0.3 , \tau = 0.5 , C = 0.9999 , and \mu = 0.2 for Algorithm 3.10. The stopping criteria is the number of iteration 250. We consider the different initialization parameter \alpha_i . The numerical results are shown in Table 6.

    Table 6.  Training and validation loss and training time of the different parameter \alpha_i .
    Loss
    \alpha_i Training Time Training Validation
    \frac{1}{i+1} 0.4407 0.278144 0.272921
    Algorithm 3.1 \frac{1}{10i+1} 0.4054 0.278143 0.272921
    \frac{1}{i^2+1} 0.4938 0.278143 0.272921
    \frac{1}{10i^2+1} 0.4876 0.278143 0.272921
    \frac{1}{i+1} 0.4163 0.284356 0.274879
    Algorithm 3.9 \frac{1}{10i+1} 0.4274 0.279201 0.273129
    \frac{1}{i^2+1} 0.5150 0.278294 0.272931
    \frac{1}{10i^2+1} 0.5960 0.278160 0.272922
    \frac{1}{i+1} 1.4292 0.278144 0.272921
    Algorithm 3.10 \frac{1}{10i+1} 1.3803 0.278143 0.272921
    \frac{1}{i^2+1} 1.2452 0.278143 0.272921
    \frac{1}{10i^2+1} 1.4100 0.278143 0.272921

     | Show Table
    DownLoad: CSV

    We can see that \alpha_i = \frac{1}{10i+1} greatly improves the performance of Algorithm 3.1, \alpha_i = \frac{1}{10i^2+1} greatly improves the performance of Algorithm 3.9, and \alpha_i = \frac{1}{i^2+1} greatly improves the performance of Algorithm 3.10. Therefore, we choose it as the default inertial parameter for next computation.

    We next calculate the numerical results by setting \lambda_i = \frac{0.99}{max(eigenvalue(A^{T}A))} , \theta_i = 0.3 , \alpha_i = \frac{1}{10i+1} and C = 0.9999 for Algorithm 3.1, \lambda_i = \frac{0.99}{max(eigenvalue(A^{T}A))} , \theta_i = 0.3 , \alpha_i = \frac{1}{10i^2+1} for Algorithm 3.9 and \lambda_1 = \frac{0.99}{max(eigenvalue(A^{T}A))} , \theta_i = 0.3 , C = 0.9999 , \alpha_i = \frac{1}{i^2+1} , and \mu = 0.2 for Algorithm 3.10. The stopping criteria is the number of iteration 250. We consider the different initialization parameter \tau . The numerical results are shown in Table 7.

    Table 7.  Training and validation loss and training time of the different parameter \tau .
    Loss
    \tau Training Time Training Validation
    0.1 0.4278 0.300531 0.299144
    Algorithm 3.1 0.3 0.4509 0.299074 0.293717
    0.5 0.5239 0.278143 0.272921
    \frac{i}{2i+1} 0.4708 0.282187 0.274017
    0.1 0.4592 0.300531 0.299144
    Algorithm 3.9 0.3 0.4900 0.299074 0.293717
    0.5 0.4261 0.278160 0.272922
    \frac{i}{2i+1} 0.5224 0.282191 0.274018
    0.1 1.3401 0.300531 0.299144
    Algorithm 3.10 0.3 1.3771 0.299074 0.293717
    0.5 1.8681 0.278143 0.272921
    \frac{i}{2i+1} 1.4671 0.282187 0.274017

     | Show Table
    DownLoad: CSV

    We can see that \tau = 0.5 greatly improves the performance of Algorithms 3.1, 3.9 and 3.10. Therefore, we choose it as the default inertial parameter for next computation.

    We next calculate the numerical results by setting \lambda_i = \frac{0.99}{max(eigenvalue(A^{T}A))} , \theta_i = 0.3 , \tau = 0.5 for Algorithms 3.1 and 3.9 and \alpha_i = \frac{1}{10i+1} for Algorithm 3.1 with \alpha_i = \frac{1}{10i^2+1} for Algorithm 3.9 and \lambda_1 = \frac{0.99}{max(eigenvalue(A^{T}A))} , \theta_i = 0.3 , \alpha_i = \frac{1}{i^2+1} , \tau = 0.5 , and \mu = 0.2 for Algorithm 3.10. The stopping criteria is the number of iteration 250. We obtain the results of the different parameters C when V(x) = Cx for Algorithms 3.1 and 3.10 as seen in Table 8.

    Table 8.  Training and validation loss and training time of the different parameter c .
    Loss
    C Training Time Training Validation
    0.3 0.4796 0.278902 0.273066
    0.5 0.4270 0.278695 0.273024
    Algorithm 3.1 0.7 0.4190 0.278480 0.272982
    0.9 0.4209 0.278257 0.272941
    0.9999 0.4844 0.278143 0.272921
    0.3 1.5886 0.278251 0.272928
    0.5 1.6358 0.278222 0.272926
    Algorithm 3.10 0.7 1.3808 0.278191 0.272924
    0.9 1.5176 0.278159 0.272922
    0.9999 1.4598 0.278143 0.272921

     | Show Table
    DownLoad: CSV

    From Tables 38, we choose the parameters for Algorithm 3.1 to compare the exist algorithms from the literature. The following Table 9 shows choosing the necessary parameters of each algorithm.

    Table 9.  Chosen parameters of each algorithm.
    Algorithm in (1.2) Algorithm in (1.4) Algorithm in (1.6) Algorithm 3.1 Algorithm 3.9 Algorithm 3.10
    \mu - 0.3 0.3 - - 0.2
    \lambda_1 - \frac{0.5}{max(eig(A^{T}A))} \frac{0.9999}{max(eig(A^{T}A))} - - \frac{0.99}{max(eig(A^{T}A))}
    \lambda_i \frac{0.5}{max(eig(A^{T}A))} - - \frac{0.99}{max(eig(A^{T}A))} \frac{0.99}{max(eig(A^{T}A))} -
    \theta_i - - 0.3 0.3 0.3 0.3
    \alpha_i \frac{1}{100i+1} \frac{1}{100i+1} \frac{1}{2i+1} \frac{1}{10i+1} \frac{1}{10i^2+1} \frac{1}{i^2+1}
    \tau - - 0.5 0.5 0.5 0.5
    c - - - 0.9999 - 0.9999

     | Show Table
    DownLoad: CSV

    For comparison, We set sigmoid as an activation function, hidden nodes M = 160 and regularization parameter \lambda = 1 \times 10^{-5} .

