Loading [Contrib]/a11y/accessibility-menu.js
Research article

A remark on the existence of positive radial solutions to a Hessian system

  • Received: 19 July 2021 Accepted: 23 September 2021 Published: 29 September 2021
  • MSC : 35A01, 35A09, 35A24, 35A35

  • We give new conditions for the study of existence of positive radial solutions for a system involving the Hessian operator. The solutions to be obtained are given by successive-approximation. Our interest is to improve the works that deal with such systems at the present and to give future directions of research related to this work for researchers.

    Citation: Dragos-Patru Covei. A remark on the existence of positive radial solutions to a Hessian system[J]. AIMS Mathematics, 2021, 6(12): 14035-14043. doi: 10.3934/math.2021811

    Related Papers:

    [1] Hongliang Gao, Liyuan Wang, Jiemei Li . Existence of radial solutions for $ k $-Hessian system. AIMS Mathematics, 2023, 8(11): 26498-26514. doi: 10.3934/math.20231353
    [2] Jundong Zhou, Yawei Chu . The complex Hessian quotient flow on compact Hermitian manifolds. AIMS Mathematics, 2022, 7(5): 7441-7461. doi: 10.3934/math.2022416
    [3] Dan Wang, Yongxiang Li . Existence and uniqueness of radial solution for the elliptic equation system in an annulus. AIMS Mathematics, 2023, 8(9): 21929-21942. doi: 10.3934/math.20231118
    [4] Yongxiang Li, Mei Wei . Positive radial solutions of p-Laplace equations on exterior domains. AIMS Mathematics, 2021, 6(8): 8949-8958. doi: 10.3934/math.2021519
    [5] Limin Guo, Jiafa Xu, Donal O'Regan . Positive radial solutions for a boundary value problem associated to a system of elliptic equations with semipositone nonlinearities. AIMS Mathematics, 2023, 8(1): 1072-1089. doi: 10.3934/math.2023053
    [6] Zhiqian He, Liangying Miao . Multiplicity of positive radial solutions for systems with mean curvature operator in Minkowski space. AIMS Mathematics, 2021, 6(6): 6171-6179. doi: 10.3934/math.2021362
    [7] Tianji Wang, Qingdao Huang . A new Newton method for convex optimization problems with singular Hessian matrices. AIMS Mathematics, 2023, 8(9): 21161-21175. doi: 10.3934/math.20231078
    [8] Maria Alessandra Ragusa, Abdolrahman Razani, Farzaneh Safari . Existence of positive radial solutions for a problem involving the weighted Heisenberg $ p(\cdot) $-Laplacian operator. AIMS Mathematics, 2023, 8(1): 404-422. doi: 10.3934/math.2023019
    [9] Kun Cheng, Li Wang . Nodal solutions for the Kirchhoff-Schrödinger-Poisson system in $ \mathbb{R}^3 $. AIMS Mathematics, 2022, 7(9): 16787-16810. doi: 10.3934/math.2022922
    [10] Jawhar Hbil, Mohamed Zaway . Some results on the convergence of Hessian operator and $ m-$subharmonic functions. AIMS Mathematics, 2022, 7(5): 9023-9038. doi: 10.3934/math.2022502
  • We give new conditions for the study of existence of positive radial solutions for a system involving the Hessian operator. The solutions to be obtained are given by successive-approximation. Our interest is to improve the works that deal with such systems at the present and to give future directions of research related to this work for researchers.



    This paper is devoted to develop the mathematical theory for the study of existence of positive radial solutions of a system of partial differential equations (PDE) of the form

    $ \begin{equation} \left\{ \begin{array}{c} S_{k_{1}}\left( \lambda \left( D^{2}u\right) \right) -\alpha S_{k_{2}}\left( \lambda \left( D^{2}u\right) \right) = p\left( \left\vert x\right\vert \right) f\left( v\right) \text{, }x\in \mathbb{R}^{N}\text{, }(N\geq 3)\text{ , } \\ S_{k_{3}}\left( \lambda \left( D^{2}v\right) \right) -\beta S_{k_{4}}\left( \lambda \left( D^{2}v\right) \right) = q\left( \left\vert x\right\vert \right) g\left( u\right) \text{, }x\in \mathbb{R}^{N}\text{, }(N\geq 3)\text{ , } \end{array} \right. \end{equation} $ (1.1)

    where $ \alpha, \beta \in \left(0, \infty \right) $, $ k_{1}, k_{2}, k_{3}, k_{4} \in \{1, 2, ..., N\} $ with $ k_{1} > k_{2} $ and $ k_{3} > k_{4} $, $ S_{k_{i}}\left(\lambda \left(D^{2}\left(\circ \right) \right) \right) $ ($ i = 1, 2, 3, 4 $) stands for the $ k_{i} $-Hessian operator defined as the sum of all $ k_{i}\times k_{i} $ principal minors of the Hessian matrix $ D^{2}\left(\circ \right) $ and the functions $ p $, $ q $, $ f $ and $ g $ satisfy some suitable conditions.

    In the case $ \alpha = \beta = 0 $ and $ k_{1} = k_{3} = 1 $, there are several works that deals with the existence of radially symmetric solution for (1.1), in which situation the system become

    $ \begin{equation} \left\{ \begin{array}{c} \Delta u = p\left( \left\vert x\right\vert \right) f\left( v\right) \text{, } x\in \mathbb{R}^{N}\text{, }(N\geq 3)\text{, } \\ \Delta v = q\left( \left\vert x\right\vert \right) g\left( u\right) \text{, } x\in \mathbb{R}^{N}\text{, }(N\geq 3)\text{.} \end{array} \right. \end{equation} $ (1.2)

    Some of these are analyzed in the following. For example, [5] considered the existence of entire large solutions for the system (1.2) in the case $ f\left(v\right) = v^{a} $ and $ g\left(u\right) = u^{b} $ with $ 0 < ab\leq 1 $ and noticed that (1.2) has a positive entire large solution if and only if the nonnegative spherically symmetric continuous functions $ p $ and $ q $ satisfy

    $ \begin{eqnarray} \int_{0}^{\infty }tp\left( t\right) \left( t^{2-N}\int_{0}^{t}s^{N-3}\int_{0}^{s}zq\left( z\right) dz\right) ^{a}dt & = &\infty , \end{eqnarray} $ (1.3)
    $ \begin{eqnarray} \int_{0}^{\infty }tq\left( t\right) \left( t^{2-N}\int_{0}^{t}s^{N-3}\int_{0}^{s}zp\left( z\right) dz\right) ^{b}dt & = &\infty .\text{ } \end{eqnarray} $ (1.4)

    Moreover, if $ a\cdot b > 1 $ he showed that the system (1.2) has a positive entire large solution if the radial functions $ p $ and $ q $ satisfy one of the two inequalities

    $ \begin{eqnarray} \int_{0}^{\infty }tp\left( t\right) \left( t^{2-N}\int_{0}^{t}s^{N-3}\int_{0}^{s}zq\left( z\right) dz\right) ^{a}dt & < &\infty , \end{eqnarray} $ (1.5)
    $ \begin{eqnarray} \int_{0}^{\infty }tq\left( t\right) \left( t^{2-N}\int_{0}^{t}s^{N-3}\int_{0}^{s}zp\left( z\right) dz\right) ^{b}dt & < &\infty .\text{ } \end{eqnarray} $ (1.6)

    Recently, for the particular case $ \alpha, \beta \in \left[0, \infty \right) $, $ k_{1} = k_{3} = N $ and $ k_{2} = k_{4} = 1 $, the authors [7] obtained the existence of entire radial large solutions for the system (1.1) under hypotheses that $ p $, $ q:\left[0, \infty \right) \rightarrow \left[0, \infty \right) $ are spherically symmetric continuous functions and $ f $, $ g:\left[0, \infty \right) \rightarrow \left[0, \infty \right) $ are continuous, monotone non-decreasing nonlinearities such that

    $ \begin{equation*} f(s) > 0, \text{ }g\left( t\right) > 0\text{ for all }s, t > 0 \end{equation*} $

    and

    $ \begin{equation} \int_{1}^{\infty }\frac{1}{\left( 1+f\left( t\right) +g\left( t\right) \right) ^{1/N}} = \infty . \end{equation} $ (1.7)

    Here, the results of [5] are included for $ a, b\in \left(0, 1\right] $, i.e. $ f $ and $ g $ are sublinear. Hence, it remains unknown the case $ 0 < a\cdot b\leq 1 $, i.e. if an analogous result obtained by [5] holds for the more general system (1.1). In our paper, we give a new methodology for proving existence results under a class of general nonlinearities considered in other frameworks (see e.g. Orlicz Spaces Theory) including such the sublinear and superlinear class of functions discussed in [5]. This may be used in tackling other related problems.

    The reminder of this paper is organized as follows. Section 2 contains our main result and some lemmas. In Section 3 we give the proof of our main result.

    For the purpose of the paper, the following basic class of functions are considered

    (P1) $ p $, $ q:\left[0, \infty \right) \rightarrow \left[0, \infty \right) $ continuous functions;

    (C1) $ f $, $ g:\left[0, \infty \right) \rightarrow \left[0, \infty \right) $ are continuous and monotone non-decreasing such that

    $ \begin{equation*} f(s) > 0, \text{ }g\left( t\right) > 0\text{ for all }s, t > 0, \end{equation*} $

    and

    $ \begin{equation*} f\left( t\cdot s\right) \leq f\left( t\right) \cdot f\left( s\right) \text{ and }g\left( t\cdot s\right) \leq g\left( t\right) \cdot g\left( s\right) \text{ for all }s, t\geq 0; \end{equation*} $

    (C2) $ \int_{1}^{\infty }\frac{dt}{\left(1+f\left(\left(1+g\left(t\right) \right) ^{1/k_{3}}\right) \right) ^{1/k_{1}}} = \infty $ and $ \int_{1}^{\infty }\frac{dt}{\left(1+g\left(\left(1+f\left(t\right) \right) ^{1/k_{1}}\right) \right) ^{1/k_{3}}} = \infty $.

    Our main interest is to prove the following theorem.

    Theorem 1. If $ p, $ $ q $ satisfy (P1) and $ f, $ $ g $ satisfy (C1), (C2), then the system (1.1) has one positive entire radial solution $ \left(u, v\right) \in C^{2}\left(\mathbb{R}^{N}\right) \times C^{2}\left(\mathbb{R }^{N}\right) $ such that

    $ \begin{equation} u\left( x\right) \geq c_{1}+\alpha _{N;k_{1}, k_{2}}\frac{\left\vert x\right\vert ^{2}}{2}\mathit{\text{ and }}v\left( x\right) \geq c_{2}+\beta _{N;k_{3}, k_{4}}\frac{\left\vert x\right\vert ^{2}}{2}\mathit{\text{, for all }}x\in \mathbb{R}^{N}, \end{equation} $ (2.1)

    where

    $ \begin{equation*} \alpha _{N;k_{1}, k_{2}} = \left( \frac{\alpha k_{1}C_{N-1}^{k_{2}-1}}{ k_{2}C_{N-1}^{k_{1}-1}}\right) ^{1/\left( k_{1}-k_{2}\right) }\mathit{\text{, }}\beta _{N;k_{3}, k_{4}} = \left( \frac{\beta k_{3}C_{N-1}^{k_{4}-1}}{ k_{4}C_{N-1}^{k_{3}-1}}\right) ^{1/\left( k_{3}-k_{4}\right) }\mathit{\text{ and }} c_{1}, c_{2}\in \left( 0, \infty \right) . \end{equation*} $

    Moreover, when $ p $ and $ q $ are non-decreasing, $ u $ and $ v $ are convex.

    As we see from the paper of Zhang-Liu [7], our Theorem 1 represent a consistent generalization from the mathematical point of view. This is due to the fact that we deal with more general nonlinearities $ f $ and $ g $ that was considered by [7] and with a mixed nonlinear $ k_{i}- $Hessian system of equations.

    Next, let us recall the radial form of the $ k $-Hessian operator, see for example [6] and [3].

    Lemma 1. Let $ k\in \{1, 2, ..., N\} $. Assume $ y\in C^{2}\left[0, R\right) $ is radially symmetric with $ y^{\prime }\left(0\right) = 0 $. Then, the function $ u $ defined by $ u\left(x\right) = y\left(r\right) $ where $ r = \left\vert x\right\vert < R $ is $ C^{2}\left(B_{R}\right) $, and

    $ \begin{eqnarray*} \lambda \left( D^{2}u\left( r\right) \right) & = &\left\{ \begin{array}{l} \left( y^{\prime \prime }\left( r\right) , \frac{y^{\prime }\left( r\right) }{ r}, ..., \frac{y^{\prime }\left( r\right) }{r}\right) \mathit{\text{ for }}r\in \left( 0, R\right) , \\ \left( y^{\prime \prime }\left( 0\right) , y^{\prime \prime }\left( 0\right) , ..., y^{\prime \prime }\left( 0\right) \right) \mathit{\text{ for }}r = 0 \end{array} \right. \\ S_{k}\left( \lambda \left( D^{2}u\left( r\right) \right) \right) & = &\left\{ \begin{array}{l} C_{N-1}^{k-1}y^{\prime \prime }(r)\left( \frac{y^{\prime }(r)}{r}\right) ^{k-1}+C_{N-1}^{k-1}\frac{N-k}{k}\left( \frac{y^{\prime }(r)}{r}\right) ^{k} \mathit{\text{ for }}r\in \left( 0, R\right) , \\ C_{N}^{k}\left( y^{\prime \prime }\left( 0\right) \right) ^{k}\mathit{\text{ for }} r = 0, \end{array} \right. \end{eqnarray*} $

    where the prime denotes differentiation with respect to $ r $.

    Before to consider the proof of our main result, we give an useful lemma that can be easy proved as in the papers of Zhang-Liu [7] and Kusano-Swanson [4].

    Lemma 2. Setting

    $ \begin{equation*} \varphi _{i}\left( t\right) = t^{k_{i}}-t^{k_{i+1}}\mathit{\text{ for }}t\in \mathbb{R} \mathit{\text{, }}i = 1, 3\mathit{\text{, }}t_{0}^{i} = \left( k_{i+1}/k_{i}\right) ^{1/\left( k_{i}-k_{i+1}\right) } \end{equation*} $

    the following hold:

    1. $ \varphi _{i}\left(t_{0}^{i}\right) = \frac{k_{i+1}-k_{i}}{k_{i}} \left(\frac{k_{i+1}}{k_{i}}\right) ^{k_{i+1}/\left(k_{i}-k_{i+1}\right) } < 0 $, $ \varphi _{i}\left(1\right) = 0 $ and $ \varphi _{i}\left(\infty \right) : = \lim_{t\rightarrow \infty }\varphi _{i}\left(t\right) = \infty; $

    2. $ \varphi _{i}:\left[t_{0}^{i}, \infty \right) \rightarrow \left[\varphi _{i}\left(t_{0}^{i}\right), \infty \right) $ is strictly increasing for $ t > t_{0}^{i} $ and in fact has a uniquely defined inverse function $ \phi _{i}:\left[\varphi _{i}\left(t_{0}^{i}\right), \infty \right) \rightarrow \left[t_{0}^{i}, \infty \right) $ with $ \phi _{i}\left(0\right) = 1 $;

    3. $ \phi _{i}:\left[\varphi _{i}\left(t_{0}^{i}\right), \infty \right) \rightarrow \left[t_{0}^{i}, \infty \right) $ is analytic, strictly increasing for $ t > \varphi _{i}\left(t_{0}^{i}\right) $ and concave. In particular, $ \phi _{i}\left(t\right) \geq 1 $ for all $ t\geq 0 $, $ \phi _{i}\left(\infty \right) : = \lim_{t\rightarrow \infty }\phi _{i}\left(t\right) = \infty $ and for $ t > \varphi _{i}\left(t_{0}^{i}\right) $ it hold

    $ \begin{eqnarray*} \phi _{i}^{\prime }\left( t\right) & = &\frac{1}{\left( \varphi _{i}^{\prime }\circ \phi _{i}\right) \left( t\right) } = \frac{1}{k_{i}\left( \phi _{i}\left( t\right) \right) ^{k_{i}-1}-k_{i+1}\left( \phi _{i}\left( t\right) \right) ^{k_{i+1}-1}} > 0, \\ \phi _{i}^{\prime \prime }\left( t\right) & = &-\frac{k_{i}\left( k_{i}-1\right) \left( \phi _{i}\left( t\right) \right) ^{k_{i}-2}-k_{i+1}\left( k_{i+1}-1\right) \left( \phi _{i}\left( t\right) \right) ^{k_{i+1}-2}}{\left[ k_{i}\left( \phi _{i}\left( t\right) \right) ^{k_{i}-1}-k_{i+1}\left( \phi _{i}\left( t\right) \right) ^{k_{i+1}-1}\right] ^{3}} < 0\mathit{\text{;}} \end{eqnarray*} $

    4. $ \phi _{i}\left(s\xi \right) \leq \xi ^{1/k_{i}}\phi _{i}\left(s\right) $ for all $ s\geq 0 $ and $ \xi \geq 1 $.

    The main references for proving Theorem 1 are the works of [7] and [2]. In the next, $ r $ is referred for the Euclidean norm

    $ \begin{equation*} \left\vert x\right\vert = \sqrt{x_{1}^{2}+...+x_{N}^{2}} \end{equation*} $

    of a vector

    $ \begin{equation*} x = \left( x_{1}, ..., x_{N}\right) \in \mathbb{R}^{N}. \end{equation*} $

    We are ready to prove the existence of a radial solution

    $ \begin{equation*} \left( u\left( r\right) , v\left( r\right) \right) \in C^{2}\left( \left[ 0, \infty \right) \right) \times C^{2}\left( \left[ 0, \infty \right) \right) , \end{equation*} $

    to the problem (1.1). For beginning, we observe that we can rewrite (1.1) as follows

    $ \begin{equation} \left\{ \begin{array}{l} C_{N-1}^{k_{1}-1}\left[ \frac{r^{N-k_{1}}}{k_{1}}\left( u^{^{\prime }}(r)\right) ^{k_{1}}\right] ^{\prime }-\alpha C_{N-1}^{k_{2}-1}\left[ \frac{ r^{N-k_{2}}}{k_{2}}\left( u^{^{\prime }}(r)\right) ^{k_{2}}\right] ^{\prime } = r^{N-1}p\left( r\right) f\left( v\left( r\right) \right) , \\ C_{N-1}^{k_{3}-1}\left[ \frac{r^{N-k_{3}}}{k_{3}}\left( v^{^{\prime }}(r)\right) ^{k_{3}}\right] ^{\prime }-\beta C_{N-1}^{k_{4}-1}\left[ \frac{ r^{N-k_{4}}}{k_{4}}\left( v^{^{\prime }}(r)\right) ^{k_{4}}\right] ^{\prime } = r^{N-1}q\left( r\right) g\left( u\left( r\right) \right) , \end{array} \right. \end{equation} $ (3.1)

    and that, the radial solution of (3.1) is a solution $ \left(u, v\right) $ of (3.1) with the initial conditions

    $ \begin{equation} \left( u\left( 0\right) , v\left( 0\right) \right) = \left( c_{1}, c_{2}\right) \text{ and }\left( u^{\prime }\left( 0\right) , v^{\prime }\left( 0\right) \right) = \left( 0, 0\right) . \end{equation} $ (3.2)

    Integrating from $ 0 $ to $ r > 0 $ in (3.1) we obtain

    $ \begin{equation*} \left\{ \begin{array}{c} C_{N-1}^{k_{1}-1}\frac{r^{N-k_{1}}}{k_{1}}\left( u^{^{\prime }}(r)\right) ^{k_{1}}-\alpha C_{N-1}^{k_{2}-1}\frac{r^{N-k_{2}}}{k_{2}}\left( u^{^{\prime }}(r)\right) ^{k_{2}} = \int_{0}^{r}s^{N-1}p\left( s\right) f\left( v\left( s\right) \right) ds\text{, } \\ C_{N-1}^{k_{3}-1}\frac{r^{N-k_{3}}}{k_{3}}\left( v^{^{\prime }}(r)\right) ^{k_{3}}-\beta C_{N-1}^{k_{4}-1}\frac{r^{N-k_{4}}}{k_{4}}\left( v^{^{\prime }}(r)\right) ^{k_{4}} = \int_{0}^{r}s^{N-1}q\left( s\right) g\left( u\left( s\right) \right) ds\text{, } \end{array} \right. \end{equation*} $

    or, equivalently

    $ \begin{equation} \left\{ \begin{array}{c} \left( \frac{u^{^{\prime }}(r)}{\alpha _{N;k_{1}, k_{2}}r}\right) ^{k_{1}}-\left( \frac{u^{^{\prime }}(r)}{\alpha _{N;k_{1}, k_{2}}r}\right) ^{k_{2}} = \frac{k_{1}r^{-N}}{C_{N-1}^{k_{1}-1}\alpha _{N;k_{1}, k_{2}}^{k_{1}}} \int_{0}^{r}s^{N-1}p\left( s\right) f\left( v\left( s\right) \right) ds\text{ , } \\ \left( \frac{v^{^{\prime }}(r)}{\beta _{N;k_{3}, k_{4}}r}\right) ^{k_{3}}-\left( \frac{v^{^{\prime }}(r)}{\beta _{N;k_{3}, k_{4}}r}\right) ^{k_{4}} = \frac{k_{3}r^{-N}}{C_{N-1}^{k_{3}-1}\beta _{N;k_{3}, k_{4}}^{k_{3}}} \int_{0}^{r}s^{N-1}q\left( s\right) g\left( u\left( s\right) \right) ds. \end{array} \right. \end{equation} $ (3.3)

    Using, the definition of $ \phi _{i} $ given in Lemma 2, we rewrite (3.3) in an equivalent form

    $ \begin{equation*} \left\{ \begin{array}{c} \frac{u^{^{\prime }}(r)}{\alpha _{N;k_{1}, k_{2}}r} = \phi _{1}\left( \frac{ k_{1}r^{-N}}{C_{N-1}^{k_{1}-1}\alpha _{N;k_{1}, k_{2}}^{k_{1}}} \int_{0}^{r}s^{N-1}p\left( s\right) f\left( v\left( s\right) \right) ds\right) \text{, }r > 0, \\ \frac{v^{^{\prime }}(r)}{\beta _{N;k_{3}, k_{4}}r} = \phi _{3}\left( \frac{ k_{3}r^{-N}}{C_{N-1}^{k_{3}-1}\beta _{N;k_{3}, k_{4}}^{k_{3}}} \int_{0}^{r}s^{N-1}q\left( s\right) g\left( u\left( s\right) \right) ds\right) \text{, }r > 0, \end{array} \right. \end{equation*} $

    which yields

    $ \begin{equation} \left\{ \begin{array}{c} u^{^{\prime }}(r) = \alpha _{N;k_{1}, k_{2}}r\phi _{1}\left( \frac{k_{1}r^{-N}}{ C_{N-1}^{k_{1}-1}\alpha _{N;k_{1}, k_{2}}^{k_{1}}}\int_{0}^{r}s^{N-1}p\left( s\right) f\left( v\left( s\right) \right) ds\right) \text{, }r > 0, \\ v^{^{\prime }}(r) = \beta _{N;k_{3}, k_{4}}r\phi _{3}\left( \frac{k_{3}r^{-N}}{ C_{N-1}^{k_{3}-1}\beta _{N;k_{3}, k_{4}}^{k_{3}}}\int_{0}^{r}s^{N-1}q\left( s\right) g\left( u\left( s\right) \right) ds\right) \text{, }r > 0. \end{array} \right. \end{equation} $ (3.4)

    Since

    $ \begin{equation*} \lim\limits_{r\rightarrow 0+}u^{^{\prime }}(r) = \lim\limits_{r\rightarrow 0+}v^{^{\prime }}(r) = 0 = u^{^{\prime }}(0) = v^{^{\prime }}(0), \end{equation*} $

    via L'Hôpital's rule and (3.2), the equations in (3.4) can be extended by continuity at $ r = 0 $. Then, the system (3.1) with the initial conditions (3.2) can be equivalently written as an integral system of equations

    $ \begin{equation*} \left\{ \begin{array}{l} u\left( r\right) = c_{1}+\alpha _{N;k_{1}, k_{2}}\int_{0}^{r}t\phi _{1}\left( \frac{k_{1}t^{-N}}{C_{N-1}^{k_{1}-1}\alpha _{N;k_{1}, k_{2}}^{k_{1}}} \int_{0}^{t}s^{N-1}p\left( s\right) f\left( v\left( s\right) \right) ds\right) dt, \text{ }r\geq 0, \\ v\left( r\right) = c_{2}+\beta _{N;k_{3}, k_{4}}\int_{0}^{r}t\phi _{3}\left( \frac{k_{3}t^{-N}}{C_{N-1}^{k_{3}-1}\beta _{N;k_{3}, k_{4}}^{k_{3}}} \int_{0}^{t}s^{N-1}q\left( s\right) g\left( u\left( s\right) \right) ds\right) dt\text{, }r\geq 0.\text{ } \end{array} \right. \text{ } \end{equation*} $

    Let us now construct a sequence

    $ \begin{equation*} \left\{ \left( u_{n}\left( r\right) , v_{n}\left( r\right) \right) \right\} _{n\geq 0}\text{ on }\left[ 0, \infty \right) \times \left[ 0, \infty \right) , \end{equation*} $

    in such a way

    $ \begin{equation} \left\{ \begin{array}{l} u_{0}\left( r\right) = u_{0}\left( 0\right) = c_{1}\text{, }v_{0}\left( r\right) = v_{0}\left( 0\right) = c_{2}, \\ u_{n}\left( r\right) = c_{1}+\alpha _{N;k_{1}, k_{2}}\int_{0}^{r}t\phi _{1}\left( \frac{k_{1}t^{-N}}{C_{N-1}^{k_{1}-1}\alpha _{N;k_{1}, k_{2}}^{k_{1}}}\int_{0}^{t}s^{N-1}p\left( s\right) f\left( v_{n-1}\left( s\right) \right) ds\right) dt, \\ v_{n}\left( r\right) = c_{2}+\beta _{N;k_{3}, k_{4}}\int_{0}^{r}t\phi _{3}\left( \frac{k_{3}t^{-N}}{C_{N-1}^{k_{3}-1}\beta _{N;k_{3}, k_{4}}^{k_{3}} }\int_{0}^{t}s^{N-1}q\left( s\right) g\left( u_{n-1}\left( s\right) \right) ds\right) dt. \end{array} \right. \end{equation} $ (3.5)

    By construction, for all $ r\geq 0 $ and $ n\in \mathbb{N} $ $ \ $we have

    $ \begin{equation*} u_{n}\left( r\right) \geq c_{1}\text{ and }v_{n}\left( r\right) \geq c_{2}. \end{equation*} $

    Moreover, proceeding by induction we conclude

    $ \begin{equation*} \left\{ \left( u_{n}\left( r\right) , v_{n}\left( r\right) \right) \right\} _{n\geq 0} \end{equation*} $

    is a non-decreasing sequence on

    $ \begin{equation*} \left[ 0, \infty \right) \times \left[ 0, \infty \right) . \end{equation*} $

    We note that, for all $ r > 0 $ the sequence

    $ \begin{equation*} \left\{ \left( u_{n}\left( r\right) , v_{n}\left( r\right) \right) \right\} _{n\geq 0} \end{equation*} $

    satisfies

    $ \begin{equation} \left\{ \begin{array}{c} u_{n}^{^{\prime }}(r) = \alpha _{N;k_{1}, k_{2}}r\phi _{1}\left( \frac{ k_{1}r^{-N}}{C_{N-1}^{k_{1}-1}\alpha _{N;k_{1}, k_{2}}^{k_{1}}} \int_{0}^{r}s^{N-1}p\left( s\right) f\left( v_{n-1}\left( s\right) \right) ds\right) > \alpha _{N;k_{1}, k_{2}}r\text{, } \\ v_{n}^{^{\prime }}(r) = \beta _{N;k_{3}, k_{4}}r\phi _{3}\left( \frac{ k_{3}r^{-N}}{C_{N-1}^{k_{3}-1}\beta _{N;k_{3}, k_{4}}^{k_{3}}} \int_{0}^{r}s^{N-1}q\left( s\right) g\left( u_{n-1}\left( s\right) \right) ds\right) > \beta _{N;k_{3}, k_{4}}r\text{.} \end{array} \right. \end{equation} $ (3.6)

    Integrating (3.6) from $ 0 $ to $ r > 0 $ we get (3.5). We now briefly, (3.5) imply

    $ \begin{eqnarray*} u_{n}\left( r\right) & = &c_{1}+\alpha _{N;k_{1}, k_{2}}\int_{0}^{r}t\phi _{1}( \frac{k_{1}t^{-N}}{C_{N-1}^{k_{1}-1}\alpha _{N;k_{1}, k_{2}}^{k_{1}}} \int_{0}^{t}s^{N-1}p\left( s\right) f\left( v_{n-1}\left( s\right) \right) ds)dt \\ &\leq &c_{1}+\alpha _{N;k_{1}, k_{2}}\int_{0}^{r}t\phi _{1}(\frac{k_{1}t^{-N} }{C_{N-1}^{k_{1}-1}\alpha _{N;k_{1}, k_{2}}^{k_{1}}}\int_{0}^{t}s^{N-1}p \left( s\right) f\left( v_{n}\left( s\right) \right) ds)dt \\ &\leq &c_{1}+\alpha _{N;k_{1}, k_{2}}\left[ 1+f\left( v_{n}\left( r\right) \right) \right] ^{1/k_{1}}\int_{0}^{r}t\phi _{1}(\frac{k_{1}t^{-N}}{ C_{N-1}^{k_{1}-1}\alpha _{N;k_{1}, k_{2}}^{k_{1}}}\int_{0}^{t}s^{N-1}p\left( s\right) ds)dt \\ & = &\left[ 1+f\left( v_{n}\left( r\right) \right) \right] ^{1/k_{1}}\{\frac{ c_{1}}{\left[ 1+f\left( v_{n}\left( r\right) \right) \right] ^{1/k_{1}}} +\alpha _{N;k_{1}, k_{2}}\int_{0}^{r}t\phi _{1}(\frac{k_{1}t^{-N}}{ C_{N-1}^{k_{1}-1}\alpha _{N;k_{1}, k_{2}}^{k_{1}}}\int_{0}^{t}s^{N-1}p\left( s\right) ds)dt\} \\ &\leq &\left[ 1+f\left( v_{n}\left( r\right) \right) \right] ^{1/k_{1}}\{ \frac{c_{1}}{\left[ 1+f\left( c_{2}\right) \right] ^{1/k_{1}}}+\alpha _{N;k_{1}, k_{2}}\int_{0}^{r}t\phi _{1}(\frac{k_{1}t^{-N}}{ C_{N-1}^{k_{1}-1}\alpha _{N;k_{1}, k_{2}}^{k_{1}}}\int_{0}^{t}s^{N-1}p\left( s\right) ds)dt\} \end{eqnarray*} $

    and

    $ \begin{eqnarray*} v_{n}\left( r\right) & = &c_{2}+\beta _{N;k_{3}, k_{4}}\int_{0}^{r}t\phi _{3}( \frac{k_{3}t^{-N}}{C_{N-1}^{k_{3}-1}\beta _{N;k_{3}, k_{4}}^{k_{3}}} \int_{0}^{t}s^{N-1}q\left( s\right) g\left( u_{n-1}\left( s\right) \right) ds)dt \\ &\leq &c_{2}+\beta _{N;k_{1}, k_{2}}\int_{0}^{r}t\phi _{3}(\frac{k_{3}t^{-N}}{ C_{N-1}^{k_{3}-1}\beta _{N;k_{3}, k_{4}}^{k_{3}}}\int_{0}^{t}s^{N-1}q\left( s\right) g\left( u_{n}\left( s\right) \right) ds)dt \\ &\leq &\left[ 1+g\left( u_{n}\left( r\right) \right) \right] ^{1/k_{3}}\{ \frac{c_{2}}{\left[ 1+g\left( u_{n}\left( r\right) \right) \right] ^{1/k_{3}} }+\beta _{N;k_{3}, k_{4}}\int_{0}^{r}t\phi _{3}(\frac{k_{3}t^{-N}}{ C_{N-1}^{k_{3}-1}\beta _{N;k_{3}, k_{4}}^{k_{3}}}\int_{0}^{t}s^{N-1}p\left( s\right) ds)dt\} \\ &\leq &\left[ 1+g\left( u_{n}\left( r\right) \right) \right] ^{1/k_{3}}\{ \frac{c_{2}}{\left[ 1+g\left( c_{1}\right) \right] ^{1/k_{3}}}+\beta _{N;k_{3}, k_{4}}\int_{0}^{r}t\phi _{3}(\frac{k_{3}t^{-N}}{ C_{N-1}^{k_{3}-1}\beta _{N;k_{3}, k_{4}}^{k_{3}}}\int_{0}^{t}s^{N-1}q\left( s\right) ds)dt\}. \end{eqnarray*} $

    Setting

    $ \begin{equation*} \left\{ \begin{array}{c} \Lambda _{p}\left( r\right) = \frac{c_{1}}{\left[ 1+f\left( c_{2}\right) \right] ^{1/k_{1}}}+\alpha _{N;k_{1}, k_{2}}\int_{0}^{r}t\phi _{1}(\frac{ k_{1}t^{-N}}{C_{N-1}^{k_{1}-1}\alpha _{N;k_{1}, k_{2}}^{k_{1}}} \int_{0}^{t}s^{N-1}p\left( s\right) ds)dt, \\ \Lambda _{q}\left( r\right) = \frac{c_{2}}{\left[ 1+g\left( c_{1}\right) \right] ^{1/k_{3}}}+\beta _{N;k_{3}, k_{4}}\int_{0}^{r}t\phi _{3}(\frac{ k_{3}t^{-N}}{C_{N-1}^{k_{3}-1}\beta _{N;k_{3}, k_{4}}^{k_{3}}} \int_{0}^{t}s^{N-1}q\left( s\right) ds)dt, \end{array} \right. \end{equation*} $

    we have

    $ \begin{equation} \left\{ \begin{array}{l} u_{n}\left( r\right) \leq \left[ 1+f\left( v_{n}\left( r\right) \right) \right] ^{1/k_{1}}\Lambda _{p}\left( r\right) , \text{ }r\geq 0, \\ v_{n}\left( r\right) \leq \left[ 1+g\left( u_{n}\left( r\right) \right) \right] ^{1/k_{3}}\Lambda _{q}\left( r\right) , \text{ }r\geq 0. \end{array} \right. \end{equation} $ (3.7)

    By the monotonicity of the sequence $ \left\{ \left(u_{n}, v_{n}\right) \right\} _{n\geq 0} $ respectively of $ f $ and $ g $, the inequalities in (3.7) and with the use of Lemma 2 for

    $ \begin{equation*} \xi = 1+f(\left[ 1+g\left( u_{n}\left( r\right) \right) \right] ^{1/k_{3}}) \text{ and }s = \frac{k_{1}r^{-N}}{C_{N-1}^{k_{1}-1}\alpha _{N;k_{1}, k_{2}}^{k_{1}}}\int_{0}^{r}s^{N-1}p\left( s\right) f\left( \Lambda _{q}\left( s\right) \right) ds, \end{equation*} $

    we have

    $ \begin{eqnarray*} u_{n}^{^{\prime }}(r) & = &\alpha _{N;k_{1}, k_{2}}r\phi _{1}(\frac{k_{1}r^{-N} }{C_{N-1}^{k_{1}-1}\alpha _{N;k_{1}, k_{2}}^{k_{1}}}\int_{0}^{r}s^{N-1}p \left( s\right) f\left( v_{n-1}\left( s\right) \right) ds) \\ &\leq &\alpha _{N;k_{1}, k_{2}}r\phi _{1}(\frac{k_{1}r^{-N}}{ C_{N-1}^{k_{1}-1}\alpha _{N;k_{1}, k_{2}}^{k_{1}}}\int_{0}^{r}s^{N-1}p\left( s\right) f\left( v_{n}\left( s\right) \right) ds) \\ &\leq &\alpha _{N;k_{1}, k_{2}}r\phi _{1}(\frac{k_{1}r^{-N}}{ C_{N-1}^{k_{1}-1}\alpha _{N;k_{1}, k_{2}}^{k_{1}}}\int_{0}^{r}s^{N-1}p\left( s\right) f\left( \left[ 1+g\left( u_{n}\left( s\right) \right) \right] ^{1/k_{3}}\Lambda _{q}\left( s\right) \right) ds) \\ &\leq &\alpha _{N;k_{1}, k_{2}}r\phi _{1}(\left( 1+f\left( \left[ 1+g\left( u_{n}\left( r\right) \right) \right] ^{1/k_{3}}\right) \right) \frac{ k_{1}r^{-N}}{C_{N-1}^{k_{1}-1}\alpha _{N;k_{1}, k_{2}}^{k_{1}}} \int_{0}^{r}s^{N-1}p\left( s\right) f\left( \Lambda _{q}\left( s\right) \right) ds) \\ &\leq &\alpha _{N;k_{1}, k_{2}}r\left( 1+f\left( \left[ 1+g\left( u_{n}\left( r\right) \right) \right] ^{1/k_{3}}\right) \right) ^{1/k_{1}}\phi _{1}(\frac{ k_{1}r^{-N}}{C_{N-1}^{k_{1}-1}\alpha _{N;k_{1}, k_{2}}^{k_{1}}} \int_{0}^{r}s^{N-1}p\left( s\right) f\left( \Lambda _{q}\left( s\right) \right) ds), \end{eqnarray*} $

    and, similarly

    $ \begin{eqnarray*} v_{n}^{^{\prime }}(r) & = &\beta _{N;k_{3}, k_{4}}r\phi _{3}(\frac{k_{3}r^{-N}}{ C_{N-1}^{k_{3}-1}\beta _{N;k_{3}, k_{4}}^{k_{3}}}\int_{0}^{r}s^{N-1}q\left( s\right) g\left( u_{n-1}\left( s\right) \right) ds) \\ &\leq &\beta _{N;k_{3}, k_{4}}r\phi _{3}(\frac{k_{3}r^{-N}}{ C_{N-1}^{k_{3}-1}\beta _{N;k_{3}, k_{4}}^{k_{3}}}\int_{0}^{r}s^{N-1}q\left( s\right) g\left( u_{n}\left( s\right) \right) ds) \\ &\leq &\beta _{N;k_{3}, k_{4}}r\phi _{3}(\left( 1+g\left( \left[ 1+f\left( v_{n}\left( r\right) \right) \right] ^{1/k_{1}}\right) \right) \frac{ k_{3}r^{-N}}{C_{N-1}^{k_{3}-1}\beta _{N;k_{3}, k_{4}}^{k_{3}}} \int_{0}^{r}s^{N-1}q\left( s\right) g\left( \Lambda _{p}\left( s\right) \right) ds) \\ &\leq &\beta _{N;k_{3}, k_{4}}r\left( 1+g\left( \left[ 1+f\left( v_{n}\left( r\right) \right) \right] ^{1/k_{1}}\right) \right) ^{1/k_{3}}\phi _{3}(\frac{ k_{3}r^{-N}}{C_{N-1}^{k_{3}-1}\beta _{N;k_{3}, k_{4}}^{k_{3}}} \int_{0}^{r}s^{N-1}q\left( s\right) g\left( \Lambda _{p}\left( s\right) \right) ds). \end{eqnarray*} $

    Finally

    $ \begin{equation} \left\{ \begin{array}{c} \frac{u_{n}^{^{\prime }}(r)}{\left( 1+f\left( \left[ 1+g\left( u_{n}\left( r\right) \right) \right] ^{1/k_{3}}\right) \right) ^{1/k_{1}}}\leq \alpha _{N;k_{1}, k_{2}}r\phi _{1}(\frac{k_{1}r^{-N}}{C_{N-1}^{k_{1}-1}\alpha _{N;k_{1}, k_{2}}^{k_{1}}}\int_{0}^{r}s^{N-1}p\left( s\right) f\left( \Lambda _{q}\left( s\right) \right) ds), \\ \frac{v_{n}^{^{\prime }}(r)}{\left( 1+g\left( \left[ 1+f\left( v_{n}\left( r\right) \right) \right] ^{1/k_{1}}\right) \right) ^{1/k_{3}}}\leq \beta _{N;k_{3}, k_{4}}r\phi _{3}(\frac{k_{3}r^{-N}}{C_{N-1}^{k_{3}-1}\beta _{N;k_{3}, k_{4}}^{k_{3}}}\int_{0}^{r}s^{N-1}q\left( s\right) g\left( \Lambda _{q}\left( s\right) \right) ds). \end{array} \right. \end{equation} $ (3.8)

    Integrating (3.8) from $ 0 $ to $ r > 0 $ we get

    $ \begin{equation*} H_{1, c_{1}}\left( u_{n}\left( r\right) \right) \leq \Lambda _{p, \alpha }\left( r\right) \text{ and }H_{2, c_{2}}\left( v_{n}\left( r\right) \right) \leq \Lambda _{q, \beta }\left( r\right) , \text{ } \end{equation*} $

    where

    $ \begin{equation*} \left\{ \begin{array}{l} H_{1, c_{1}}\left( s\right) = \int_{c_{1}}^{s}\frac{dt}{\left( 1+f\left( \left( 1+g\left( t\right) \right) ^{1/k_{3}}\right) \right) ^{1/k_{1}}}\text{ , } \\ \Lambda _{p, \alpha }\left( r\right) = \alpha _{N;k_{1}, k_{2}}\int_{0}^{r}t\phi _{1}\left( \frac{k_{1}t^{-N}}{ C_{N-1}^{k_{1}-1}\alpha _{N;k_{1}, k_{2}}^{k_{1}}}\int_{0}^{t}s^{N-1}p\left( s\right) f\left( \Lambda _{q}\left( s\right) \right) ds\right) dt, \\ \\ H_{2, c_{2}}\left( s\right) = \int_{c_{2}}^{s}\frac{dt}{\left( 1+g\left( \left( 1+f\left( t\right) \right) ^{1/k_{1}}\right) \right) ^{1/k_{3}}}\text{ , } \\ \Lambda _{q, \beta }\left( r\right) = \beta _{N;k_{3}, k_{4}}\int_{0}^{r}t\phi _{3}\left( \frac{k_{3}t^{-N}}{C_{N-1}^{k_{3}-1}\beta _{N;k_{3}, k_{4}}^{k_{3}} }\int_{0}^{t}s^{N-1}q\left( s\right) g\left( \Lambda _{q}\left( s\right) \right) ds\right) dt. \end{array} \right. \end{equation*} $

    Choose $ R > 0 $. We are now ready to show that

    $ \begin{equation*} \{\left( u_{n}\left( r\right) , v_{n}\left( r\right) \right) \}_{n\geq 0} \text{ and }\{\left( u_{n}^{\prime }\left( r\right) , v_{n}^{\prime }\left( r\right) \right) \}_{n\geq 0}, \text{ for }r\in \left[ 0, R\right] , \end{equation*} $

    both of which are non-negative, are bounded above independent of $ n $. To solve this problem, we observe that

    $ \begin{equation*} \left\{ \begin{array}{c} H_{1, c_{1}}\left( u_{n}\left( r\right) \right) \leq \Lambda _{p, \alpha }\left( r\right) \leq \Lambda _{p, \alpha }\left( R\right) \text{ for all } r\in \left[ 0, R\right] \text{, } \\ \\ H_{2, c_{2}}\left( v_{n}\left( r\right) \right) \leq \Lambda _{q, \beta }\left( r\right) \leq \Lambda _{q, \beta }\left( R\right) \text{ for all } r\in \left[ 0, R\right] \text{.} \end{array} \right. \end{equation*} $

    On the other hand, since

    $ \begin{equation*} s\rightarrow H_{i, c_{i}}\left( s\right) \text{, }i = 1, 2 \end{equation*} $

    is a bijection map for all $ s > c_{i} $ with the inverse denoted by $ H_{i, c_{i}}^{-1}\left(s\right) $ on $ \left[0, \infty \right) $ such that

    $ \begin{equation*} H_{i, c_{i}}^{-1}\left( \infty \right) = \infty \text{ and } H_{i, c_{i}}^{-1}\left( s\right) \text{ is increasing on }\left[ c_{i}, \infty \right) , \end{equation*} $

    we see that

    $ \begin{equation*} \left\{ \begin{array}{c} u_{n}\left( r\right) \leq H_{1, c_{1}}^{-1}\left( \Lambda _{p, \alpha }\left( R\right) \right) \text{ for all }r\in \left[ 0, R\right] \text{, } \\ \\ v_{n}\left( r\right) \leq H_{2, c_{2}}^{-1}\left( \Lambda _{q, \beta }\left( R\right) \right) \text{ for all }r\in \left[ 0, R\right] \text{, } \end{array} \right. \end{equation*} $

    which proved that

    $ \begin{equation*} \{\left( u_{n}\left( r\right) , v_{n}\left( r\right) \right) \}_{n\geq 0}, \end{equation*} $

    is an uniformly bounded independent of $ n $ sequence on

    $ \begin{equation*} \left[ 0, R\right] \times \left[ 0, R\right] , \end{equation*} $

    for arbitrary $ R > 0 $. On the other hand, using this result in (3.8) the same is true for

    $ \begin{equation*} \{\left( u_{n}^{\prime }\left( r\right) , v_{n}^{\prime }\left( r\right) \right) \}_{n\geq 0}. \end{equation*} $

    We finished the proof that the sequences

    $ \begin{equation*} \{\left( u_{n}\left( r\right) , v_{n}\left( r\right) \right) \}_{n\geq 0} \text{ and }\{\left( u_{n}^{\prime }\left( r\right) , v_{n}^{\prime }\left( r\right) \right) \}_{n\geq 0}, \end{equation*} $

    are bounded above independent of $ n $ which coupled with the fact that

    $ \begin{equation*} \left( u_{n}\left( r\right) , v_{n}\left( r\right) \right) , \end{equation*} $

    is non-decreasing on $ \left[0, \infty \right) \times \left[0, \infty \right) $ we see that

    $ \begin{equation*} \{u_{n}\left( r\right) , v_{n}\left( r\right) \}_{n\geq 0} \end{equation*} $

    itself converges to a function

    $ \begin{equation*} \left( u\left( r\right) , v\left( r\right) \right) \text{ as }n\rightarrow \infty , \end{equation*} $

    and the limit $ \left(u\left(r\right), v\left(r\right) \right) $ is a positive entire radial solution of equation (1.1). Clearly, the arguments in Zhang and Liu [7] (see also [2]) guarantees that the solution

    $ \begin{equation*} \left( u\left( x\right) , v\left( x\right) \right) : = \left( u\left( \left\vert x\right\vert \right) , v\left( \left\vert x\right\vert \right) \right) \end{equation*} $

    is in the space

    $ \begin{equation*} C^{2}\left( \mathbb{R}^{N}\right) \times C^{2}\left( \mathbb{R}^{N}\right) \end{equation*} $

    and moreover is convex for any $ x\in \mathbb{R}^{N} $. This is the end of the proof of the theorem.

    We have obtained new conditions for the study of existence of positive radial solutions for a system involving the Hessian operator.

    The author is grateful to the anonymous referees for their careful reading and valuable comments.

    All author declare no conflicts of interest in this paper.



    [1] J. Bao, X. Ji, H. Li, Existence and nonexistence theorem for entire subsolutions of k-Yamabe type equations, J. Differ. Equations, 253 (2012), 2140–2160. doi: 10.1016/j.jde.2012.06.018. doi: 10.1016/j.jde.2012.06.018
    [2] D. P. Covei, A remark on the existence of entire large and bounded solutions to a ($k_{1}$ , $k_{2}$)-Hessian system with gradient term, Acta Math. Sin., $\textbf{33}$ (2017), 761-774. doi: 10.1007/s10114-017-6291-3. doi: 10.1007/s10114-017-6291-3
    [3] P. Delanoë, Radially symmetric boundary value problems for real and complex elliptic Monge-Ampère equations, J. Differ. Equations, 58 (1985), 318–344. doi: 10.1016/0022-0396(85)90003-8. doi: 10.1016/0022-0396(85)90003-8
    [4] T. Kusano, C. A. Swanson, Existence theorems for Monge-Ampère equations in $\mathbb{R}^{N}$, Hiroshima Math. J., 20 (1990), 643–650. doi: 10.32917/hmj/1206129054. doi: 10.32917/hmj/1206129054
    [5] A. V. Lair, Entire large solutions to semilinear elliptic systems, J. Math. Anal. Appl., 382 (2011), 324–333. doi: 10.1016/j.jmaa.2011.04.051. doi: 10.1016/j.jmaa.2011.04.051
    [6] X. Ji, J. Bao, Necessary and sufficient conditions on solvability for Hessian inequalities, Proc. Amer. Math. Soc., 138 (2010), 175–188. doi: 10.1090/S0002-9939-09-10032-1. doi: 10.1090/S0002-9939-09-10032-1
    [7] Z. Zhang, H. Liu, Existence of entire radial large solutions for a class of Monge-Ampère type equations and systems, Rocky Mt. J. Math., 50 (2020), 1893–1899. doi: 10.1216/rmj.2020.50.1893. doi: 10.1216/rmj.2020.50.1893
  • This article has been cited by:

    1. Dragos-Patru Covei, A remark on the existence of entire large positive radial solutions to nonlinear differential equations and systems, 2023, 519, 0022247X, 126824, 10.1016/j.jmaa.2022.126824
    2. Xuemei Zhang, Positive solutions of singular ki-Hessian systems, 2022, 130, 08939659, 108058, 10.1016/j.aml.2022.108058
    3. Wei Fan, Limei Dai, Bo Wang, Positive Radially Symmetric Entire Solutions of p-k-Hessian Equations and Systems, 2022, 10, 2227-7390, 3258, 10.3390/math10183258
    4. Shuangshuang Bai, Xuemei Zhang, Meiqiang Feng, Entire positive $ k $-convex solutions to $ k $-Hessian type equations and systems, 2022, 30, 2688-1594, 481, 10.3934/era.2022025
    5. Meiqiang Feng, Positive Radial Solutions to the Double Singular $$k_i$$-Hessian System: Existence, Multiplicity and Dependence on a Parameter, 2024, 2194-6701, 10.1007/s40304-024-00403-8
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2195) PDF downloads(100) Cited by(5)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog