The main objective of this work is to explore and characterize the idea of s-type preinvex function and related inequalities. Some interesting algebraic properties and logical examples are given to support the newly introduced idea. In addition, we attain the novel version of Hermite-Hadamard type inequality utilizing the introduced preinvexity. Furthermore, we establish two new identities, and employing these, we present some refinements of Hermite-Hadamard-type inequality. Some special cases of the presented results for different preinvex functions are deduced as well. Finally, as applications, some new inequalities for the arithmetic, geometric and harmonic means are established. Results obtained in this paper can be viewed as a significant improvement of previously known results. The awe-inspiring concepts and formidable tools of this paper may invigorate and revitalize for additional research in this worthy and absorbing field.
Citation: Muhammad Tariq, Soubhagya Kumar Sahoo, Fahd Jarad, Bibhakar Kodamasingh. Some integral inequalities for generalized preinvex functions with applications[J]. AIMS Mathematics, 2021, 6(12): 13907-13930. doi: 10.3934/math.2021805
[1] | Sarah Elahi, Muhammad Aslam Noor . Integral inequalities for hyperbolic type preinvex functions. AIMS Mathematics, 2021, 6(9): 10313-10326. doi: 10.3934/math.2021597 |
[2] | Tekin Toplu, Mahir Kadakal, İmdat İşcan . On n-Polynomial convexity and some related inequalities. AIMS Mathematics, 2020, 5(2): 1304-1318. doi: 10.3934/math.2020089 |
[3] | M. Emin Özdemir, Saad I. Butt, Bahtiyar Bayraktar, Jamshed Nasir . Several integral inequalities for (α, s,m)-convex functions. AIMS Mathematics, 2020, 5(4): 3906-3921. doi: 10.3934/math.2020253 |
[4] | Serap Özcan . Some integral inequalities of Hermite-Hadamard type for multiplicatively preinvex functions. AIMS Mathematics, 2020, 5(2): 1505-1518. doi: 10.3934/math.2020103 |
[5] | Haoliang Fu, Muhammad Shoaib Saleem, Waqas Nazeer, Mamoona Ghafoor, Peigen Li . On Hermite-Hadamard type inequalities for $ n $-polynomial convex stochastic processes. AIMS Mathematics, 2021, 6(6): 6322-6339. doi: 10.3934/math.2021371 |
[6] | Muhammad Tariq, Asif Ali Shaikh, Sotiris K. Ntouyas, Jessada Tariboon . Some novel refinements of Hermite-Hadamard and Pachpatte type integral inequalities involving a generalized preinvex function pertaining to Caputo-Fabrizio fractional integral operator. AIMS Mathematics, 2023, 8(11): 25572-25610. doi: 10.3934/math.20231306 |
[7] | Humaira Kalsoom, Muhammad Amer Latif, Muhammad Idrees, Muhammad Arif, Zabidin Salleh . Quantum Hermite-Hadamard type inequalities for generalized strongly preinvex functions. AIMS Mathematics, 2021, 6(12): 13291-13310. doi: 10.3934/math.2021769 |
[8] | Muhammad Tariq, Hijaz Ahmad, Abdul Ghafoor Shaikh, Soubhagya Kumar Sahoo, Khaled Mohamed Khedher, Tuan Nguyen Gia . New fractional integral inequalities for preinvex functions involving Caputo-Fabrizio operator. AIMS Mathematics, 2022, 7(3): 3440-3455. doi: 10.3934/math.2022191 |
[9] | Shuang-Shuang Zhou, Saima Rashid, Muhammad Aslam Noor, Khalida Inayat Noor, Farhat Safdar, Yu-Ming Chu . New Hermite-Hadamard type inequalities for exponentially convex functions and applications. AIMS Mathematics, 2020, 5(6): 6874-6901. doi: 10.3934/math.2020441 |
[10] | Jamshed Nasir, Shahid Qaisar, Saad Ihsan Butt, Ather Qayyum . Some Ostrowski type inequalities for mappings whose second derivatives are preinvex function via fractional integral operator. AIMS Mathematics, 2022, 7(3): 3303-3320. doi: 10.3934/math.2022184 |
The main objective of this work is to explore and characterize the idea of s-type preinvex function and related inequalities. Some interesting algebraic properties and logical examples are given to support the newly introduced idea. In addition, we attain the novel version of Hermite-Hadamard type inequality utilizing the introduced preinvexity. Furthermore, we establish two new identities, and employing these, we present some refinements of Hermite-Hadamard-type inequality. Some special cases of the presented results for different preinvex functions are deduced as well. Finally, as applications, some new inequalities for the arithmetic, geometric and harmonic means are established. Results obtained in this paper can be viewed as a significant improvement of previously known results. The awe-inspiring concepts and formidable tools of this paper may invigorate and revitalize for additional research in this worthy and absorbing field.
The theory of convex functions has a wide range of potential applications in many fascinating and intriguing fields of research. In addition, this theory also plays a magnificent role in many different areas, such as physics, information theory, coding theory, engineering, optimization, and inequality theory. Currently, this theory has a remarkable contribution to the extensions and improvements of numerous areas of mathematical and applied sciences. Many authors examined, celebrated, and performed their work on the idea of convexity and extended its numerous versions in useful ways using fruitful techniques and innovative ideas. Several new families of classical convex functions have been proposed in the literature. For the attention of the readers, see the references[1,2,3,4,5].
Many authors and scientists have always been trying to do good work and meaningful contributions to the theory of inequalities. The term integral inequalities on convex functions, both derivative and integration, has also been a hot and absorbing topic of discussion for research activities from the current decade. The theory of inequalities has momentous investigations in the variability of applied analysis, for example, geometric function theory, impulsive diffusion equations, coding theory, numerical analysis, and fractional calculus. Recently, Sun[6] and co-researchers[7] generalized the Hermite-Hadamard inequality for harmonically convex function and s-preinvex function using the local fractional integral operator. For the attention of the readers, see the references [8,9,10,11,12,13].
Recently, several authors have elaborated new variants of inequalities for different kinds of convexities, preinvexities, statistical theory, and so on. Several discussions represent a close relationship between the theory of inequalities and convex functions. In the year 1981, for the very first time invex function concerning bifunction η(.,.) was investigated by Hanson (see [14]). After Hanson's work, Ben-Israel and Mond tried to further investigate related invexity and for the first time elaborated the idea of invex sets and preinvex functions (see [15]). Mohan and Neogy [16] commented that the preinvex and invex functions in the form of differentiability are equivalent under suitable conditions. In 2005, Antczak [17] for the first time investigated and explored the properties of the preinvex functions. Many authors have passed the comments, these functions have a wide range of applications in optimization theory and mathematical programming. The concept of preinvexity is more general than convexity. Due to useful and elegant importance, these functions have been generalized and extended in numerous directions. In current time, İşcan et.al explored and investigated s-type convex function in a published article [18]. The magnificent concept of this article may energize and enthusiast for further research activities and be useful to generate the Mandelbrot and Julia sets for a quadratic and cubic polynomial with s-convexity [19,20].
In this section, we recall some known concepts.
Definition 2.1. [21] Let η:X×X≠∅→R be a real valued function, then X is said to be invex with respect to η(.,.) if ν2+κη(ν1,ν2)∈X, for the all mentioned conditions, i.e., for every ν1,ν2∈X and κ∈[0,1].
Note that, in literature the invex set X is also known as a η-connected set.
We clearly see that, if we choose η(ν1,ν2)=ν1−ν2, then as a result we attain classical convexity. Therefore, every convex set is an invex with respect to η(ν1,ν2)=ν1−ν2, but its converse is not true in general, means that ∃ invex sets which are not convex (see [17] and [21]).
In the year 1988, mathematicians namely Weir and Mond [22] used the idea of an invex set and to perform and explore the idea of preinvexity.
Definition 2.2. [22] Let X≠∅∈R be an invex set with respect to η:X×X≠∅→R. Then the function ψ:X→R is said to be preinvex with respect to η if
ψ(ν2+κη(ν1,ν2)) ≤ κψ(ν1)+(1−κ)ψ(ν2),∀ν1,ν2∈X,κ∈[0,1]. |
The function ψ is said to be preincave if and only if ψ is preinvex.
We clearly see that, if we choose η(ν1,ν2)=ν1−ν2, then as a result we attain the classical convex function from the more general form of function namely preinvexity [23].
We also want the following hypothesis regarding the function η which is due to Mohan and Neogy [16].
Condition: Let X⊂Rn be an open invex subset with respect to η:X×X→R. For any ν1,ν2∈X and κ∈[0,1]
η(ν2,ν2+κ η(ν1,ν2))= −κη(ν1,ν2),η(ν1,ν2+κ η(ν1,ν2))= (1−κ)η(ν1,ν2). | (2.1) |
For any ν1,ν2∈X and κ1,κ2∈[0,1] from condition C, we have
η(ν2+κ2 η(ν1,ν2) , ν2+κ1 η(ν1,ν2))= (κ2−κ1)η(ν1,ν2). |
In the year 2007, Pakistani famous mathematician, Noor[24] established and examined Hermite-Hadamard type inequality for the preinvex functions, which is stated by
Theorem 2.3. Let ψ:X=[ν1,ν1+η(ν2,ν1)]→(0,∞) {be a preinvex functions on the interval of real numbers} X∘ and ν1,ν2∈X with ν1<ν1+η(ν1,ν2). Then the following Hermite-Hadamard type inequality holds:
ψ(2ν1+η(ν2,ν1)2)≤1η(ν2,ν1)∫ν1+η(ν2,ν1)ν1ψ(x)dx≤ψ(ν1)+ψ(ν2)2. |
In 2011, another team of mathematicians namely A. Barani, A. G. Gahazanfari and S. S. Dragomir worked on the idea of preinvexity in the published article [25] and first time explored and established Hermite-Hadamard type for the differentiable preinvex function, which is stated by
Theorem 2.4. Let X⊆R be an open invex subset with respect to η:X×X→R. Suppose ψ:X→R is a differentiable function. If |ψ′| is preivex on X then, for every ν1,ν2∈A with η(ν2,ν1)≠0. Then the following Hermite-Hadamard type inequality holds:
|ψ(ν1)+ψ(ν1+η(ν2,ν1)2−1η(ν2,ν1)∫ν1+η(ν2,ν1)ν1ψ(x)dx|≤|η(ν2,ν1)|8[ψ(ν1)+ψ(ν2)]. |
Later on, different authors presented and collaborated there perspectives on the idea of preinvex functions. For author's good work and attractions for the readers, see the published articles [26,27,28,29].
Definition 2.5. [30] A nonnegative function ψ:X→R is called s-type convex function if for every ν1,ν2∈X, n∈N, s∈[0,1] and κ∈[0,1], if
ψ(κν1+(1−κ)ν2)≤[1−(s(1−κ))]ψ(ν1)+[1−sκ]ψ(ν2). | (2.2) |
Definition 2.6. [31] Two functions ψ and φ are said to be similarly ordered if
(ψ(ν1)−ψ(ν2))(φ(ν1)−φ(ν2))≥0,∀ν1,ν2∈R. | (2.3) |
Owing to the aforementioned trend and inspired by the ongoing activities, the rest of this paper is organized as follows. First of all, in Section 3, we will define and explore the newly introduced idea about preinvex functions and their algebraic properties. In Section 4, we derive the novel version of Hermite-Hadamard type inequality. In Section 5, we will make two new lemmas, and based on these new lemmas and with the help of the newly introduced definition, we will find and attain the refinements of Hermite-Hadamard type inequality. Finally, we will give some applications in support of the newly introduced idea in Section 6 and conclusion.
In this section, we are to add and introduce a new notion for a new family of convex functions namely s-type preinvex function.
Definition 3.1. Let X⊂R be a nonempty invex set with respect to η:X×X→R. Then the function ψ:X→R is called s-type preinvex, if
ψ(ν2+κη(ν1,ν2))≤[1−(s(1−κ))]ψ(ν1)+[1−sκ]ψ(ν2) | (3.1) |
holds for every ν1,ν2∈X, s∈[0,1] and κ∈[0,1].
Remark 1. (i) Taking s=1 in Definition 3.1, then we attain a definition which is called preinvex function which is first time explored by Weir and Mond [22].
(ii) Taking η(ν1,ν2)=ν1−ν2 in Definition 3.1, then we attain a published definition namely s-type convex function which is first time explored by İşcan et al. [30].
(iii) Taking s=1 and η(ν1,ν2)=ν1−ν2 in Definition 3.1, then we obtain a definition namely convex function which is investigated by Niculescu et al. [31].
Lemma 3.2. The following inequalities
κ≤[1−(s(1−κ))]and1−κ≤[1−sκ]. |
are holds, if for all κ∈[0,1] and s∈[0,1].
Proof. The rest of the proof is clearly seen.
Proposition 1. Every nonnegative preinvex function is s-type preinvex function for s∈[0,1].
Proof. By using Lemma 3.2 and definition of preinvexity for s∈[0,1], we have
ψ(ν2+κη(ν1,ν2))≤κψ(ν1)+(1−κ)ψ(ν2) |
≤[1−(s(1−κ))]ψ(ν1)+[1−sκ]ψ(ν2). |
Proposition 2. Every non-negative s-type preinvex function for s∈[0,1] is an h-preinvex function with h(κ)=[1−(s(1−κ))].
Proof. Using the definition of s-type preinvexity for s∈[0,1] and the mentioned condition h(κ)=[1−(s(1−κ))], we have
ψ(ν2+κη(ν1,ν2))≤[1−(s(1−κ))]ψ(ν1)+[1−sκ]ψ(ν2) |
≤h(κ)ψ(ν1)+h(1−κ)ψ(ν2). |
This means that, the new class of s-type preinvexity is very larger with respect to the known class of functions, like preinvex functions and convex functions. This is the beauty of the proposed new Definition 3.1.
Now we make examples in support of the new idea.
Example 1. ψ(ν)=|ν|,∀ν≥0 is non-negative convex function, so it is non-negative preinvex function because every convex function is preinvex function (see [32]). By using Proposition 1, it is an s-type preinvex function.
Example 2. ψ(ν)=eν,∀ν≥0 is non-negative convex function, so it is non-negative preinvex function because every convex function is preinvex function (see [32]). By using Proposition 1, it is an s-type preinvex function.
Note that, every convex function is a preinvex but the converse is not true. Means that every preinvex function is not a convex function. For example ψ(ν)=−|ν|.
So next we try to find and make an example of s-type preinvex function with repect to η on X, but it is a non-negative and not convex function.
Example 3. Define the function ψ(ν):R+→R+ as
ψ(ν)={ν;0≤ν≤11;ν>1
and
η(ν1,ν2)={ν1−ν2;ν1≤0,ν2≤0ν1−ν2;0≤ν1≤1,ν2≤1−2−ν2;ν1≤0,0≤ν2≤12−ν2;0≤ν1≤1,ν2≤0.
The above non-negative function ψ(ν) is not a convex, but it is a preinvex function with respect to η. According to Proposition 1, every non-negative preinvex function is a s-type preinvex functions. Hence the given function ψ(ν) is s-type preinvex function with respect to η on X.
Example 4. Define the function ψ(ν):R+→R+ as
ψ(ν)={ν+1;0≤ν≤11;ν>1
and
η(ν1,ν2)={ν1+ν2;ν1≤ν22(ν1+ν2);ν1>ν2
∀ν1,ν2∈R+=[0,+∞). The above non-negative function ψ(ν) is not a convex, but it is a preinvex function with respect to η. According to Proposition 1, every non-negative preinvex function is a s-type preinvex functions. Hence the given function ψ(ν) is s-type preinvex function with respect to η on X.
Now, we will discuss and explore the some properties in the support of the newly introduced idea.
Theorem 3.3. Let ψ,φ:X=[ν1,ν2]→R. If ψ,φ be two s-type preinvex functions with respect to same η, then
(i) ψ+φ is an s-type preinvex function with respect to η.
(ii) For c∈R(c≥0), then cψ is an s-type preinvex function with respect to η.
Proof. (i) Let ψ,φ be s-type preinvex function with respect to same η, then for all ν1,ν2∈X, s∈[0,1] and κ∈[0,1], we have
(ψ+φ)(ν2+κη(ν1,ν2))=ψ(ν2+κη(ν1,ν2))+φ(ν2+κη(ν1,ν2))≤[1−(s(1−κ))]ψ(ν1)+[1−sκ]ψ(ν2)+[1−(s(1−κ))]φ(ν1)+[1−sκ]φ(ν2)=[1−(s(1−κ))][ψ(ν1)+φ(ν1)]+[1−sκ][ψ(ν2)+φ(ν2)]= [1−(s(1−κ))](ψ+φ)(ν1)+[1−sκ](ψ+φ)(ν2). |
(ii) Let ψ be an s-type preinvex function with respect to η, then for all ν1,ν2∈X, s∈[0,1], c∈R(c≥0) and κ∈[0,1], we have
(cψ)(ν2+κη(ν1,ν2))≤c[[1−(s(1−κ))]ψ(ν1)+[1−sκ]ψ(ν2)]=[1−(s(1−κ))]cψ(ν1)+[1−sκ]cψ(ν2)= [1−(s(1−κ))](cψ)(ν1)+[1−sκ](cψ)(ν2). |
This is the required proof.
Remark 2. (i) Choosing s=1 in Theorem 3.3, then we get ψ+φ and cψ as preinvex functions.
(ii) Choosing η(ν1,ν2)=ν1−ν2 in Theorem 3.3, then we get ψ+φ and cψ as s-type convex functions.
(iii) Choosing η(ν1,ν2)=ν1−ν2 and s=1 in Theorem 3.3, then we get ψ+φ and cψ as convex functions.
Theorem 3.4. Let J be a non-negative and non empty set, ψ:X→J be an s-type preinvex function with respect to η and φ:J→R is non-decreasing function. Then the function φ∘ψ is an s-type preinvex function with respect to same η.
Proof. For all ν1,ν2∈X, s∈[0,1] and κ∈[0,1], we have
(φ∘ψ)(ν2+κη(ν1,ν2))=φ(ψ(ν2+κη(ν1,ν2)))≤φ[[1−(s(1−κ))]ψ(ν1)+[1−sκ]ψ(ν2)]≤[1−(s(1−κ))]φ(ψ(ν1))+[1−sκ]φ(ψ(ν2))= [1−(s(1−κ))](φ∘ψ)(ν1)+[1−sκ](φ∘ψ)(ν2). |
This is the required proof.
Remark 3. (i) If s=1 in Theorem 3.4, then
(φ∘ψ)(ν2+κη(ν1,ν2))≤κ(φ∘ψ)(ν1)+(1−κ)(φ∘ψ)(ν2). |
(ii) If we put η(ν1,ν2)=ν1−ν2 in Theorem 3.4, then
(φ∘ψ)(κν1+(1−κ)ν2)≤[1−(s(1−κ))](φ∘ψ)(ν1)+[1−sκ](φ∘ψ)(ν2). |
Theorem 3.5. Let 0<ν1<ν2, ψj:X=[ν1,ν2]→[0,+∞) be a class of s-type preinvex function with respect to same η and ψ(u)=supjψj(u). Then ψ is an s-type preinvex function with respect to η and U={ν∈[ν1,ν2]:ψ(νi)<∞} is an interval.
Proof. Let ν1,ν2∈U, s∈[0,1] and κ∈[0,1], then
ψ(ν2+κη(ν1,ν2))=supjψj(ν2+κη(ν1,ν2))≤[1−(s(1−κ))]supjψj(ν1)+[1−sκ]supjψj(ν2)= [1−(s(1−κ))]ψ(ν1)+[1−sκ]ψ(ν2)<∞. |
This is the required proof.
Theorem 3.6. Let ψ,φ:X=[ν1,ν2]→R. If ψ,φ be two s-type preinvex function with respect to same η and ψ,φ are similarly ordered functions and [1−(s(1−κ))]+[1−sκ]≤1, then the product ψφ is an s-type preinvex function with respect to η.
Proof. Let ψ,φ be an s-type preinvex function with respect to same η, s∈[0,1] and κ∈[0,1], then
ψ(ν2+κη(ν1,ν2))φ(ν2+κη(ν1,ν2))≤[[1−(s(1−κ))]ψ(ν1)+[1−sκ]ψ(ν2)]×[[1−(s(1−κ))]φ(ν1)+[1−sκ]φ(ν2).]≤[1−(s(1−κ))]2ψ(ν1)φ(ν1)+[1−sκ]2ψ(ν2)φ(ν2)+[1−(s(1−κ))][1−sκ][ψ(ν1)φ(ν2)+ψ(ν2)φ(ν1)]≤[1−(s(1−κ))]2ψ(ν1)φ(ν1)+[1−sκ]2ψ(ν2)φ(ν2)+[1−(s(1−κ))][1−(sκ)][ψ(ν1)φ(ν1)+ψ(ν2)φ(ν2)]=[[1−(s(1−κ))]ψ(ν1)φ(ν1)+[1−sκ]ψ(ν2)φ(ν2)]×([1−(s(1−κ))]+[1−sκ])≤[1−(s(1−κ))]ψ(ν1)φ(ν1)+[1−sκ]ψ(ν2)φ(ν2). |
This shows that the product of two s-type preinvex functions with respect to same η is again an s-type preinvex function with respect to η.
Remark 4. Taking η(ν1,ν2)=ν1−ν2 in Theorem 3.6, then we attain the new inequality namely the product of s-type convex functions
ψ(κν1+(1−κ)ν2)φ(κν1+(1−κ)ν2)≤[1−(s(1−κ))]ψ(ν1)φ(ν1)+[1−sκ]ψ(ν2)φ(ν2). |
The principal intention and main aim of this section is to establish novel version of Hermite-Hadamard type inequality in the mode of newly discussed concept namely s-type preinvex functions.
Theorem 4.1. Let X∘⊆R be an open invex subset with respect to η:X∘×X∘→R and ν1,ν2∈X∘ with ν2+η(ν1,ν2)≤ν2. Suppose ψ:[ν2+η(ν1,ν2),ν2] and satisfies Condition-C then the following Hermite-Hadamard type inequalities hold
12−sψ(ν2+12η(ν1,ν2))≤1η(ν1,ν2)∫ν2+η(ν1,ν2)ν2ψ(x)dx≤ψ(ν1)+ψ(ν2)2(2−s). |
Proof. Since ν1,ν2∈X∘ and I∘ is an invex set with respect to η, for every κ∈[0,1], we have ν2+κη(ν1,ν2)∈X∘. From the definition of s-type preinvex function of ψ, we have that
ψ(ν2+κη(ν1,ν2))≤[1−(s(1−κ))]ψ(ν1)+[1−sκ]ψ(ν2). |
Integrating both the sides with respect to κ over [0, 1], we have
∫10ψ(ν2+κη(ν1,ν2))dκ≤ψ(ν1)∫10[1−(s(1−κ))]dκ+ψ(ν2)∫10[1−sκ]dκ. |
We also have
∫10ψ(ν2+κη(ν1,ν2))dκ=1η(ν1,ν2)∫ν2+η(ν1,ν2)ν2ψ(x)dx. |
Hence,
1η(ν1,ν2)∫ν2+η(ν1,ν2)ν2ψ(x)dx≤ψ(ν1)+ψ(ν2)2(2−s). |
This completes the proof of the right hand side of above desired inequality. For the left hand side, we use the Definition 3.1, putting κ=12, one has
ψ(y+κη(x,y))≤[1−(s(1−κ))]ψ(x)+[1−(sκ)]ψ(y),ψ(y+12η(x,y))≤[1−(s2)][ψ(x)+ψ(y)], |
putting y=ν2+κη(ν1,ν2) and x=ν2+(1−κ)η(ν1,ν2) in above inequality, so first we prove the L. H. S of above inequality
ψ(y+12η(x,y))=ψ(ν2+12η(ν1,ν2)). |
So after putting the value of x and y, we get
ψ(y+12η(x,y))=ψ(ν2+κη(ν1,ν2)+12η(ν2+(1−κ)η(ν1,ν2),ν2+κη(ν1,ν2))). | (4.1) |
Now by using Condition C, we have
η(ν2+(1−κ)η(ν1,ν2),ν2+κη(ν1,ν2))=(1−κ−κ)η(ν1,ν2), |
η(ν2+(1−κ)η(ν1,ν2),ν2+κη(ν1,ν2))=(1−2κ)η(ν1,ν2). |
Now we put the value of η in 4.1, then as a result, we get
ψ(y+12η(x,y))=ψ(ν2+κη(ν1,ν2)+12(1−2κ)η(ν1,ν2)),ψ(y+12η(x,y))=ψ(ν2+(κ+12−κ)η(ν1,ν2)),ψ(y+12η(x,y))=ψ(ν2+12η(ν1,ν2)). |
Now,
ψ(ν2+12η(ν1,ν2))≤[1−(s2)][∫10ψ(ν2+(1−κ)η(ν1,ν2))dκ+∫10ψ(ν2+κη(ν1,ν2))dκ]≤[1−(s2)]2η(ν1,ν2)∫ν2+η(ν1,ν2)ν2ψ(x)dx≤2[1−(s2)]1η(ν1,ν2)∫ν2+η(ν1,ν2)ν2ψ(x)dx. |
This is the required proof.
Corollary 1. If we put s=1 and η(ν1,ν2)=ν1−ν2 in Theorem 4.1, then we get Hermite-Hadamard inequality in [33].
Note: Moreover we assumed the condition C in the 2nd part of proof of Theorem 4.1, so it is necessary to give an example as above, where η fulfils the condition C.
Example 5. Remembering example 2.2 of published article (see [34]) as follows
Let
ψ(ν)=−|ν|,∀ν∈X | (4.2) |
η(ν1,ν2)={ν1−ν2,ifν1≥0,ν2≥0;ν1−ν2,ifν1≤0,ν2≤0;−2−ν2,ifν1>0,ν2≤0;2−ν2,ifν1≤0,ν2>0. |
From the above example we claim that or easily investigate that ψ is an s-type preinvex function with respect to η if s=1 and that ψ and η satisfies the condition C. However ψ is not a convex function.
The aim of this section is to investigate the refinements of Hermite-Hadamard inequality by using the newly introduced definition. In order to attain the refinements of Hermite-Hadamard inequality, we need the following lemmas.
Lemma 5.1. Let ψ:[ν1,ν1+η(ν2c,ν1)]→R be a differentiable mapping on (ν1,ν1+η(ν2c,ν1)) with 0<c≤1 and ν1+η(ν2,ν1)>ν1>0. If ψ′∈L(ν1,ν1+η(ν2c,ν1)), then the following equality holds in the preinvex setting:
ψ(ν1)+ψ(ν1+η(ν2c,ν1))2−cη(ν2,cν1)∫ν1+η(ν2c,ν1)ν1ψ(x)dx=η(ν2,cν1)2c∫10(1−2κ)ψ′(ν2c+κη(ν1,ν2c))dκ. | (5.1) |
Proof. Let ν1,ν2∈X. Since X is an invex set w.r.t η, ∀κ∈[0,1],ν2c+κη(ν1,ν2c)∈X Integrating by parts
η(ν2,cν1)2c∫10(1−2κ)ψ′(ν2c+κη(ν1,ν2c))dκ=η(ν2,cν1)2c[(1−2κ)ψ(ν2c+κη(ν1,ν2c))η(ν1,ν2c)|10+2∫10ψ(ν2c+κη(ν1,ν2c))η(ν1,ν2c)dκ]=η(ν2,cν1)2c[c(ψ(ν1)+ψ(ν2c))η(ν2,cν1)−2cη(ν2,cν1)∫10ψ(ν2c+κη(ν1,ν2c))dκ]=ψ(ν1)+ψ(ν1+η(ν2c,ν1))2−cη(ν2,cν1)∫ν1+η(ν2c,ν1)ν1ψ(x)dx. |
Which completes the proof.
Lemma 5.2. Let ψ:[ν1,ν1+η(ν2c,ν1)]→R be a differentiable mapping on (ν1,ν1+η(ν2c,ν1)) with 0<c≤1 and ν1+η(ν2,ν1)>ν1>0. If ψ′∈L(ν1,ν1+η(ν2c,ν1)), then the following equality holds in the preinvex setting:
cη(ν2,cν1)∫ν1+η(ν2c,ν1)ν1ψ(x)dx−ψ(2ν1+η(ν2,ν1)2c)=η(ν2,cν1)c{∫10κψ′(ν2c+κη(ν1,ν2c))dκ−∫11/2ψ′(ν2c+κη(ν1,ν2c))dκ}. | (5.2) |
Proof. Let ν1,ν2∈X. Since X is an invex set w.r.t η, ∀κ∈[0,1],ν2c+κη(ν1,ν2c)∈X. Integrating by parts,
η(ν2,cν1)c{∫10κψ′(ν2c+κη(ν1,ν2c))dκ−∫11/2ψ′(ν2c+κη(ν1,ν2c))dκ}=η(ν2,cν1)c×[κψ(ν2c+κη(ν1,ν2c))η(ν1,ν2c)|10−∫10ψ(ν2c+κη(ν1,ν2c))η(ν1,ν2c)dκ−ψ(ν2c+κη(ν1,ν2c))η(ν1,ν2c)dκ|112]=η(ν2,cν1)c[cψ(ν1)η(cν1,ν2)−cη(cν1,ν2)∫10ψ(ν2c+κη(ν1,ν2c))dκ−cη(cν1,ν2)(ψ(ν1)−ψ((2ν1+η(ν2,ν1))2c))]=cη(ν2,cν1)∫ν1+η(ν2c,ν1)ν1ψ(x)dx−ψ(2ν1+η(ν2,ν1)2c). |
In this way the proof is completed.
Theorem 5.3. Let X∘⊆R be an open invex subset with respect to η:X∘×X∘→R and ν1,ν2∈X∘ with ν2+η(ν1,ν2)≤ν2. Suppose ψ:[ν2+η(ν1,ν2),ν2] be a differentiable mapping on X∘. If |ψ′| is s-type preinvex function on (ν1,ν1+η(ν2,ν1)) for s∈[0,1], then the following inequality holds:
|ψ(ν1)+ψ(ν1+η(ν2c,ν1))2−cη(ν2,cν1)∫ν1+η(ν2c,ν1)ν1ψ(x)dx|≤η(ν2,cν1)2c{2−s4[|ψ′(ν1)|+|ψ′(ν2c)|]}. | (5.3) |
Proof. Using Lemma 5.1, one has
|ψ(ν1)+ψ(ν1+η(ν2c,ν1))2−cη(ν2,cν1)∫ν1+η(ν2c,ν1)ν1ψ(x)dx|=η(ν2,cν1)2c∫10|1−2κ||ψ′(ν2c+κη(ν1,ν2c))|dκ. |
Since |ψ′| is s-type preinvex on (ν1,ν1+η(ν2,ν1)), we have
|ψ(ν1)+ψ(ν1+η(ν2c,ν1))2−cη(ν2,cν1)∫ν1+η(ν2c,ν1)ν1ψ(x)dx|≤η(ν2,cν1)2c∫10|1−2κ|[(1−s(1−κ))ψ′(ν1)|+(1−sκ)|ψ′(ν2c)|]dκ≤η(ν2,cν1)2c{|ψ′(ν1)|∫10|1−2κ|1−s(1−κ)dκ+|ψ′(ν2c)|∫10|1−2κ|(1−sκ)dκ}. | (5.4) |
Since,
∫10(1−s(1−κ))|1−2κ|dκ=∫10(1−sκ)|1−2κ|dκ=−s−24. |
The proof of the Theorem is completed by using these computations in (5.4).
Corollary 2. If we choose s=1 in (5.3), then we attain the following inequality
|ψ(ν1)+ψ(ν1+η(ν2c,ν1))2−cη(ν2,cν1)∫ν1+η(ν2c,ν1)ν1ψ(x)dx|≤η(ν2,cν1)8c{[|ψ′(ν1)|+4|ψ′(ν2c)|]}. |
Corollary 3. If we choose η(ν1,ν2)=ν1−ν2 (5.3), then we attain the following inequality
|ψ(ν1)+ψ(ν2c)2−c(ν2−cν1)∫ν2cν1ψ(x)dx|≤(ν2−cν1)2c{2−s4[|ψ′(ν1)|+|ψ′(ν2c)|]}. |
Corollary 4. If we choose s=1 and η(ν1,ν2)=ν1−ν2 (5.3), then we attain the following inequality
|ψ(ν1)+ψ(ν2c)2−c(ν2−cν1)∫ν2cν1ψ(x)dx|≤(ν2−cν1)8c{[|ψ′(ν1)|+4|ψ′(ν2c)|]}. |
Theorem 5.4. Let X∘⊆R be an open invex subset with respect to η:X∘×X∘→R and ν1,ν2∈X∘ with ν2+η(ν1,ν2)≤ν2. Suppose ψ:[ν2+η(ν1,ν2),ν2] be a differentiable mapping on X∘. If |ψ′|q is s-type preinvex on (ν1,ν1+η(ν2,ν1)) for p,q>1, 1q+1p=1 and s∈[0,1], then the following inequality holds:
|ψ(ν1)+ψ(ν1+η(ν2c,ν1))2−cη(ν2,cν1)∫ν1+η(ν2c,ν1)ν1ψ(x)dx|≤η(ν2,cν1)2c(1p+1)1/p{2−s2[|ψ′(ν1)|q+|ψ′(ν2c)|q]}1/q. | (5.5) |
Proof. Using Lemma 5.1 and Hölder's inequality, one has
|ψ(ν1)+ψ(ν1+η(ν2c,ν1))2−cη(ν2,cν1)∫ν1+η(ν2c,ν1)ν1ψ(x)dx|=η(ν2,cν1)2c∫10|1−2κ||ψ′(ν2c+κη(ν1,ν2c))|dκ≤η(ν2,cν1)2c(∫10|1−2κ|pdκ)1/p(∫10|ψ′(ν2c+κη(ν1,ν2c))|qdκ)1/q. | (5.6) |
Since |ψ′|q is s-type preinvex on (ν1,ν1+η(ν2,ν1)), we have
∫10|ψ′(ν2c+κη(ν1,ν2c))|qdκ=|ψ′(ν1)|q∫10(1−s(1−κ))dκ+|ψ′(ν2c)|q∫10(1−sκ)dκ. |
Now, Eq (5.6) becomes
|ψ(ν1)+ψ(ν1+η(ν2c,ν1))2−cη(ν2,cν1)∫ν1+η(ν2c,ν1)ν1ψ(x)dx|≤η(ν2,cν1)2c(1p+1)1/p(|ψ′(ν1)|q∫10(1−s(1−κ))dκ+|ψ′(ν2c)|q∫10(1−sκ)dκ)1/q. | (5.7) |
Since,
∫10(1−s(1−κ))dκ=∫10(1−sκ)dκ=−s−22,∫10|1−2κ|pdκ=1p+1. |
The proof of the Theorem is completed by using the above computations in (5.7).
Corollary 5. If we choose s=1 in (5.5), then we attain the following inequality
|ψ(ν1)+ψ(ν1+η(ν2c,ν1))2−cη(ν2,cν1)∫ν1+η(ν2c,ν1)ν1ψ(x)dx|≤η(ν2,cν1)21+qqc(1p+1)1/p(|ψ′(ν1)|q+|ψ′(ν2c)|q)1/q. |
Corollary 6. If we choose η(ν1,ν2)=ν1−ν2 in (5.5), then we attain the following inequality
|ψ(ν1)+ψ(ν2c)2−c(ν2−cν1)∫ν2cν1ψ(x)dx|≤(ν2−cν1)2c(1p+1)1/p{2−s2[|ψ′(ν1)|q+|ψ′(ν2c)|q]}1/q. |
Corollary 7. If we choose s=1 and η(ν1,ν2)=ν1−ν2 in (5.5), then we attain the following inequality
|ψ(ν1)+ψ(ν2c)2−c(ν2−cν1)∫ν2cν1ψ(x)dx|≤(ν2−cν1)21+qqc(1p+1)1/p(|ψ′(ν1)|q+|ψ′(ν2c)|q)1/q. |
Theorem 5.5. Let X∘⊆R be an open invex subset with respect to η:X∘×X∘→R and ν1,ν2∈X∘ with ν2+η(ν1,ν2)≤ν2. Suppose ψ:[ν2+η(ν1,ν2),ν2] be a differentiable mapping on X∘. If |ψ′|q is s-type preinvex on (ν1,ν1+η(ν2,ν1)) for p,q>1, 1q+1p=1 and s∈[0,1], then the following inequality holds:
|ψ(ν1)+ψ(ν1+η(ν2c,ν1))2−cη(ν2,cν1)∫ν1+η(ν2c,ν1)ν1ψ(x)dx|≤η(ν2,cν1)c[12(p+1p)]{2−s4[|ψ′(ν1)|q+|ψ′(ν2c)|q]}1/q. | (5.8) |
Proof. Using Lemma 5.1 and Hölder's inequality, one has
|ψ(ν1)+ψ(ν1+η(ν2c,ν1))2−cη(ν2,cν1)∫ν1+η(ν2c,ν1)ν1ψ(x)dx|≤η(ν2,cν1)2c∫10|1−2κ||ψ′(ν2c+κη(ν1,ν2c))|dκ=η(ν2,cν1)2c∫10|1−2κ|1/p|1−2κ|1/q|ψ′(ν2c+κη(ν1,ν2c))|dκ≤η(ν2,cν1)2c(∫10|1−2κ|dκ)1/p(∫10|1−2κ||ψ′(ν2c+κη(ν1,ν2c))|qdκ)1/q. | (5.9) |
Since |ψ′|q is s-type preinvex on (ν1,ν1+η(ν2,ν1)), we have
∫10|ψ′(ν2c+κη(ν1,ν2c))|qdκ=|ψ′(ν1)|q∫10(1−s(1−κ))dκ+|ψ′(ν2c)|q∫10(1−sκ)dκ. |
Now, Eq (5.9) becomes
|ψ(ν1)+ψ(ν1+η(ν2c,ν1))2−cη(ν2,cν1)∫ν1+η(ν2c,ν1)ν1ψ(x)dx|≤η(ν2,cν1)2c(∫10|1−2κ|dκ)1/p(|ψ′(ν1)|q∫10|1−2κ|(1−s(1−κ))dκ+|ψ′(ν2c)|q∫10|1−2κ|(1−sk)dκ)1/q. | (5.10) |
Since,
∫10|1−2κ|(1−s(1−κ))dκ=∫10|1−2κ|(1−sκ)dκ=−s−24,∫10|1−2κ|dκ=12. |
The proof of the Theorem gets completed by using these computations in (5.10).
Corollary 8. If we choose s=1 in (5.8), then we attain the following inequality
|ψ(ν1)+ψ(ν1+η(ν2c,ν1))2−cη(ν2,cν1)∫ν1+η(ν2c,ν1)ν1ψ(x)dx|≤η(ν2,cν1)c[12(2q+1q)](|ψ′(ν1)|q+|ψ′(ν2c)|q)1/q. |
Corollary 9. If we choose η(ν1,ν2)=ν1−ν2 in (5.8), then we attain the following inequality
|ψ(ν1)+ψ(ν2c)2−c(ν2−cν1)∫ν2cν1ψ(x)dx|≤(ν2−cν1)c[12(p+1p)]{2−s4[|ψ′(ν1)|q+|ψ′(ν2c)|q]}1/q. |
Corollary 10. If we choose s=1 and η(ν1,ν2)=ν1−ν2 in (5.8), then we attain the following inequality
|ψ(ν1)+ψ(ν2c)2−c(ν2−cν1)∫ν2cν1ψ(x)dx|≤(ν2−cν1)c[12(2q+1q)](|ψ′(ν1)|q+|ψ′(ν2c)|q)1/q. |
Theorem 5.6. Let X∘⊆R be an open invex subset with respect to η:X∘×X∘→R and ν1,ν2∈X∘ with ν2+η(ν1,ν2)≤ν2. Suppose ψ:[ν2+η(ν1,ν2),ν2] be a differentiable mapping on X∘. If |ψ′|q is s-type preinvex on (ν1,ν1+η(ν2,ν1)) for p,q>1, 1q+1p=1 and s∈[0,1], then the following inequality holds:
|ψ(ν1)+ψ(ν1+η(ν2c,ν1))2−cη(ν2,cν1)∫ν1+η(ν2c,ν1)ν1ψ(x)dx|≤η(ν2,cν1)2c(12(p+1))1/p[{3−2s6|ψ′(ν1)|q+3−s6|ψ′(ν2c)|q}1/q+{3−s6|ψ′(ν1)|q+3−2s6|ψ′(ν2c)|q}1/q]. | (5.11) |
Proof. Using Lemma 5.1 and Hölder-İşcan inequality, one has
|ψ(ν1)+ψ(ν1+η(ν2c,ν1))2−cη(ν2,cν1)∫ν1+η(ν2c,ν1)ν1ψ(x)dx|≤η(ν2,cν1)2c[(∫10(1−κ)|1−2κ|pdκ)1/p(∫10(1−κ)|ψ′(ν2c+κη(ν1,ν2c))|qdκ)1/q+(∫10κ|1−2κ|pdκ)1/p(∫10κ|ψ′(ν2c+κη(ν1,ν2c))|qdκ)1/q]. | (5.12) |
Since |ψ′|q is s-type preinvex on (ν1,ν1+η(ν2,ν1)), we have
∫10|ψ′(ν2c+κη(ν1,ν2c))|qdκ=|ψ′(ν1)|q∫10(1−s(1−κ))dκ+|ψ′(ν2c)|q∫10(1−sκ)dκ. |
Now, Eq (5.12) becomes
|ψ(ν1)+ψ(ν1+η(ν2c,ν1))2−cη(ν2,cν1)∫ν1+η(ν2c,ν1)ν1ψ(x)dx|≤η(ν2,cν1)2c[(∫10(1−κ)|1−2κ|pdκ)1/p(|ψ′(ν1)|q∫10(1−κ)(1−s(1−κ))dκ+|ψ′(ν2c)|q∫10(1−κ)(1−sκ)dκ)1/q+(∫10κ|1−2κ|pdκ)1/p(|ψ′(ν1)|q∫10κ(1−s(1−κ))dκ+|ψ′(ν2c)|q∫10κ(1−sκ)dκ)1/q]. | (5.13) |
Since,
∫10(1−κ)(1−s(1−κ))dκ=∫10κ(1−sκ)dκ=−2s−36∫10κ(1−s(1−κ))dκ=∫10(1−κ)(1−sκ)dκ=−s−36∫10κ|1−2κ|pdκ=∫10(1−κ)|1−2κ|pdκ=12(p+1). |
The proof of the Theorem is completed by using these computations in (5.13).
Corollary 11. If we choose s=1 in (5.11), then we attain the following inequality
|ψ(ν1)+ψ(ν1+η(ν2c,ν1))2−cη(ν2,cν1)∫ν1+η(ν2c,ν1)ν1ψ(x)dx|≤η(ν2,cν1)2c(12(p+1))1/p[{16|ψ′(ν1)|q+13|ψ′(ν2c)|q}1/q+{13|ψ′(ν1)|q+16|ψ′(ν2c)|q}1/q]. |
Corollary 12. If we choose η(ν1,ν2)=ν1−ν2 in (5.11), then we attain the following inequality
|ψ(ν1)+ψ(ν2c)2−c(ν2−cν1)∫ν2cν1ψ(x)dx|≤(ν2−cν1)2c(12(p+1))1/p[{3−2s6|ψ′(ν1)|q+3−s6|ψ′(ν2c)|q}1/q+{3−s6|ψ′(ν1)|q+3−2s6|ψ′(ν2c)|q}1/q]. |
Corollary 13. If we choose s=1 and η(ν1,ν2)=ν1−ν2 in (5.11), then we attain the following inequality
|ψ(ν1)+ψ(ν2c)2−c(ν2−cν1)∫ν2cν1ψ(x)dx|≤(ν2−cν1)2c(12(p+1))1/p[{16|ψ′(ν1)|q+13|ψ′(ν2c)|q}1/q+{13|ψ′(ν1)|q+16|ψ′(ν2c)|q}1/q]. |
Theorem 5.7. Let X∘⊆R be an open invex subset with respect to η:X∘×X∘→R and ν1,ν2∈X∘ with ν2+η(ν1,ν2)≤ν2. Suppose ψ:[ν2+η(ν1,ν2),ν2] be a differentiable mapping on I∘. If |ψ′|q is s-type preinvex on (ν1,ν1+η(ν2,ν1)) for q≥1 and s∈[0,1], then the following inequality holds:
|ψ(ν1)+ψ(ν1+η(ν2c,ν1))2−cη(ν2,cν1)∫ν1+η(ν2c,ν1)ν1ψ(x)dx|≤η(ν2,cν1)2c(14)1−1/q[{4−3s16|ψ′(ν1)|q+4−s16|ψ′(ν2c)|q}1/q+{4−s16|ψ′(ν1)|q+4−3s16|ψ′(ν2c)|q}1/q]. | (5.14) |
Proof. Using Lemma 5.1 and Improved power-mean inequality, one has
|ψ(ν1)+ψ(ν1+η(ν2c,ν1))2−cη(ν2,cν1)∫ν1+η(ν2c,ν1)ν1ψ(x)dx|≤η(ν2,cν1)2c[(∫10(1−κ)|1−2κ|dκ)1−1/q(∫10(1−κ)|1−2κ||ψ′(ν2c+κη(ν1,ν2c))|qdκ)1/q+(∫10κ|1−2κ|dκ)1−1/q(∫10κ|1−2κ||ψ′(ν2c+κη(ν1,ν2c))|qdκ)1/q]. | (5.15) |
Since, |ψ′|q is s-type preinvex on (ν1,ν1+η(ν2,ν1)), we have
∫10|ψ′(ν2c+κη(ν1,ν2c))|qdκ=|ψ′(ν1)|q∫10(1−s(1−κ))dκ+|ψ′(ν2c)|q∫10(1−sκ)dκ. |
Now, Eq (5.15) becomes
|ψ(ν1)+ψ(ν1+η(ν2c,ν1))2−cη(ν2,cν1)∫ν1+η(ν2c,ν1)ν1ψ(x)dx|≤η(ν2,cν1)2c[(∫10(1−κ)|1−2κ|dκ)1−1/q(|ψ′(ν1)|q∫10(1−κ)|1−2κ|(1−s(1−κ))dκ | (5.16) |
+|ψ′(ν2c)|q∫10(1−κ)|1−2κ|(1−sκ)dκ)1/q+(∫10κ|1−2κ|dκ)1−1/q(|ψ′(ν1)|q∫10κ|1−2κ|(1−s(1−κ))dκ+|ψ′(ν2c)|q∫10κ|1−2κ|(1−sκ)dκ)1/q]. | (5.17) |
Since,
∫10(1−κ)|1−2κ|(1−s(1−κ))dκ=∫10κ|1−2κ|(1−sκ)dκ=−3s−416,∫10κ|1−2κ|(1−s(1−κ))dκ=∫10(1−κ)|1−2κ|(1−sκ)dκ=−s−416,∫10κ|1−2κ|dκ=∫10(1−κ)|1−2κ|dκ=14. |
The proof of the Theorem is completed by using these computations in (5.17).
Corollary 14. If we choose s=1 in (5.14), then we attain the following inequality
|ψ(ν1)+ψ(ν1+η(ν2c,ν1))2−cη(ν2,cν1)∫ν1+η(ν2c,ν1)ν1ψ(x)dx|≤η(ν2,cν1)2c(14)1−1/q[{116|ψ′(ν1)|q+316|ψ′(ν2c)|q}1/q+{316|ψ′(ν1)|q+116|ψ′(ν2c)|q}1/q]. |
Corollary 15. If we choose η(ν1,ν2)=ν1−ν2, in (5.14), then we attain the following inequality
|ψ(ν1)+ψ(ν2c)2−c(ν2−cν1)∫ν2cν1ψ(x)dx|≤(ν2−cν1)2c[14]1−1/q[{4−3s16|ψ′(ν1)|q+4−s16|ψ′(ν2c)|q}1/q+{4−s16|ψ′(ν1)|q+4−3s16|ψ′(ν2c)|q}1/q]. |
Corollary 16. If we choose s=1 and η(ν1,ν2)=ν1−ν2, in (5.14), then we attain the following inequality
|ψ(ν1)+ψ(ν2c)2−c(ν2−cν1)∫ν2cν1ψ(x)dx|≤(ν2−cν1)2c(14)1−1/q[{116|ψ′(ν1)|q+316|ψ′(ν2c)|q}1/q+{316|ψ′(ν1)|q+116|ψ′(ν2c)|q}1/q]. |
Theorem 5.8. Let X∘⊆R be an open invex subset with respect to η:X∘×X∘→R and ν1,ν2∈X∘ with ν2+η(ν1,ν2)≤ν2. Suppose ψ:[ν2+η(ν1,ν2),ν2] be a differentiable mapping on X∘. If |ψ′|q is s-type preinvex on (ν1,ν1+η(ν2,ν1)) for q≥1 and s∈[0,1], then the following inequality holds:
|ψ(ν1)+ψ(ν1+η(ν2c,ν1))2−cη(ν2,cν1)∫ν1+η(ν2c,ν1)ν1ψ(x)dx|≤η(ν2,cν1)2c(12)1−1q{2−s4[|ψ′(ν1)|q+|ψ′(ν2c)|q]}1/q. | (5.18) |
Proof. Using Lemma 5.1 and power-mean inequality, one has
|ψ(ν1)+ψ(ν1+η(ν2c,ν1))2−cη(ν2,cν1)∫ν1+η(ν2c,ν1)ν1ψ(x)dx|≤η(ν2,cν1)2c∫10|1−2κ||ψ′(ν2c+κη(ν1,ν2c))|dκ≤η(ν2,cν1)2c(∫10|1−2κ|dκ)1−1/q(∫10|1−2κ||ψ′(ν2c+κη(ν1,ν2c))|qdκ)1/q. | (5.19) |
Since |ψ′|q is s-type preinvex on (ν1,ν1+η(ν2,ν1)), we have
∫10|ψ′(ν2c+κη(ν1,ν2c))|qdκ=|ψ′(ν1)|q∫10(1−s(1−κ))dκ+|ψ′(ν2c)|q∫10(1−sκ)dκ. |
Now, Eq (5.19) becomes
|ψ(ν1)+ψ(ν1+η(ν2c,ν1))2−cη(ν2,cν1)∫ν1+η(ν2c,ν1)ν1ψ(x)dx|≤η(ν2,cν1)2c(∫10|1−2κ|dκ)1−1/q(|ψ′(ν1)|q∫10|1−2κ|(1−s(1−κ))dκ+|ψ′(ν2c)|q∫10|1−2κ|(1−sκ)dκ)1/q. | (5.20) |
Since,
∫10|1−2κ|(1−s(1−κ))dκ=∫10|1−2κ|(1−sκ)dκ=−s−24,∫10|1−2κ|dκ=12. |
The proof of the Theorem gets completed by using these computations in (5.20).
Corollary 17. If we choose s=1 in (5.18), then we attain the following inequality
|ψ(ν1)+ψ(ν1+η(ν2c,ν1))2−cη(ν2,cν1)∫ν1+η(ν2c,ν1)ν1ψ(x)dx|≤η(ν2,cν1)22q+1qc{[|ψ′(ν1)|q+|ψ′(ν2c)|q]}1/q. |
Corollary 18. If we choose η(ν1,ν2)=ν1−ν2 in (5.18), then we attain the following inequality
|ψ(ν1)+ψ(ν2c)2−c(ν2−cν1)∫ν2cν1ψ(x)dx|≤(ν2−cν1)2c(12)1−1q{2−s4[|ψ′(ν1)|q+|ψ′(ν2c)|q]}1/q. |
Corollary 19. If we choose s=1 and η(ν1,ν2)=ν1−ν2 in (5.18), then we attain the following inequality
|ψ(ν1)+ψ(ν2c)2−c(ν2−cν1)∫ν2cν1ψ(x)dx|≤(ν2−cν1)22q+1qc{[|ψ′(ν1)|q+|ψ′(ν2c)|q]}1/q. |
Theorem 5.9. Let X∘⊆R be an open invex subset with respect to η:X∘×X∘→R and ν1,ν2∈X∘ with ν2+η(ν1,ν2)≤ν2. Suppose ψ:[ν2+η(ν1,ν2),ν2] be a differentiable mapping on X∘. If |ψ′|q is s-type preinvex on (ν1,ν1+η(ν2,ν1)) for p,q>1, 1q+1p=1 and s∈[0,1], then the following inequality holds:
|cη(ν2,cν1)∫ν1+η(ν2c,ν1)ν1ψ(x)dx−ψ(2ν1+η(ν2,ν1)2c)|≤η(ν2,cν1)c[(1p+1)1/p{2−s2[|ψ′(ν1)|q+|ψ′(ν2c)|q]}1/q+{4−3s8[|ψ′(ν1)|q+|ψ′(ν2c)|q]}1/q]. | (5.21) |
Proof. Using Lemma 5.2 and Hölder's inequality, one has
|cη(ν2,cν1)∫ν1+η(ν2c,ν1)ν1ψ(x)dx−ψ(2ν1+η(ν2,ν1)2c)|=η(ν2,cν1)c{∫10κψ′(ν2c+κη(ν1,ν2c))dκ−∫11/2ψ′(ν2c+κη(ν1,ν2c))dκ}≤η(ν2,cν1)c[(∫10κpdκ)1/p{∫10|ψ′(ν2c+κη(ν1,ν2c))|qdκ}1/q+{∫11/2|ψ′(ν2c+κη(ν1,ν2c))|qdκ}1/q]≤η(ν2,cν1)c[(1p+1)1/p{∫10[1−s(1−κ)]|ψ′(ν1)|qdκ+∫10[1−sκ]|ψ′(ν2c)|qdκ}1/q+{∫11/2[1−s(1−κ)]|ψ′(ν1)|qdκ+∫11/2[1−sκ]|ψ′(ν2c)|qdκ}1/q]=η(ν2,cν1)c[(1p+1)1/p{2−s2[|ψ′(ν1)|q+|ψ′(ν2c)|q]}1/q+{4−3s8[|ψ′(ν1)|q+|ψ′(ν2c)|q]}1/q]. |
Corollary 20. If we choose s=1 in (5.21), then we attain the following inequality
|cη(ν2,cν1)∫ν1+η(ν2c,ν1)ν1ψ(x)dx−ψ(2ν1+η(ν2,ν1)2c)|≤η(ν2,cν1)c[(1p+1)1/p{12[|ψ′(ν1)|q+|ψ′(ν2c)|q]}1/q+{18[|ψ′(ν1)|q+|ψ′(ν2c)|q]}1/q]. |
Corollary 21. If we choose η(ν1,ν2)=ν1−ν2 in (5.21), then we attain the following inequality
|c(ν2−cν1)∫ν2cν1ψ(x)dx−ψ(ν1+ν2)2c)|≤η(ν2,cν1)c[(1p+1)1/p{2−s2[|ψ′(ν1)|q+|ψ′(ν2c)|q]}1/q+{4−3s8[|ψ′(ν1)|q+|ψ′(ν2c)|q]}1/q]. |
Corollary 22. If we choose s=1 and η(ν1,ν2)=ν1−ν2 in (5.21), then we attain the following inequality
|c(ν2−cν1)∫ν2cν1ψ(x)dx−ψ(ν1+ν2)2c)|≤(ν2−cν1)c[(1p+1)1/p{12[|ψ′(ν1)|q+|ψ′(ν2c)|q]}1/q+{18[|ψ′(ν1)|q+|ψ′(ν2c)|q]}1/q]. |
Theorem 5.10. Let X∘⊆R be an open invex subset with respect to η:X∘×X∘→R and ν1,ν2∈X∘ with ν2+η(ν1,ν2)≤ν2. Suppose ψ:[ν2+η(ν1,ν2),ν2] be a differentiable mapping on X∘. If |ψ′|q is s-type preinvex on (ν1,ν1+η(ν2,ν1)) for q≥1, and s∈[0,1], then the following inequality holds:
|cη(ν2,cν1)∫ν1+η(ν2c,ν1)ν1ψ(x)dx−ψ(2ν1+η(ν2,ν1)2c)|≤η(ν2,cν1)c[(12)1−1/q{3−s6|ψ′(ν1)|q+3−2s6|ψ′(ν2c)|q}1/q+{4−3s8[|ψ′(ν1)|q+|ψ′(ν2c)|q]}1/q]. | (5.22) |
Proof. Using Lemma 5.2 and power-mean inequality, one has
|cη(ν2,cν1)∫ν1+η(ν2c,ν1)ν1ψ(x)dx−ψ(2ν1+η(ν2,ν1)2c)|=η(ν2,cν1)c{∫10κψ′(ν2c+κη(ν1,ν2c))dκ−∫11/2ψ′(ν2c+κη(ν1,ν2c))dκ}≤η(ν2,cν1)c[(∫10κdκ)1−1/q{∫10κ|ψ′(ν2c+κη(ν1,ν2c))|qdκ}1/q+{∫11/2|ψ′(ν2c+κη(ν1,ν2c))|qdκ}1/q]≤η(ν2,cν1)c[(12)1−1/q{∫10κ[1−s(1−κ)]|ψ′(ν1)|qdκ+∫10κ[1−sκ]|ψ′(ν2c)|qdκ}1/q+{∫11/2[1−s(1−κ)]|ψ′(ν1)|qdκ+∫11/2[1−sκ]|ψ′(ν2c)|qdκ}1/q]=η(ν2,cν1)c[(12)1−1/q{3−s6|ψ′(ν1)|q+3−2s6|ψ′(ν2c)|q}1/q+{4−3s8[|ψ′(ν1)|q+|ψ′(ν2c)|q]}1/q]. |
Corollary 23. If we choose s=1 in (5.22), then we attain the following inequality
|cη(ν2,cν1)∫ν1+η(ν2c,ν1)ν1ψ(x)dx−ψ(2ν1+η(ν2,ν1)2c)|≤η(ν2,cν1)c[(12)1−1/q{13|ψ′(ν1)|q+16|ψ′(ν2c)|q}1/q+{18[|ψ′(ν1)|q+|ψ′(ν2c)|q]}1/q]. |
Corollary 24. If we choose η(ν1,ν2)=ν1−ν2 in (5.22), then we attain the following inequality
|c(ν2−cν1)∫ν2cν1ψ(x)dx−ψ(ν1+ν2)2c)|≤(ν2−cν1)c[(12)1−1/q{3−s6|ψ′(ν1)|q+3−2s6|ψ′(ν2c)|q}1/q+{4−3s8[|ψ′(ν1)|q+|ψ′(ν2c)|q]}1/q]. |
Corollary 25. If we choose s=1 and η(ν1,ν2)=ν1−ν2 in (5.22), then we attain the following inequality
|c(ν2−cν1)∫ν2cν1ψ(x)dx−ψ(ν1+ν2)2c)|≤(ν2−cν1)c[(12)1−1/q{13|ψ′(ν1)|q+16|ψ′(ν2c)|q}1/q+{18[|ψ′(ν1)|q+|ψ′(ν2c)|q]}1/q]. |
In this section, we recall the following special means of two positive number ν1,ν2 with ν1<ν2:
(1) The arithmetic mean
A=A(ν1,ν2)=ν1+ν22. |
(2) The geometric mean
G=G(ν1,ν2)=√ν1ν2. |
(3) The harmonic mean
H=H(ν1,ν2)=2ν1ν2ν1+ν2. |
The following relationship are well-known in the literature.
H(ν1,ν2)≤G(ν1,ν2)≤A(ν1,ν2). |
Proposition 3. Let 0<ν1<ν2 and s∈[0,1]. then
12−s(ν2+12η(ν1,ν2))≤η(ν1,ν2)+2ν2)2≤A(ν1,ν2)(2−s). | (6.1) |
Proof. We attained the above inequality (6.1), if we put ψ(ν)=ν for ν>0 in Theorem 4.1.
Proposition 4. Let ν1,ν2∈(0,1] with ν1<ν2 and s∈[0,1], then
12−slnG(ν1,ν2)≤1ν2(ν2+η(ν1,ν2))≤ln(ν2+12η(ν1,ν2))2−s2. | (6.2) |
Proof. We attained the above inequality (6.2), if we put ψ(ν)=−lnν for ν∈(0,1] in Theorem 4.1.
Proposition 5. Let ν1,ν2∈(0,∞) with ν1<ν2 and s∈[0,1], then
1(2−s)[1−(s2)j](ν2+12η(ν1,ν2))≤ln(1+η(ν1,ν2)ν2)η(ν1,ν2)≤2−sH(ν1,ν2). | (6.3) |
Proof. We attained the above inequality (6.3), if we put ψ(ν)=1ν for ν>0 in Theorem 4.1.
In this article, we addressed a novel idea of generalized preinvex function namely s-type preinvex function. Some algebraic properties were examined of the proposed definition. In the manner of the newly proposed definition, we described some novel versions of Hermite-Hadamard type inequality. Further, we established two new identities. Our presented results employing the new identities can be considered as refinements and remarkable extensions to the new family of preinvex functions. Our novel results can be deduced from the previously known results. Applications to special means were considered. The above estimations on the mentioned lemmas need an interesting and amazing comparison. Using Lemma 5.1, we examined three Theorems 5.4–5.6, in which we used the Hölder and Hölder-İşcan inequality. On the comparison, the Theorem 5.6 gives the better result as compared to the other Theorems 5.4 and 5.5. Similarly, employing Lemma 5.1, we examined two Theorems 5.7 and 5.8, in which we used power mean and improved power mean inequality. On the comparison, the Theorem 5.7 gives the better result as compared to the other Theorem 5.8. We hope the consequences and techniques of this article will energize and inspire the researchers to explore a more interesting sequel in this area.
The authors declare that there are no conflicts of interest regarding the publication of this paper.
[1] | B. Y. Xi, F. Qi, Some integral inequalities of Hermite-Hadamard type for convex functions with applications to means, J. Funct. Space. Appl., 2012 (2012), 1–14. |
[2] | C. P. Niculescu, L. E. Persson, Convex functions and their applications, New York: Springer, 2006. |
[3] | S. Özcan, İ. İşcan, Some new Hermite-Hadamard type integral inequalities for s-convex functions and theirs applications, J. Inequal. Appl., 1 (2019), 1–11. |
[4] |
S. K. Sahoo, H. Ahmad, M. Tariq, B. Kodamasingh, H. Aydi, M. De la Sen, Hermite-Hadamard type inequalities involving k-fractional operator for (¯h,m)-convex functions, Symmetry, 13 (2021), 1686. doi: 10.3390/sym13091686
![]() |
[5] |
M. Tariq, S. K. Sahoo, J. Nasir, H. Aydi, H. Alsamir, Some Ostrowski type inequalities via n-polynomial exponentially s-convex functions and their applications, AIMS Mathematics, 6 (2021), 13272–13290. doi: 10.3934/math.2021768
![]() |
[6] |
W. Sun, R. Xu, Some new Hermite-Hadamard type inequalities for generalized harmonically convex functions involving local fractional integrals, AIMS Mathematics, 6 (2021), 10679–10695. doi: 10.3934/math.2021620
![]() |
[7] | W. Sun, Hermite-Hadamard type local fractional integral inequalities for generalized s-preinvex functions and their generalization, Fractals, 29 (2021), 2150098. |
[8] |
M. A. Khan, Y. M. Chu, T. U. Khan, J. Khan, Some new inequalities of Hermite-Hadamard type for s-convex functions with applications, Open Math., 15 (2017), 1414–1430. doi: 10.1515/math-2017-0121
![]() |
[9] |
T. Du, M. U. Awan, A. Kashuri, S. Zhao, Some k-fractional extensions of the trapezium inequalities through generalized relative semi-(m,h)-preinvexity, Appl. Anal., 100 (2021), 642–662. doi: 10.1080/00036811.2019.1616083
![]() |
[10] | S. I. Butt, M. Tariq, A. Aslam, H. Ahmad, T. A. Nofel, Hermite-Hadamard type inequalities via generalized harmonic exponential convexity and applications, J. Funct. Space., 2021 (2021), 1–12. |
[11] |
S. K. Sahoo, M. Tariq, H. Ahmad, J. Nasir, H. Aydi, A. Mukheimer, New Ostrowski-type fractional integral inequalities via generalized exponential-type convex functions and applications, Symmetry, 13 (2021), 1429. doi: 10.3390/sym13081429
![]() |
[12] |
M. Tariq, J. Nasir, S. K. Sahoo, A. A. Mallah, A note on some Ostrowski type inequalities via generalized exponentially convexity, J. Math. Anal. Model., 2 (2021), 1–15. doi: 10.48185/jmam.v2i1.127
![]() |
[13] |
M. Tariq, S. K. Sahoo, J. Nasir, S. K. Awan, Some Ostrowski type integral inequalities using hypergeometric functions, J. Fract. Calc. Nonlinear Syst., 2 (2021), 24–41. doi: 10.48185/jfcns.v2i1.240
![]() |
[14] |
M. A. Hanson, On sufficiency of the Kuhn-Tucker conditions, J. Math. Anal. Appl., 80 (1981), 545–550. doi: 10.1016/0022-247X(81)90123-2
![]() |
[15] | A. Ben-Isreal, B. Mond, What is invexity? Anziam. J., 28 (1986), 1–9. |
[16] | S. R. Mohan, S. K. Neogy, S. K, On invex sets and preinvex functions, J. Math. Anal. Appl., 189 (1995), 901–908. |
[17] |
T. Antczak, Mean value in invexity analysis, Nonl. Anal., 60 (2005), 1473–1484. doi: 10.1016/j.na.2004.11.005
![]() |
[18] |
S. Rashid, İ. İşcan, D. Baleanu, Y. M. Chu, Generation of new fractional inequalities via n-polynomials s-type convexity with applications, Adv. Differ. Equ., 2020 (2020), 1–20. doi: 10.1186/s13662-019-2438-0
![]() |
[19] |
Y. C. Kwun, A. A. Shahid, W. Nazeer, M. Abbas, S. M. Kang, Fractal generation via CR iteration scheme with s-convexity, IEEE Access, 7 (2019), 69986–69997. doi: 10.1109/ACCESS.2019.2919520
![]() |
[20] |
S. Kumari, M. Kumari, R. Chugh, Generation of new fractals via SP orbit with s-convexity, Int. J. Eng. Technol., 9 (2017), 2491–2504. doi: 10.21817/ijet/2017/v9i3/1709030282
![]() |
[21] | S. Mititelu, Invex sets and preinvex functions, J. Adv. Math. Stud., 2 (2009), 41–53. |
[22] |
T. Weir, B. Mond, Pre-inven functions in multiple objective optimization, J. Math. Anal. Appl., 136 (1988), 29–38. doi: 10.1016/0022-247X(88)90113-8
![]() |
[23] |
M. A. Noor, K. I. Noor, M. U. Awan, J. Y. Li, On Hermite-Hadamard inequalities for h-preinvex functions, Filomat, 28 (2014), 1463–1474. doi: 10.2298/FIL1407463N
![]() |
[24] | M. A. Noor, Hermite-Hadamard integral inequalities for log-preinvex functions, J. Math. Anal. Approx. Theory, 2 (2007), 126–131. |
[25] | G. Barani, S. S. Dragomir, Hermite-Hadamard inequality for functions whose derivatives absolute values are preinvex, J. Inequal. Appl., 1 (2012), 1–9. |
[26] | M. A. Noor, Hadamard integral inequalities for product of two preinvex function, Nonl. Anal. Forum., 14 (2009), 167–173. |
[27] | M. A. Noor, Some new classes of nonconvex functions, Nonl. Funct. Anal. Appl., 11 (2006), 165–171. |
[28] | M. A. Noor, On Hadamard integral inequalities invoving two log-preinvex functions, J. Inequal. Pure Appl. Math., 8 (2007), 1–6. |
[29] | M. U. Awan, S. Talib, M. A. Noor, Y. M. Chu, K. I. Noor, Some trapezium-like inequalities involving functions having strongly n-polynomial preinvexity property of higher order, J. Funct. Space., 2020 (2020), 1–9. |
[30] | S. Rashid, İ. İşcan, D. Baleanu, Y. M. Chu, Generation of new fractional inequalities via n-polynomials s-type convexity with applications, Adv. Differ. Equ., 2020 (2020), 9154139. |
[31] | C. P. Niculescu, L. E. Persson, Convex functions and their applications, New York: Springer, 2006. |
[32] | S. K. Mishra, G. Giorgi, Invexity and Optimization, Berlin: Springer-Verlag, 2008. |
[33] | J. Hadamard, Étude sur les propriétés des fonctions entiéres en particulier d'une fonction considéréé par Riemann, J. Math. Pure. Appl., 58 (1893), 171–215. |
[34] |
X. M. Yang, X. Q. Yang, K. L. Teo, Generalized invexity and generalized invariant monotonicity, J. Optimiz. Theory App., 117 (2003), 607–625. doi: 10.1023/A:1023953823177
![]() |
1. | Muhammad Tariq, Hijaz Ahmad, Hüseyin Budak, Soubhagya Kumar Sahoo, Thanin Sitthiwirattham, Jiraporn Reunsumrit, A Comprehensive Analysis of Hermite–Hadamard Type Inequalities via Generalized Preinvex Functions, 2021, 10, 2075-1680, 328, 10.3390/axioms10040328 | |
2. | SHUHONG YU, TINGSONG DU, BO YU, PROPERTIES AND INTEGRAL INEQUALITIES INVOLVING WITH THE GENERALIZED s-TYPE PREINVEX MAPPINGS IN FRACTAL SPACE, 2022, 30, 0218-348X, 10.1142/S0218348X22501584 | |
3. | Shuhong Yu, Yunxiu Zhou, Tingsong Du, Certain midpoint-type integral inequalities involving twice differentiable generalized convex mappings and applications in fractal domain, 2022, 164, 09600779, 112661, 10.1016/j.chaos.2022.112661 | |
4. | Pinzheng Tan, Tingsong Du, On the multi-parameterized inequalities involving the tempered fractional integral operators, 2023, 37, 0354-5180, 4919, 10.2298/FIL2315919T | |
5. | Musavvir Ali, Ehtesham Akhter, w -Invexity and optimality problem , 2024, 18, 1658-3655, 10.1080/16583655.2024.2359207 |