    Table 10 shows that Algorithm 3.1 has the highest efficiency in precision, recall, and accuracy. It also has the lowest number of iterations. It has the highest probability of correctly classifying tumors compared to algorithms examinations. We present the training and validation loss with the accuracy of training to show that Algorithm 3.1 has no overfitting in the training dataset.

    Table 10.  The performance of each algorithm.
    Algorithm Iteration No. Training Time Pre Rec Acc (\%)
    Algorithm in (1.2) 25 0.0537 80.97 97.50 80.03
    Algorithm in (1.4) 25 0.3132 80.97 97.50 80.03
    Algorithm in (1.6) 30 0.1182 80.97 97.50 80.03
    Algorithm 3.1 18 0.0375 80.97 97.50 80.03
    Algorithm 3.9 18 0.0401 80.97 97.50 80.03
    Algorithm 3.10 18 0.1045 80.97 97.50 80.03

     | Show Table
    DownLoad: CSV

    From Figures 2 and 3, we see that our Algorithm 3.1 has good fit model this means that our Algorithm 3.1 suitably learns the training dataset and generalizes well to classification the PIMA Indians diabetes dataset.

    Figure 2.  Training and validation loss plots of Algorithm 3.1.
    Figure 3.  Training and validation accuracy plots of Algorithm 3.1.

    In general, screening for diabetes in pregnancy we use The American College of Obstetricians and Gynecologists (ACOG) recommendations. The accuracy of our method is 80.03\% and high accuracy may use for predict correctly diabetes in pregnancy in the future.

    In this paper, we introduce a modified extragradient method with inertial extrapolation step and viscosity-type method to solve equilibrium problems of pseudomonotone bifunction operator in real Hilbert spaces. We then prove the strong convergence theorem of the proposed algorithm under the assumption that the bifunction satisfies the Lipchitz-type condition. Moreover, we show choosing stepsize parameter \{\lambda_i\} in many ways, this shows that our algorithm is flexible using, see in Algorithms 3.1 and 3.10. Finally, we show our algorithms are better performance than existing algorithms to solve the diabetes mellitus classification in machine learning.

    This research was also supported by Fundamental Fund 2022, Chiang Mai University and the NSRF via the Program Management Unit for Human Resources and Institutional Development, Research and Innovation (grant number B05F640183). W. Cholamjiak would like to thank National Research Council of Thailand (N42A650334) and Thailand Science Research and Innovation, the University of Phayao (FF65-UOE).

    The authors declare no conflict of interest.



    [1] Available online: https://patch.com/new-jersey/oceancity/nj-coronavirus-update-gov-murphy-considers-curfew-31-new-cases (accessed on16 March 2020).
    [2] Available online: https://www.osha.gov/SLTC/covid-19/medicalinformation.html (accessed on.17 March 2020).
    [3] Centers for Disease Control and Prevention, https://www.cdc.gov/coronavirus/2019-ncov/prevent-getting-sick/social-distancing.html (accessed on 8 April 2020)
    [4] H. Pham, On estimating the number of deaths related to Covid-19, Mathematics, 8 (2020), 655. https://doi.org/10.3390/math8050655 doi: 10.3390/math8050655
    [5] Worldometers, 2022 (accessed on April 1, 2022).
    [6] https://www.worldometers.info/coronavirus/?utm_campaign = homeAdvegas1?#countries
    [7] World Health Organization, https://covid19.who.int/ (accessed on April 1, 2022).
    [8] H. Pham, Estimating the COVID-19 death toll by considering the time-dependent effects of various pandemic restrictions, Mathematics, 8 (2020), 1628. https://doi.org/10.3390/math8091628 doi: 10.3390/math8091628
    [9] A. W. H. Chin, J. T. S. Chu, M. R. A. Perera, K. P. Y. Hui, H. L. Yen, M. C. W. Chan, et al., Stability of SARS-CoV-2 in different environmental conditions, Lancet Microbe, 1 (2020), 1. https://doi.org/10.1016/S2666-5247(20)30003-3 doi: 10.1016/S2666-5247(20)30003-3
    [10] E. Dong, H. Du, L. Gardner, An interactive web-based dashboard to track COVID-19 in real time, Lancet Infect. Dis. 20 (2020), 533-534. https://doi.org/10.1016/S1473-3099(20)30120-1 doi: 10.1016/S1473-3099(20)30120-1
    [11] K. Prem, Y. Liu, T. W. Russell, A. J. Kucharski, R. M. Eggo, N. Davies, et al., The effect of control strategies to reduce social mixing on outcomes of the COVID-19 epidemic in Wuhan, China: A modelling study, Lancet Public Health, 20 (2020), e261-e270. https://doi.org/10.1016/S2468-2667(20)30073-6 doi: 10.1016/S2468-2667(20)30073-6
    [12] G. Sebastiani, M. Massa, E. Riboli, Covid-19 epidemic in Italy: Evolution, projections and impact of government measures, Eur. J. Epidemiol., 35 (2020), 341-345. https://doi.org/10.1007/s10654-020-00631-6 doi: 10.1007/s10654-020-00631-6
    [13] G. Onder, G. Rezza, S. Brusaferro, Case-Fatality rate and characteristics of patients dying in relation to COVID-19 in Italy, JAMA, 20 (2020), 1775-1776. https://doi.org/10.1001/jama.2020.4683 doi: 10.1001/jama.2020.4683
    [14] D. D. Rajgor, M. H. Lee, S. Archuleta, N. Bagdasarian, S. C. Quek, The many estimates of the COVID-19 case fatality rate, Lancet Infect. Dis., 20 (2020), 776-777. https://doi.org/10.1016/S1473-3099(20)30244-9 doi: 10.1016/S1473-3099(20)30244-9
    [15] A. J. Kucharski, T. W. Russell, C. Diamond, Y. Liu, J. Edmunds, S. Funk, et al., Early dynamics of transmission and control of COVID-19: A mathematical modelling study, Lancet Infect. Dis., 20 (2020), 553-558. https://doi.org/10.1016/S1473-3099(20)30144-4 doi: 10.1016/S1473-3099(20)30144-4
    [16] X. Wang, Y. Zhang, F. Fang, Role of vitamin D in COVID-19 infections and deaths, J. Evid. Based Med., 14 (2021), 5-6. https://doi.org/10.1111/jebm.12421 doi: 10.1111/jebm.12421
    [17] E. D. Gorham, C. F. Garland, F. C. Garland, W. B. Grant, S. B. Mohr, M. Lipkin, et al., Optimal vitamin D status for colorectal cancer prevention: A quantitative meta analysis, Am. J. Prev. Med., 32 (2007), 210-216. https://doi.org/10.1016/j.amepre.2006.11.004 doi: 10.1016/j.amepre.2006.11.004
    [18] A. G. Pittas, S. S. Harris, P. C. Stark, H. B. Dawson, The effects of calcium and vitamin D supplementation on blood glucose and markers of inflammation in nondiabetic adults, Diabetes Care, 30 (2007), 980-986. https://doi.org/10.2337/dc06-1994 doi: 10.2337/dc06-1994
    [19] M. Urashima, T. Segawa, M. Okazaki, M. Kurihara, Y. Wada, H. Ida, Randomized trial of vitamin D supplementation to prevent seasonal influenza A in schoolchildren, Am. J. Clin. Nutr., 91 (2010), 1255-1260. https://doi.org/10.3945/ajcn.2009.29094 doi: 10.3945/ajcn.2009.29094
    [20] H. Pham, D. H. Pham, A novel generalized logistic dependent model to predict the presence of breast cancer based on biomarkers, Concurr. Comput. Pract. Exper., 32 (2020), 1. https://doi.org/10.1002/cpe.5467 doi: 10.1002/cpe.5467
    [21] V. Verhoeven, K. Vanpuyenbroeck, M. Lopez-Hartmann, J. Wens, R. Remmen, Walk on the sunny side of life—epidemiology of hypovitaminosis D and mental health in elderly nursing home residents, J. Nutr. Health Aging, 16 (2012), 417-420. https://doi.org/10.1007/s12603-011-0361-5 doi: 10.1007/s12603-011-0361-5
    [22] D. Boersma, O. Demontiero, A. Z. Mohtasham, S. Hassan, H. Suarez, D. Geisinger, et al., Vitamin D status in relation to postural stability in the elderly, J. Nutr. Health Aging, 16 (2012), 270-275. https://doi.org/10.1007/s12603-011-0345-5 doi: 10.1007/s12603-011-0345-5
    [23] N. Charoenngam, M. F. Holick, Immunologic effects of vitamin D on human health and disease, Nutrients, 12 (2020), 2097. https://doi.org/10.3390/nu12072097 doi: 10.3390/nu12072097
    [24] A. R. Martineau, D. A. Jolliffe, L. Greenberg, J. F. Aloia, P. Bergman, G. Dubnov-Raz, Vitamin D supplementation to prevent acute respiratory infections: Individual participant data meta-analysis, Health Technol. Assess., 23 (2019), 23020. https://doi.org/10.3310/hta23020 doi: 10.3310/hta23020
    [25] C. E. Hayes, J. M. Ntambi, Multiple sclerosis: Lipids, Lymphocytes, and vitamin D, Immunometabolism, 10 (2020), 19.
    [26] K. de Haan, A. B. J. Groeneveld, H. R. H. de Geus, M. Egal, A. Struijs, Vitamin D deficiency as a risk factor for infection, sepsisand mortality in the critically ill: Systematic review and meta-analysis, Crit. Care, 66 (2014), 6604. https://doi.org/10.1186/s13054-014-0660-4 doi: 10.1186/s13054-014-0660-4
    [27] A. Braun, D. Chang, K. Mahadevappa, F. K. Gibbons, Y. Liu, E. Giovannucci, Association of low serum 25-hydroxyvitamin D levels and mortality in the critically ill, Crit. Care Med., 39 (2011), 671. https://doi.org/10.1097/CCM.0b013e318206ccdf doi: 10.1097/CCM.0b013e318206ccdf
    [28] P. Autier, M. Boniol, C. Pizot, P. Mullie, Vitamin D status and ill health: A systematic review, Lancet Diabetes Endocrinol., 2 (2014) 76. https://doi.org/10.1016/S2213-8587(13)70165-7 doi: 10.1016/S2213-8587(13)70165-7
    [29] Y. F. Zhou, B. A. Luo, L. L. Qin, The association between vitamin D deficiency and community-acquired pneumonia, Medicine, 98 (2019), e17252. https://doi.org/10.1097/MD.0000000000017252 doi: 10.1097/MD.0000000000017252
    [30] E. C. Goodall, A. C. Granados, K. Luinstra, E. Pullenayegum, B. L. Coleman, M. Loeb, Vitamin D3 and gargling for the prevention of upper respiratory tract infections: A randomized controlled trial, BMC Infect. Dis., 11 (2014), 14273. https://doi.org/10.1186/1471-2334-14-273 doi: 10.1186/1471-2334-14-273
    [31] A. S. Vanherwegen, C. Gysemans, C. Mathieu, Regulation of immune function by vitamin D and its use in diseases of immunity, Endocrinol. Metab. Clin. N. Am., 46 (2017), 1061. https://doi.org/10.1016/j.ecl.2017.07.010 doi: 10.1016/j.ecl.2017.07.010
    [32] C. Greiller, A. Martineau, Modulation of the immune response to respiratory viruses by vitamin D, Nutrients, 7 (2015), 4240-4270. https://doi.org/10.3390/nu7064240 doi: 10.3390/nu7064240
    [33] M. T. Zdrenghea, H. Makrinioti, C. Bagacean, A. Bush, S. L. Johnston, L.A. Stanciu, Vitamin D modulation of innate immune responses to respiratory viral infections, Rev. Med. Virol., 27 (2016), e1909. https://doi.org/10.1002/rmv.1909 doi: 10.1002/rmv.1909
    [34] J. R. Sabetta, P. DePetrillo, R. J. Cipriani, J. Smardin, L. A. Burns, M. L. Landry, Serum 25-hydroxyvitamin d and the incidence of acute viral respiratory tract infections in healthy adults, PLoS One, 5 (2010), e11088. https://doi.org/10.1371/journal.pone.0011088 doi: 10.1371/journal.pone.0011088
    [35] T. R. Ingham, B. Jones, C. A. Camargo, J. Kirman, A. C. Dowell, J. Crane, Association of vitamin D deficiency with severity of acute respiratory infection: A case-control study in New Zealand children, Eur. Respir. J. Eur. Respir. Soc., 44 (2014), 124.
    [36] C. FGunville, P. MMourani, A. AGinde, The role of vitamin D in prevention and treatment of infection, Inflamm. Allergy-DrugTargets, 12 (2013), 239-245. https://doi.org/10.2174/18715281113129990046 doi: 10.2174/18715281113129990046
    [37] A. L. Khoo, L. Chai, H. Koenen, I. Joosten, M. Netea, A. van der Ven, Translating the role of vitamin D3 in infectious diseases, Crit. Rev. Microbiol., 38 (2012), 122. https://doi.org/10.3109/1040841X.2011.622716 doi: 10.3109/1040841X.2011.622716
    [38] R. Taha, S. Abureesh, S. Alghamdi, R. Y. Hassan, M. M. Cheikh, R. A. Bagabir, The relationship between vitamin D and infections including COVID-19: Any hopes? Int. J. Gen. Med., 14 (2021), 3849. https://doi.org/10.2147/IJGM.S317421 doi: 10.2147/IJGM.S317421
    [39] A. R. Martineau, D. A. Jolliffe, R. L. Hooper, L. Greenberg, J. F. Aloia, P. Bergman, Vitamin D supplementation to prevent acute respiratory tract infections: Systematic review and meta-analysis of individual participant data, BMJ, 65 (2017), 6583. https://doi.org/10.1136/bmj.i6583 doi: 10.1136/bmj.i6583
    [40] R. C. A. Dancer, D. Parekh, S. Lax, V. D'Souza, S. Zheng, C. R. Bassford, Vitamin D deficiency contributes directly to the acute respiratory distress syndrome (ARDS), Thorax BMJ, 70 (2015), 617. https://doi.org/10.1136/thoraxjnl-2014-206680 doi: 10.1136/thoraxjnl-2014-206680
    [41] D. R. Thickett, T. Moromizato, A. A. Litonjua, K. Amrein, S. A. Quraishi, K. A. Lee-Sarwar, Association between prehospital vitamin D status and incident acute respiratory failure in critically ill patients: A retrospective cohort study, BMJ Open Respir. Res., 2 (2015), e74. https://doi.org/10.1136/bmjresp-2014-000074 doi: 10.1136/bmjresp-2014-000074
    [42] M. T. Cantorna, B. D. Mahon, D-hormone and the immune system, J. Rheumatol. Suppl., 76 (2005), 11-20.
    [43] A. Antico, M. Tampoia, R. Tozzoli, N. Bizzaro, Can supplementation with vitamin D reduce the risk or modify the course of autoimmune diseases? A systematic review of the literature, Autoimmun. Rev., 12 (2012), 127. https://doi.org/10.1016/j.autrev.2012.07.007 doi: 10.1016/j.autrev.2012.07.007
    [44] T. Michigami, O. Rickets, Consensus on vitamin D deficiency and insufficiency in children, Clin. Calcium., 28 (2018), 1307-1311.
    [45] W. Grant, H. Lahore, S. McDonnell, C. Baggerly, C. French, J. Aliano, Evidence that vitamin D supplementation could reduce risk of influenza and COVID-19 infections and deaths, Nutrients, 12 (2020), 988. https://doi.org/10.3390/nu12040988 doi: 10.3390/nu12040988
    [46] P. A. Danai, S. Sinha, M. Moss, M. J. Haber, G. S. Martin, Seasonal variation in the epidemiology of sepsis, Crit. Care Med., 35 (2007), 410-415. https://doi.org/10.1097/01.CCM.0000253405.17038.43 doi: 10.1097/01.CCM.0000253405.17038.43
    [47] W. B. Grant, Variations in vitamin D production could possibly explain the seasonality of childhood respiratory infections in Hawaii, Pediatr. Infect. Dis. J., 27 (2008), 853. https://doi.org/10.1097/INF.0b013e3181817bc1 doi: 10.1097/INF.0b013e3181817bc1
    [48] J. J. Cannell, R. Vieth, J. Umhau, M. Holick, W. Grant, S. Madronich, et al., Epidemic influenza and vitamin D, Epidemiol. Infect., 134 (2006), 1129-1140. https://doi.org/10.1017/S0950268806007175 doi: 10.1017/S0950268806007175
    [49] V. Dimitrov, C. Barbier, A. Ismailova, Y. Wang, K. Dmowski, R. Salehi-Tabar, et al., Vitamin D-regulated gene expression profiles: species-specificity and cell-specific effects on metabolism and immunity, Endocrinology, 162 (2021), 218. https://doi.org/10.1210/endocr/bqaa218 doi: 10.1210/endocr/bqaa218
    [50] M. Olliver, L. Spelmink, J. Hiew, U. Meyer-Hoffert, B. Henriques-Normark, P. Bergman, Immunomodulatory effects of vitamin D on innate and adaptive immune responses to Streptococcus pneumoniae, J. Infect. Dis., 208 (2013), 1474-1481. https://doi.org/10.1093/infdis/jit355 doi: 10.1093/infdis/jit355
    [51] S. Maggini, E. S. Wintergerst, S. Beveridge, D. H. Hornig, Selected vitamins and trace elements support immune function by strengthening epithelial barriers and cellular and humoral immune responses, Br. J. Nut., 98 (2007), S29-S35. https://doi.org/10.1017/S0007114507832971 doi: 10.1017/S0007114507832971
    [52] W. B. Grant, H. Lahore, S. L. McDonnell, C. A. Baggerly, C. B. French, J. L. Aliano, et al., Evidence that vitamin D supplementation could reduce risk of influenza and COVID-19 infections and deaths, Nutrients, 12 (2020), 988. https://doi.org/10.3390/nu12040988 doi: 10.3390/nu12040988
    [53] S. Piumika, T. J. Dhanushya, K. Neil, J. Ranil, Impact of vitamin D deficiency on COVID-19, Clin. Nutr. ESPEN, 44 (2021), 372-378. https://doi.org/10.1016/j.clnesp.2021.05.011 doi: 10.1016/j.clnesp.2021.05.011
    [54] E. Laird, R. A. Kenny, Vitamin D deficiency in Ireland-implications for COVID-19. Results from the Irish Longitudinal Study on Ageing (TILDA), April 2020. https://doi.org/10.38018/TildaRe.2020-05
    [55] D. P. Richardson, J. A. Lovegrove, Nutritional status of micronutrients as a possible and modifiable risk factor for COVID-19: A UK perspective, Br. J. Nutr., 125 (2021), 678-684. https://doi.org/10.1017/S000711452000330X doi: 10.1017/S000711452000330X
    [56] M. Ebadi, A. J. Montano-Loza, Perspective: Improving vitamin D status in the management of COVID-19, Eur. J. Clin. Nutr., 74 (2020), 856-859. https://doi.org/10.1038/s41430-020-0661-0 doi: 10.1038/s41430-020-0661-0
    [57] W. B. Grant, H. Lahore, S. L. McDonnell, C. A. Baggerly, C. B. French, J. L. Aliano, et al., Evidence that vitamin D supplementation could reduce risk of influenza and COVID-19 infections and deaths, Nutrients, 12 (2020), 988. https://doi.org/10.3390/nu12040988 doi: 10.3390/nu12040988
    [58] D. M. McCartney, D. G. Byrne, Optimisation of vitamin D status for enhanced Immuno-protection against Covid-19, Ir. Med. J., 113 (2020), 58.
    [59] M. Di Rosa, M. Malaguarnera, F. Nicoletti, L. Malaguarnera, Vitamin D3: A helpful immuno-modulator. Immunology, 134 (2020), 123-139. https://doi.org/10.1111/j.1365-2567.2011.03482.x doi: 10.1111/j.1365-2567.2011.03482.x
    [60] J. Zhong, J. Tang, C. Ye, L. Dong, The immunology of COVID-19: Is immune modulation an option for treatment? Lancet Rheumatol., 2 (2020), e428-e436. https://doi.org/10.1016/S2665-9913(20)30120-X doi: 10.1016/S2665-9913(20)30120-X
    [61] A. Panarese, E. Shahini, Covid-19, and vitamin D, Aliment. Pharmacol. Ther., 51 (2020), 993. https://doi.org/10.1111/apt.15752 doi: 10.1111/apt.15752
    [62] G. Grasselli, T. Tonetti, A. Protti, T. Langer, M. Girardis, G. Bellani, et al., Pathophysiology of COVID-19-associated acute respiratory distress syndrome: A multicentre prospective observational study, Lancet Respir. Med., 8 (2020), 1201-1208. https://doi.org/10.1016/S2213-2600(20)30370-2 doi: 10.1016/S2213-2600(20)30370-2
    [63] A. A. Ginde, J. M. Mansbach, C. A. Camargo, Association between serum 25-hydroxyvitamin D level and upper respiratory tract infection in the Third National Health and Nutrition Examination Survey, Arch. Int. Med., 169 (2009), 384-390. https://doi.org/10.1001/archinternmed.2008.560 doi: 10.1001/archinternmed.2008.560
    [64] D. A. Jolliffe, C. J. Griffiths, A. R. Martineau, Vitamin D in the prevention of acute respiratory infection: Systematic review of clinical studies, J. Steroid Biochem. Mol. Biol., 136 (2020), 321-329. https://doi.org/10.1016/j.jsbmb.2012.11.017 doi: 10.1016/j.jsbmb.2012.11.017
    [65] D. Prantas, S. Nandeeta, O. A. Bright, E. H. John, P. Prince, M. Aliu, et al., Effect of vitamin D deficiency on COVID-19 status: A systematic review, COVID, 1 (2021), 97-104. https://doi.org/10.3390/covid1010008 doi: 10.3390/covid1010008
    [66] A. Radujkovic, T. Hippchen, S. Tiwari-Heckler, S. Dreher, M. Boxberger, U. Merle, Vitamin D deficiency and outcome of COVID-19 patients, Nutrients, 12 (2020), 2757. https://doi.org/10.3390/nu12092757 doi: 10.3390/nu12092757
    [67] D. O. Meltzer, T. J. Best, H. Zhang, T. Vokes, V. Arora, J. Solway, Association of vitamin D status and other clinical characteristics with COVID-19 test results, JAMA Netw. Open, 3 (2020), e2019722. https://doi.org/10.1001/jamanetworkopen.2020.19722 doi: 10.1001/jamanetworkopen.2020.19722
    [68] C. E. Hastie, D. F. Mackay, F. Ho, C. A. Celis-Morales, S. V. Katikireddi, C. L. Niedzwiedz, et al., Vitamin D concentrations and COVID-19 infection in UK Biobank, Diabetes Metab. Syndr. Clin. Res. Rev., 14 (2020), 561-565. https://doi.org/10.1016/j.dsx.2020.04.050 doi: 10.1016/j.dsx.2020.04.050
    [69] A. Abrishami, N. Dalili, P. M. Torbati, R. Asgari, M. Arab-Ahmadi, B. Behnam, et al., Possible association of vitamin D status with lung involvement and outcome in patients with COVID-19: A retrospective study, Eur. J. Nutr., 60 (2020), 2249-2257. https://doi.org/10.1007/s00394-020-02411-0 doi: 10.1007/s00394-020-02411-0
    [70] V. Baktash, T. Hosack, N. Patel, S. Shah, P. Kandiah, K. Van den Abbeele, et al., Vitamin D status and outcomes for hospitalised older patients with COVID-19, Postgrad. Med. J., 2 (2020), 1-6. https://doi.org/10.1136/postgradmedj-2020-138712 doi: 10.1136/postgradmedj-2020-138712
    [71] Z. Maghbooli, M. A. Sahraian, M. Ebrahimi, M. Pazoki, M. Kafan, S. Tabriz, et al., Vitamin D sufficiency, a serum 25-hydroxyvitamin D at least 30 ng/mL reduced risk for adverse clinical outcomes in patients with COVID-19 infection, PLoS One, 15 (2020), e0239799. https://doi.org/10.1371/journal.pone.0239799 doi: 10.1371/journal.pone.0239799
    [72] K. Ye, F. Tang, X. Liao, B. A. Shaw, M. Deng, G. Huang, et al., Does serum vitamin D level affect COVID-19 infection and its severity? A case-control study, J. Am. Coll. Nutr., (2020), 1-8. https://doi.org/10.1080/07315724.2020.1826005 doi: 10.1080/07315724.2020.1826005
    [73] P. Bergman, A. C. Norlin, S. Hansen, R. S. Rekha, B. Agerberth, L. Björkhem-Bergman, et al., Vitamin D3 supplementation in patients with frequent respiratory tract infections: A randomised and double-blind intervention study, BMJ Open, 2 (2012), e001663. https://doi.org/10.1136/bmjopen-2012-001663 doi: 10.1136/bmjopen-2012-001663
    [74] A. R. Martineau, N. G. Forouhi, Vitamin D for COVID-19: A case to answer? Lancet Diabetes Endocrinol, 8 (2020), 735-736. https://doi.org/10.1016/S2213-8587(20)30268-0 doi: 10.1016/S2213-8587(20)30268-0
    [75] N. Ali, Role of vitamin D in preventing of COVID-19 infection, progression and severity, J. Infect. Public Health, 13 (2020), 1373-1380. https://doi.org/10.1016/j.jiph.2020.06.021 doi: 10.1016/j.jiph.2020.06.021
    [76] P. C. Ilie, S. Stefanescu, L. Smith, The role of vitamin D in the prevention of coronavirus disease 2019 infection and mortality, Aging Clin. Exp. Res., 32 (2020), 1195-1198. https://doi.org/10.1007/s40520-020-01570-8 doi: 10.1007/s40520-020-01570-8
    [77] S. Walrand, Autumn COVID-19 surge dates in Europe correlated to latitudes, not to temperature-humidity, pointing to vitamin D as contributing factor, Sci. Rep., 11 (2021), 1981. https://doi.org/10.1038/s41598-021-81419-w doi: 10.1038/s41598-021-81419-w
    [78] E. Klingberg, G. Oleröd, J. Konar, M. Petzold, O. Hammarsten, Seasonal variations in serum 25-hydroxy vitamin D levels in a Swedish cohort, Endocrine, 49 (2015), 800-808. https://doi.org/10.1007/s12020-015-0548-3 doi: 10.1007/s12020-015-0548-3
    [79] Institute of Medicine. Dietary reference intakes for calcium and vitamin D. Washington, DC: The National Academies Press, 2011.
    [80] M. F. Holick N. C. Binkley, H. A. Bischoff-Ferrari, C. M. Gordon, D. A. Hanley, R. P. Heaney, et al., Evaluation, treatment, and prevention of vitamin D deficiency: An Endocrine Society Clinical Practice Guideline, J. Clin. Endocrinol. Metab., 96 (2011), 1911-1130. https://doi.org/10.1210/jc.2011-0385 doi: 10.1210/jc.2011-0385
    [81] D. E. Roth, P. Martz, R. Yeo, C. Prosser, M. Bell, A. B. Jones, Are national vitamin D guidelines sufficient to maintain adequate blood levels in children? Can. J. Public Health, 96 (2005), 443-449. https://doi.org/10.1007/BF03405185 doi: 10.1007/BF03405185
    [82] D. Rucker, J. A. Allan, G. H. Fick, D. A. Hanley, Vitamin D insufficiency in a population of healthy western Canadians, CMAJ, 166 (2002), 1517-1524.
    [83] R. Vieth, D. E. Cole, G. A. Hawker, H. M. Trang, L. A. Rubin, Winter time vitamin D insufficiency is common in young Canadian women, and their vitamin D intake does not prevent it, Eur. J. Clin. Nutr., 55 (2001), 1091-1097. https://doi.org/10.1038/sj.ejcn. 1601275 doi: 10.1038/sj.ejcn.1601275
    [84] R. P. Heaney, K. M. Davies, T. C. Chen, M. F. Holick, M. J. Barger-Lux, Human serum 25-hydroxycholecalciferol response to extended oral dosing with cholecalciferol, Am. J. Clin. Nutr., 77 (2003), 204-210. https://doi.org/10.1093/ajcn/77.1.204 doi: 10.1093/ajcn/77.1.204
    [85] J. N. Hathcock, A. Shao, R. Vieth, R. Heaney, Risk assessment for vitamin D, Am. J. Clin. Nutr., 85 (2007), 6-18. https://doi.org/10. 1093/ajcn/85.1.6 doi: 10.1093/ajcn/85.1.6
    [86] M. Pfeifer, B. Begerow, H. W. Minne, C. Abrams, D. Nachtigall, C. Hansen, Effects of a short-term vitamin D and calcium supplementation on body sway and secondary hyperparathyroidism in elderly women, J. Bone Miner Res., 15 (2000), 1113-1118. https://doi.org/10.1359/jbmr.2000.15.6.1113 doi: 10.1359/jbmr.2000.15.6.1113
    [87] Medicine Io, Dietary reference intakes for calcium, phosphorus, magnesium, vitamin D, and fluoride. The Washington, DC: National Academies Press, 1997.
    [88] J. F. Aloia, M. Patel, R. DiMaano, M. Li-Ng, S. A. Talwar, M. Mikhail, et al., Vitamin D intake to attain a desired serum 25- hydroxyvitamin D concentration, Am. J. Clin. Nutr., 87 (2008), 1952-1958. https://doi.org/10.1093/ajcn/87.6.1952 doi: 10.1093/ajcn/87.6.1952
    [89] A. C. Ross, J. E. Manson, S. A. Abrams, J. F. Aloia, P. M. Brannon, S. K. Clinton, et al., The 2011 report on dietary reference intakes for calcium and vitamin D from the institute of medicine: what clinicians need to know, J. Clin. Endocrinol. Metab., 96 (2011), 53-58. https://doi.org/10.1016/j.jada.2011.01.004 doi: 10.1016/j.jada.2011.01.004
    [90] EFSA Panel on Dietetic Products N, Allergies. Scientific opinion on the tolerable upper intake level of vitamin D, EFSA J., 10 (2012), 2813. https://doi.org/10.2903/j.efsa.2012.2813
    [91] D. A. Hanley, A. Cranney, G. Jones, S. J. Whiting, W. D. Leslie, D. E. Cole, et al., Vitamin D in adult health and disease: A review and guideline statement from Osteoporosis Canada, CMAJ, 182 (2010), E610-E618. https://doi.org/10.1503/cmaj.080663 doi: 10.1503/cmaj.080663
    [92] S. M. Pietras, B. K. Obayan, M. H. Cai, M. F. Holick, Vitamin D2 treatment for vitamin D deficiency and insufficiency for up to 6 Years, JAMA Intern. Med., 169 (2009), 1806-1818. https://doi.org/10. 1001/archinternmed.2009.361 doi: 10.1001/archinternmed.2009.361
    [93] S. L. McDonnell, C. A. Baggerly, C. B. French, L. L. Baggerly, C. F. Garland, E. D. Gorham, et al., Breast cancer risk markedly lower with serum 25-hydroxyvitamin D concentrations ≥60 vs < 20 ng/ml (150 vs 50 nmol/L): Pooled analysis of two randomized trials and a prospective cohort, PLoS One, 13 (2018), e0199265. https://doi.org/10.1371/journal.pone.0199265 doi: 10.1371/journal.pone.0199265
    [94] J. M. Madden, L. Murphy, L. Zgaga, K. K. Bennett, De novo vitamin D supplement use post-diagnosis is associated with breast cancer survival, Breast Cancer Res. Treat., 172 (2018), 179-90. https://doi.org/10.1007/s10549-018-4896-6 doi: 10.1007/s10549-018-4896-6
    [95] N. Mirhosseini, H. Vatanparast, S. M. Kimball, The association between Serum 25(OH)D status and blood pressure in participants of a community-based program taking vitamin D supplements, Nutrients, 9 (2017), 1244. https://doi.org/10.3390/nu9111244 doi: 10.3390/nu9111244
    [96] A. Rusińska, P. Płudowski, M. Walczak, M. K. Borszewska-Kornacka, A. Bossowski, D. Chlebna-Sokół, et al., Vitamin D supplementation guidelines for general population and groups at risk of vitamin D deficiency in poland—recommendations of the polish society of pediatric endocrinology and diabetes and the expert panel with participation of national specialist consultants and representatives of scientific societies, Front. Endocrinol., 9 (2018). https://doi.org/10.3389/fendo.2018.00246 doi: 10.3389/fendo.2018.00246
    [97] K. Amrein, M. Scherkl, M. Hoffmann, S. Neuwersch-Sommeregger, M. Köstenberger, A. Tmava Berisha, et al., Vitamin D deficiency 2.0: An update on the current status worldwide, European J. Clin. Nutr., 74 (2020), 1498-1513. https://doi.org/10.1038/s41430-020-0558-y doi: 10.1038/s41430-020-0558-y
    [98] N. Charoenngam, M. F. Holick, Immunologic effects of vitamin d on human health and disease, Nutrients, 12 (2020), 1-28. https://doi.org/10.3390/nu12072097 doi: 10.3390/nu12072097
    [99] M. Chakhtoura, M. Rahme, N. Chamoun, G. El-Hajj Fuleihan, Vitamin D in the Middle East and North Africa, Bone Rep., 8 (2018), 135-146. https://doi.org/10.1016/j.bonr.2018.03.004 doi: 10.1016/j.bonr.2018.03.004
    [100] A. Batieha, Y. Khader, H. Jaddou, D. Hyassat, Z. Batieha, M. Khateeb, et al., Vitamin D status in Jordan: dress style and gender discrepancies, Ann. Nutr. Metab., 58 (2011), 10-18. https://doi.org/10.1159/000323097 doi: 10.1159/000323097
    [101] P. Bergman, A. U. Lindh, L. Björkhem-Bergman, J. D. Lindh, Vitamin D and respiratory tract infections: A systematic review and meta-analysis of randomized controlled trials, PLoS One, 8 (2013), e65835. https://doi.org/10.1371/journal.pone.0065835 doi: 10.1371/journal.pone.0065835
    [102] D. A. Jolliffe, C. A. Camargo, J. D. Sluyter, M. Aglipay, J. F. Aloia, D. Ganmaa, et al., Vitamin D supplementation to prevent acute respiratory infections: A systematic review and meta-analysis of aggregate data from randomised controlled trials, Lancet Diab. Endocrinol., 9 (2021), 276-292. https://doi.org/10.1136/thorax-2020-BTSabstracts.105 doi: 10.1136/thorax-2020-BTSabstracts.105
    [103] J. M. Rhodes, S. Subramanian, E. Laird, G. Griffig, R. A. Kenny, Perspective: Vitamin D deficiency and COVID-19 severity—plausibly linked by latitude, ethnicity, impacts on cytokines, ACE2 and thrombosis, J. Intern. Med., 289 (2021), 97-115. https://doi.org/10.1111/joim.13149 doi: 10.1111/joim.13149
    [104] D. O. Meltzer, T. J. Best, H. Zhang, T. Vokes, V. Arora, J. Solway, Association of vitamin D status and other clinical characteristics with COVID-19 test results, JAMA Netw. Open., 3 (2020), e2019722. https://doi.org/10.1001/jamanetworkopen.2020.19722 doi: 10.1001/jamanetworkopen.2020.19722
    [105] E. Merzon, D. Tworowski, A. Gorohovski, S. Vinker, A. G. Cohen, I. Green, et al., Low plasma 25(OH) vitamin D level is associated with increased risk of COVID-19 infection: An Israeli population-based study, FEBS J., 287 (2020), 3693-3702. https://doi.org/10.1111/febs.15495 doi: 10.1111/febs.15495
    [106] A. Jain, R. Chaurasia, N. S. Sengar, M. Singh, S. Mahor, S, Narain, Analysis of vitamin D level among asymptomatic and critically ill COVID-19 patients and its correlation with inflammatory markers, Sci. Rep., 10 (2020), 20191. https://doi.org/10.1038/s41598-020-77093-z doi: 10.1038/s41598-020-77093-z
    [107] D. De Smet, K. De Smet, P. Herroelen, S. Gryspeerdt, G. A. Martens, Vitamin D deficiency as risk factor for severe COVID-19: A convergence of two pandemics, medRxiv, (2020). https://doi.org/10.1101/2020.05.01.20079376
    [108] R. L. Schleicher, M. R. Sternberg, A. C. Looker, E. A. Yetley, D. A. Lacher, C. T. Sempos, et al., National estimates of serum total 25-Hydroxyvitamin D and metabolite concentrations measured by liquid chromatography-Tandem mass spectrometry in the US population during 2007-2010, J. Nutr., 146 (2016), 1051-1061.https://doi.org/10.3945/jn.115.227728 doi: 10.3945/jn.115.227728
    [109] K. Sarafin, R. Durazo-Arvizu, L. Tian, K. W. Phinney, S. Tai, J. E. Camara, et al., Standardizing 25-hydroxyvitamin D values from the Canadian health measures survey, Am. J. Clin. Nutr., 102 (2015), 1044-1050. https://doi.org/10.3945/ajcn.114.103689 doi: 10.3945/ajcn.114.103689
    [110] K. D. Cashman, K. G. Dowling, Z. Škrabáková, M. Gonzalez-Gross, J. Valtueña, S. De Henauw, et al., Vitamin D deficiency in Europe: pandemic? Am. J. Clin. Nutr., 103 (2016), 1033-1044. https://doi.org/ 10.3945/ajcn.115.120873 doi: 10.3945/ajcn.115.120873
    [111] K. D. Cashman, Vitamin D deficiency: Defining, prevalence, causes, and strategies of addressing, Calcif. Tissue Int., (2019). https://doi.org/10.1007/s00223-019-00559-4 doi: 10.1007/s00223-019-00559-4
    [112] H. Pham, Modeling U.S. mortality and risk-cost optimization on life expectancy, IEEE Trans. Reliabil., 60 (2011), 125-133. https://doi.org/10.1109/TR.2010.2103990 doi: 10.1109/TR.2010.2103990
    [113] A. A. Dror, N. Morozov, A. Daoud, Y. Namir, O. Yakir, Y. Shachar, et al., Pre-infection 25-hydroxyvitamin D3 levels and association with severity of COVID-19 illness, PLoS One, 17 (2022), e0263069. https://doi.org/10.1371/journal.pone.0263069 doi: 10.1371/journal.pone.0263069
    [114] J. Ng, Y. R. Stovezky, D. J. Brenner, S. C. Formenti, I. Shuryak, Development of a model to estimate the association between delay in cancer treatment and local tumor control and risk of metastates, JAMA Netw. Open, 4 (2021), 1-10. https://doi.org/10.1001/jamanetworkopen.2020.34065 doi: 10.1001/jamanetworkopen.2020.34065
    [115] A. Talkington, R. Durrett, Estimating tumor growth rates in vivo, Bull. Math. Biol., 77 (2015), 1934-1954. https://doi.org/10.1007/s11538-015-0110-8 doi: 10.1007/s11538-015-0110-8
    [116] C. Vaghi, A. Rodallec, R. Fanciullino, J. Ciccolini, J. P. Mochel, M. Mastri, Population modeling of tumor growth curves and the reduced Gompertz model improve prediction of the age of experimental tumors, PLoS Comput. Biol., 16 (2020), e1007178. https://doi.org/10.1371/journal.pcbi.1007178 doi: 10.1371/journal.pcbi.1007178
    [117] D. J. Yin, A. R. Moes, J. G. C. van Hasselt, J. J. Swen, H. J. Guchelaar, A review of mathematical models for tumor dynamics and treatment resistance evolution of solid tumors, CPTPharmacomet. Syst. Pharmacol., 8 (2019), 720-737. https://doi.org/10.1002/psp4.12450 doi: 10.1002/psp4.12450
    [118] T. L. Jackson, H. M. A. Byrne, A mathematical model to study the effects of drug resistance and vasculature on the response of solid tumors to chemotherapy, Math. Biosci., 104 (2000), 17-38. https://doi.org/10.1016/S0025-5564(99)00062-0 doi: 10.1016/S0025-5564(99)00062-0
    [119] C. E. Meacham, S. J. Morrison, Tumour heterogeneity and cancer cell plasticity, Nature, 501 (2013), 328-337. https://doi.org/10.1038/nature12624 doi: 10.1038/nature12624
    [120] X. Sun, J. Bao, Y. Z. Shao, Mathematical modeling of therapy-induced cancer drug resistance: Connecting cancer mechanisms to population survival rates, Sci. Rep., 6 (2016) 22498. https://doi.org/10.1038/srep22498 doi: 10.1038/srep22498
    [121] K. Taniguchi, J. Okami, K. Kodama, M. Higashiyama, K. Kato, Intratumor heterogeneity of epidermal growth factor receptor mutations in lung cancer and its correlation to the response to gefitinib, Cancer Sci., 99 (2008), 929-935. https://doi.org/10.1111/j.1349-7006.2008.00782.x doi: 10.1111/j.1349-7006.2008.00782.x
    [122] E. R. Lestari, H. Arifah, Dynamics of a mathematical model of cancer cells with chemotherapy, J. Phys. Conf. Ser., 1320 (2019), 1-8. https://doi.org/10.1088/1742-6596/1320/1/012026 doi: 10.1088/1742-6596/1320/1/012026
    [123] H. Pham, A dynamic model of multiple time-delay interactions between the virus-infected cells and body's immune system with autoimmune diseases, Axioms, 10 (2021), 216. https://doi.org/10.3390/axioms10030216 doi: 10.3390/axioms10030216
    [124] H. Pham, Mathematical modeling the time-delay interactions between tumor viruses and the immune system with the effects of chemotherapy and autoimmune Diseases, Mathematics, 10 (2022), 756. https://doi.org/10.3390/math10050756 doi: 10.3390/math10050756
  • This article has been cited by:

    1. Godwin Chidi Ugwunnadi, Abdul Rahim Khan, Austine Efut Ofem, Convergence results for Górnicki type contractive mapping in CAT(0) spaces, 2024, 0971-3611, 10.1007/s41478-024-00864-8
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2690) PDF downloads(112) Cited by(3)

Figures and Tables

Figures(22)  /  Tables(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog