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1. Introduction

This paper is devoted to develop the mathematical theory for the study of existence of positive radial
solutions of a system of partial differential equations (PDE) of the form S k1

(
λ
(
D2u

))
− αS k2

(
λ
(
D2u

))
= p (|x|) f (v) , x ∈ RN , (N ≥ 3),

S k3

(
λ
(
D2v

))
− βS k4

(
λ
(
D2v

))
= q (|x|) g (u) , x ∈ RN , (N ≥ 3),

(1.1)

where α, β ∈ (0,∞), k1, k2, k3, k4 ∈ {1, 2, ...,N} with k1 > k2 and k3 > k4, S ki

(
λ
(
D2 (◦)

))
(i = 1, 2, 3, 4)

stands for the ki-Hessian operator defined as the sum of all ki×ki principal minors of the Hessian matrix
D2 (◦) and the functions p, q, f and g satisfy some suitable conditions.

In the case α = β = 0 and k1 = k3 = 1, there are several works that deals with the existence of
radially symmetric solution for (1.1), in which situation the system become{

∆u = p (|x|) f (v) , x ∈ RN , (N ≥ 3),
∆v = q (|x|) g (u) , x ∈ RN , (N ≥ 3).

(1.2)

Some of these are analyzed in the following. For example, [5] considered the existence of entire large
solutions for the system (1.2) in the case f (v) = va and g (u) = ub with 0 < ab ≤ 1 and noticed that
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(1.2) has a positive entire large solution if and only if the nonnegative spherically symmetric continuous
functions p and q satisfy ∫ ∞

0
tp (t)

(
t2−N

∫ t

0
sN−3

∫ s

0
zq (z) dz

)a

dt = ∞, (1.3)∫ ∞

0
tq (t)

(
t2−N

∫ t

0
sN−3

∫ s

0
zp (z) dz

)b

dt = ∞. (1.4)

Moreover, if a · b > 1 he showed that the system (1.2) has a positive entire large solution if the radial
functions p and q satisfy one of the two inequalities∫ ∞

0
tp (t)

(
t2−N

∫ t

0
sN−3

∫ s

0
zq (z) dz

)a

dt < ∞, (1.5)∫ ∞

0
tq (t)

(
t2−N

∫ t

0
sN−3

∫ s

0
zp (z) dz

)b

dt < ∞. (1.6)

Recently, for the particular case α, β ∈ [0,∞), k1 = k3 = N and k2 = k4 = 1, the authors [7] obtained
the existence of entire radial large solutions for the system (1.1) under hypotheses that p, q : [0,∞)→
[0,∞) are spherically symmetric continuous functions and f , g : [0,∞) → [0,∞) are continuous,
monotone non-decreasing nonlinearities such that

f (s) > 0, g (t) > 0 for all s, t > 0

and ∫ ∞

1

1
(1 + f (t) + g (t))1/N = ∞. (1.7)

Here, the results of [5] are included for a, b ∈ (0, 1], i.e. f and g are sublinear. Hence, it remains
unknown the case 0 < a · b ≤ 1, i.e. if an analogous result obtained by [5] holds for the more general
system (1.1). In our paper, we give a new methodology for proving existence results under a class of
general nonlinearities considered in other frameworks (see e.g. Orlicz Spaces Theory) including such
the sublinear and superlinear class of functions discussed in [5]. This may be used in tackling other
related problems.

The reminder of this paper is organized as follows. Section 2 contains our main result and some
lemmas. In Section 3 we give the proof of our main result.

2. The main result and auxiliary lemmas

For the purpose of the paper, the following basic class of functions are considered
(P1) p, q : [0,∞)→ [0,∞) continuous functions;
(C1) f , g : [0,∞)→ [0,∞) are continuous and monotone non-decreasing such that

f (s) > 0, g (t) > 0 for all s, t > 0,

and
f (t · s) ≤ f (t) · f (s) and g (t · s) ≤ g (t) · g (s) for all s, t ≥ 0;

(C2)
∫ ∞

1
dt

(1+ f((1+g(t))1/k3))1/k1
= ∞ and

∫ ∞
1

dt

(1+g((1+ f (t))1/k1))1/k3
= ∞.

Our main interest is to prove the following theorem.
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Theorem 1. If p, q satisfy (P1) and f , g satisfy (C1), (C2), then the system (1.1) has one positive
entire radial solution (u, v) ∈ C2

(
RN

)
×C2

(
RN

)
such that

u (x) ≥ c1 + αN;k1,k2

|x|2

2
and v (x) ≥ c2 + βN;k3,k4

|x|2

2
, for all x ∈ RN , (2.1)

where

αN;k1,k2 =

αk1C
k2−1
N−1

k2C
k1−1
N−1

1/(k1−k2)

, βN;k3,k4 =

βk3C
k4−1
N−1

k4C
k3−1
N−1

1/(k3−k4)

and c1, c2 ∈ (0,∞) .

Moreover, when p and q are non-decreasing, u and v are convex.

As we see from the paper of Zhang-Liu [7], our Theorem 1 represent a consistent generalization
from the mathematical point of view. This is due to the fact that we deal with more general
nonlinearities f and g that was considered by [7] and with a mixed nonlinear ki−Hessian system of
equations.

Next, let us recall the radial form of the k-Hessian operator, see for example [6] and [3].

Lemma 1. Let k ∈ {1, 2, ...,N}. Assume y ∈ C2 [0,R) is radially symmetric with y′ (0) = 0. Then, the
function u defined by u (x) = y (r) where r = |x| < R is C2 (BR), and

λ
(
D2u (r)

)
=


(
y′′ (r) , y′(r)

r , ..., y′(r)
r

)
for r ∈ (0,R) ,

(y′′ (0) , y′′ (0) , ..., y′′ (0)) for r = 0

S k

(
λ
(
D2u (r)

))
=

 Ck−1
N−1y′′(r)

(
y′(r)

r

)k−1
+ Ck−1

N−1
N−k

k

(
y′(r)

r

)k
for r ∈ (0,R) ,

Ck
N (y′′ (0))k for r = 0,

where the prime denotes differentiation with respect to r.

Before to consider the proof of our main result, we give an useful lemma that can be easy proved as
in the papers of Zhang-Liu [7] and Kusano-Swanson [4].

Lemma 2. Setting

ϕi (t) = tki − tki+1 for t ∈ R, i = 1, 3, ti
0 = (ki+1/ki)1/(ki−ki+1)

the following hold:
1. ϕi

(
ti
0

)
= ki+1−ki

ki

(
ki+1
ki

)ki+1/(ki−ki+1)
< 0, ϕi (1) = 0 and ϕi (∞) := limt→∞ ϕi (t) = ∞;

2. ϕi :
[
ti
0,∞

)
→

[
ϕi

(
ti
0

)
,∞

)
is strictly increasing for t > ti

0 and in fact has a uniquely defined

inverse function φi :
[
ϕi

(
ti
0

)
,∞

)
→

[
ti
0,∞

)
with φi (0) = 1;

3. φi :
[
ϕi

(
ti
0

)
,∞

)
→

[
ti
0,∞

)
is analytic, strictly increasing for t > ϕi

(
ti
0

)
and concave. In

particular, φi (t) ≥ 1 for all t ≥ 0, φi (∞) := limt→∞ φi (t) = ∞ and for t > ϕi

(
ti
0

)
it hold

φ′i (t) =
1(

ϕ′i ◦ φi

)
(t)

=
1

ki (φi (t))ki−1
− ki+1 (φi (t))ki+1−1 > 0,

φ′′i (t) = −
ki (ki − 1) (φi (t))ki−2

− ki+1 (ki+1 − 1) (φi (t))ki+1−2[
ki (φi (t))ki−1

− ki+1 (φi (t))ki+1−1
]3 < 0;

4. φi (sξ) ≤ ξ1/kiφi (s) for all s ≥ 0 and ξ ≥ 1.

AIMS Mathematics Volume 6, Issue 12, 14035–14043.



14038

3. The proof of Theorem 1

The main references for proving Theorem 1 are the works of [7] and [2]. In the next, r is referred
for the Euclidean norm

|x| =
√

x2
1 + ... + x2

N

of a vector
x = (x1, ..., xN) ∈ RN .

We are ready to prove the existence of a radial solution

(u (r) , v (r)) ∈ C2 ([0,∞)) ×C2 ([0,∞)) ,

to the problem (1.1). For beginning, we observe that we can rewrite (1.1) as follows
Ck1−1

N−1

[
rN−k1

k1

(
u
′

(r)
)k1

]′
− αCk2−1

N−1

[
rN−k2

k2

(
u
′

(r)
)k2

]′
= rN−1 p (r) f (v (r)) ,

Ck3−1
N−1

[
rN−k3

k3

(
v
′

(r)
)k3

]′
− βCk4−1

N−1

[
rN−k4

k4

(
v
′

(r)
)k4

]′
= rN−1q (r) g (u (r)) ,

(3.1)

and that, the radial solution of (3.1) is a solution (u, v) of (3.1) with the initial conditions

(u (0) , v (0)) = (c1, c2) and
(
u′ (0) , v′ (0)

)
= (0, 0) . (3.2)

Integrating from 0 to r > 0 in (3.1) we obtain Ck1−1
N−1

rN−k1

k1

(
u
′

(r)
)k1
− αCk2−1

N−1
rN−k2

k2

(
u
′

(r)
)k2

=
∫ r

0
sN−1 p (s) f (v (s)) ds,

Ck3−1
N−1

rN−k3

k3

(
v
′

(r)
)k3
− βCk4−1

N−1
rN−k4

k4

(
v
′

(r)
)k4

=
∫ r

0
sN−1q (s) g (u (s)) ds,

or, equivalently 
(

u
′
(r)

αN;k1 ,k2 r

)k1

−

(
u
′
(r)

αN;k1 ,k2 r

)k2

= k1r−N

Ck1−1
N−1 α

k1
N;k1 ,k2

∫ r

0
sN−1 p (s) f (v (s)) ds,(

v
′
(r)

βN;k3 ,k4 r

)k3

−

(
v
′
(r)

βN;k3 ,k4 r

)k4

= k3r−N

C
k3−1
N−1 β

k3
N;k3 ,k4

∫ r

0
sN−1q (s) g (u (s)) ds.

(3.3)

Using, the definition of φi given in Lemma 2, we rewrite (3.3) in an equivalent form
u
′
(r)

αN;k1 ,k2 r = φ1

(
k1r−N

Ck1−1
N−1 α

k1
N;k1 ,k2

∫ r

0
sN−1 p (s) f (v (s)) ds

)
, r > 0,

v
′
(r)

βN;k3 ,k4 r = φ3

(
k3r−N

C
k3−1
N−1 β

k3
N;k3 ,k4

∫ r

0
sN−1q (s) g (u (s)) ds

)
, r > 0,

which yields 
u
′

(r) = αN;k1,k2rφ1

(
k1r−N

Ck1−1
N−1 α

k1
N;k1 ,k2

∫ r

0
sN−1 p (s) f (v (s)) ds

)
, r > 0,

v
′

(r) = βN;k3,k4rφ3

(
k3r−N

C
k3−1
N−1 β

k3
N;k3 ,k4

∫ r

0
sN−1q (s) g (u (s)) ds

)
, r > 0.

(3.4)

AIMS Mathematics Volume 6, Issue 12, 14035–14043.



14039

Since
lim

r→0+
u
′

(r) = lim
r→0+

v
′

(r) = 0 = u
′

(0) = v
′

(0),

via L’Hôpital’s rule and (3.2), the equations in (3.4) can be extended by continuity at r = 0. Then,
the system (3.1) with the initial conditions (3.2) can be equivalently written as an integral system of
equations 

u (r) = c1 + αN;k1,k2

∫ r

0
tφ1

(
k1t−N

Ck1−1
N−1 α

k1
N;k1 ,k2

∫ t

0
sN−1 p (s) f (v (s)) ds

)
dt, r ≥ 0,

v (r) = c2 + βN;k3,k4

∫ r

0
tφ3

(
k3t−N

C
k3−1
N−1 β

k3
N;k3 ,k4

∫ t

0
sN−1q (s) g (u (s)) ds

)
dt, r ≥ 0.

Let us now construct a sequence

{(un (r) , vn (r))}n≥0 on [0,∞) × [0,∞) ,

in such a way 
u0 (r) = u0 (0) = c1, v0 (r) = v0 (0) = c2,

un (r) = c1 + αN;k1,k2

∫ r

0
tφ1

(
k1t−N

Ck1−1
N−1 α

k1
N;k1 ,k2

∫ t

0
sN−1 p (s) f (vn−1 (s)) ds

)
dt,

vn (r) = c2 + βN;k3,k4

∫ r

0
tφ3

(
k3t−N

C
k3−1
N−1 β

k3
N;k3 ,k4

∫ t

0
sN−1q (s) g (un−1 (s)) ds

)
dt.

(3.5)

By construction, for all r ≥ 0 and n ∈ N we have

un (r) ≥ c1 and vn (r) ≥ c2.

Moreover, proceeding by induction we conclude

{(un (r) , vn (r))}n≥0

is a non-decreasing sequence on
[0,∞) × [0,∞) .

We note that, for all r > 0 the sequence

{(un (r) , vn (r))}n≥0

satisfies 
u
′

n(r) = αN;k1,k2rφ1

(
k1r−N

Ck1−1
N−1 α

k1
N;k1 ,k2

∫ r

0
sN−1 p (s) f (vn−1 (s)) ds

)
> αN;k1,k2r,

v
′

n(r) = βN;k3,k4rφ3

(
k3r−N

C
k3−1
N−1 β

k3
N;k3 ,k4

∫ r

0
sN−1q (s) g (un−1 (s)) ds

)
> βN;k3,k4r.

(3.6)

Integrating (3.6) from 0 to r > 0 we get (3.5). We now briefly, (3.5) imply

un (r) = c1 + αN;k1,k2

∫ r

0
tφ1(

k1t−N

Ck1−1
N−1α

k1
N;k1,k2

∫ t

0
sN−1 p (s) f (vn−1 (s)) ds)dt
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14040

≤ c1 + αN;k1,k2

∫ r

0
tφ1(

k1t−N

Ck1−1
N−1α

k1
N;k1,k2

∫ t

0
sN−1 p (s) f (vn (s)) ds)dt

≤ c1 + αN;k1,k2

[
1 + f (vn (r))

]1/k1

∫ r

0
tφ1(

k1t−N

Ck1−1
N−1α

k1
N;k1,k2

∫ t

0
sN−1 p (s) ds)dt

=
[
1 + f (vn (r))

]1/k1 {
c1[

1 + f (vn (r))
]1/k1

+ αN;k1,k2

∫ r

0
tφ1(

k1t−N

Ck1−1
N−1α

k1
N;k1,k2

∫ t

0
sN−1 p (s) ds)dt}

≤
[
1 + f (vn (r))

]1/k1 {
c1[

1 + f (c2)
]1/k1

+ αN;k1,k2

∫ r

0
tφ1(

k1t−N

Ck1−1
N−1α

k1
N;k1,k2

∫ t

0
sN−1 p (s) ds)dt}

and

vn (r) = c2 + βN;k3,k4

∫ r

0
tφ3(

k3t−N

Ck3−1
N−1β

k3
N;k3,k4

∫ t

0
sN−1q (s) g (un−1 (s)) ds)dt

≤ c2 + βN;k1,k2

∫ r

0
tφ3(

k3t−N

Ck3−1
N−1β

k3
N;k3,k4

∫ t

0
sN−1q (s) g (un (s)) ds)dt

≤
[
1 + g (un (r))

]1/k3 {
c2[

1 + g (un (r))
]1/k3

+ βN;k3,k4

∫ r

0
tφ3(

k3t−N

Ck3−1
N−1β

k3
N;k3,k4

∫ t

0
sN−1 p (s) ds)dt}

≤
[
1 + g (un (r))

]1/k3 {
c2[

1 + g (c1)
]1/k3

+ βN;k3,k4

∫ r

0
tφ3(

k3t−N

Ck3−1
N−1β

k3
N;k3,k4

∫ t

0
sN−1q (s) ds)dt}.

Setting 
Λp (r) = c1

[1+ f (c2)]1/k1
+ αN;k1,k2

∫ r

0
tφ1( k1t−N

Ck1−1
N−1 α

k1
N;k1 ,k2

∫ t

0
sN−1 p (s) ds)dt,

Λq (r) = c2

[1+g(c1)]1/k3
+ βN;k3,k4

∫ r

0
tφ3( k3t−N

C
k3−1
N−1 β

k3
N;k3 ,k4

∫ t

0
sN−1q (s) ds)dt,

we have {
un (r) ≤

[
1 + f (vn (r))

]1/k1 Λp (r) , r ≥ 0,
vn (r) ≤

[
1 + g (un (r))

]1/k3 Λq (r) , r ≥ 0.
(3.7)

By the monotonicity of the sequence {(un, vn)}n≥0 respectively of f and g, the inequalities in (3.7) and
with the use of Lemma 2 for

ξ = 1 + f (
[
1 + g (un (r))

]1/k3) and s =
k1r−N

Ck1−1
N−1α

k1
N;k1,k2

∫ r

0
sN−1 p (s) f

(
Λq (s)

)
ds,

we have

u
′

n(r) = αN;k1,k2rφ1(
k1r−N

Ck1−1
N−1α

k1
N;k1,k2

∫ r

0
sN−1 p (s) f (vn−1 (s)) ds)

≤ αN;k1,k2rφ1(
k1r−N

Ck1−1
N−1α

k1
N;k1,k2

∫ r

0
sN−1 p (s) f (vn (s)) ds)

≤ αN;k1,k2rφ1(
k1r−N

Ck1−1
N−1α

k1
N;k1,k2

∫ r

0
sN−1 p (s) f

([
1 + g (un (s))

]1/k3 Λq (s)
)

ds)
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≤ αN;k1,k2rφ1(
(
1 + f

([
1 + g (un (r))

]1/k3
)) k1r−N

Ck1−1
N−1α

k1
N;k1,k2

∫ r

0
sN−1 p (s) f

(
Λq (s)

)
ds)

≤ αN;k1,k2r
(
1 + f

([
1 + g (un (r))

]1/k3
))1/k1

φ1(
k1r−N

Ck1−1
N−1α

k1
N;k1,k2

∫ r

0
sN−1 p (s) f

(
Λq (s)

)
ds),

and, similarly

v
′

n(r) = βN;k3,k4rφ3(
k3r−N

Ck3−1
N−1β

k3
N;k3,k4

∫ r

0
sN−1q (s) g (un−1 (s)) ds)

≤ βN;k3,k4rφ3(
k3r−N

Ck3−1
N−1β

k3
N;k3,k4

∫ r

0
sN−1q (s) g (un (s)) ds)

≤ βN;k3,k4rφ3(
(
1 + g

([
1 + f (vn (r))

]1/k1
)) k3r−N

Ck3−1
N−1β

k3
N;k3,k4

∫ r

0
sN−1q (s) g

(
Λp (s)

)
ds)

≤ βN;k3,k4r
(
1 + g

([
1 + f (vn (r))

]1/k1
))1/k3

φ3(
k3r−N

Ck3−1
N−1β

k3
N;k3,k4

∫ r

0
sN−1q (s) g

(
Λp (s)

)
ds).

Finally 
u
′

n(r)(
1+ f

(
[1+g(un(r))]1/k3

))1/k1
≤ αN;k1,k2rφ1( k1r−N

Ck1−1
N−1 α

k1
N;k1 ,k2

∫ r

0
sN−1 p (s) f

(
Λq (s)

)
ds),

v
′

n(r)(
1+g

(
[1+ f (vn(r))]1/k1

))1/k3
≤ βN;k3,k4rφ3( k3r−N

C
k3−1
N−1 β

k3
N;k3 ,k4

∫ r

0
sN−1q (s) g

(
Λq (s)

)
ds).

(3.8)

Integrating (3.8) from 0 to r > 0 we get

H1,c1 (un (r)) ≤ Λp,α (r) and H2,c2 (vn (r)) ≤ Λq,β (r) ,

where 

H1,c1 (s) =
∫ s

c1

dt

(1+ f((1+g(t))1/k3))1/k1
,

Λp,α (r) = αN;k1,k2

∫ r

0
tφ1

(
k1t−N

Ck1−1
N−1 α

k1
N;k1 ,k2

∫ t

0
sN−1 p (s) f

(
Λq (s)

)
ds

)
dt,

H2,c2 (s) =
∫ s

c2

dt

(1+g((1+ f (t))1/k1))1/k3
,

Λq,β (r) = βN;k3,k4

∫ r

0
tφ3

(
k3t−N

C
k3−1
N−1 β

k3
N;k3 ,k4

∫ t

0
sN−1q (s) g

(
Λq (s)

)
ds

)
dt.

Choose R > 0. We are now ready to show that

{(un (r) , vn (r))}n≥0 and {
(
u′n (r) , v′n (r)

)
}n≥0, for r ∈ [0,R] ,

both of which are non-negative, are bounded above independent of n. To solve this problem, we
observe that 

H1,c1 (un (r)) ≤ Λp,α (r) ≤ Λp,α (R) for all r ∈ [0,R] ,

H2,c2 (vn (r)) ≤ Λq,β (r) ≤ Λq,β (R) for all r ∈ [0,R] .
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On the other hand, since
s→ Hi,ci (s) , i = 1, 2

is a bijection map for all s > ci with the inverse denoted by H−1
i,ci

(s) on [0,∞) such that

H−1
i,ci

(∞) = ∞ and H−1
i,ci

(s) is increasing on [ci,∞) ,

we see that 
un (r) ≤ H−1

1,c1

(
Λp,α (R)

)
for all r ∈ [0,R] ,

vn (r) ≤ H−1
2,c2

(
Λq,β (R)

)
for all r ∈ [0,R] ,

which proved that
{(un (r) , vn (r))}n≥0,

is an uniformly bounded independent of n sequence on

[0,R] × [0,R] ,

for arbitrary R > 0. On the other hand, using this result in (3.8) the same is true for

{
(
u′n (r) , v′n (r)

)
}n≥0.

We finished the proof that the sequences

{(un (r) , vn (r))}n≥0 and {
(
u′n (r) , v′n (r)

)
}n≥0,

are bounded above independent of n which coupled with the fact that

(un (r) , vn (r)) ,

is non-decreasing on [0,∞) × [0,∞) we see that

{un (r) , vn (r)}n≥0

itself converges to a function
(u (r) , v (r)) as n→ ∞,

and the limit (u (r) , v (r)) is a positive entire radial solution of equation (1.1). Clearly, the arguments in
Zhang and Liu [7] (see also [2]) guarantees that the solution

(u (x) , v (x)) := (u (|x|) , v (|x|))

is in the space
C2

(
RN

)
×C2

(
RN

)
and moreover is convex for any x ∈ RN . This is the end of the proof of the theorem.

4. Conclusions

We have obtained new conditions for the study of existence of positive radial solutions for a system
involving the Hessian operator.
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