Research article

On Hermite-Hadamard type inequalities for n-polynomial convex stochastic processes

  • Received: 03 January 2021 Accepted: 22 March 2021 Published: 12 April 2021
  • MSC : 34N05, 35A23

  • In this note, our purpose is to introduce the concept of n-polynomial convex stochastic processes and study some of their algebraic properties. We establish new refinements for integral version of Hölder and power mean inequality. Also, we are concerned to extend several Hermite-Hadamard type inequalities for n-polynomial convex stochastic processes by using Hölder, Hölder-İşcan, power mean and improved power mean integral inequalities. Moreover, we give comparison of obtained results.

    Citation: Haoliang Fu, Muhammad Shoaib Saleem, Waqas Nazeer, Mamoona Ghafoor, Peigen Li. On Hermite-Hadamard type inequalities for n-polynomial convex stochastic processes[J]. AIMS Mathematics, 2021, 6(6): 6322-6339. doi: 10.3934/math.2021371

    Related Papers:

    [1] Tekin Toplu, Mahir Kadakal, İmdat İşcan . On n-Polynomial convexity and some related inequalities. AIMS Mathematics, 2020, 5(2): 1304-1318. doi: 10.3934/math.2020089
    [2] Muhammad Samraiz, Kanwal Saeed, Saima Naheed, Gauhar Rahman, Kamsing Nonlaopon . On inequalities of Hermite-Hadamard type via n-polynomial exponential type s-convex functions. AIMS Mathematics, 2022, 7(8): 14282-14298. doi: 10.3934/math.2022787
    [3] Shuang-Shuang Zhou, Saima Rashid, Muhammad Aslam Noor, Khalida Inayat Noor, Farhat Safdar, Yu-Ming Chu . New Hermite-Hadamard type inequalities for exponentially convex functions and applications. AIMS Mathematics, 2020, 5(6): 6874-6901. doi: 10.3934/math.2020441
    [4] M. Emin Özdemir, Saad I. Butt, Bahtiyar Bayraktar, Jamshed Nasir . Several integral inequalities for (α, s,m)-convex functions. AIMS Mathematics, 2020, 5(4): 3906-3921. doi: 10.3934/math.2020253
    [5] Saad Ihsan Butt, Ahmet Ocak Akdemir, Muhammad Nadeem, Nabil Mlaiki, İşcan İmdat, Thabet Abdeljawad . (m,n)-Harmonically polynomial convex functions and some Hadamard type inequalities on the co-ordinates. AIMS Mathematics, 2021, 6(5): 4677-4690. doi: 10.3934/math.2021275
    [6] Yousaf Khurshid, Muhammad Adil Khan, Yu-Ming Chu . Conformable integral version of Hermite-Hadamard-Fejér inequalities via η-convex functions. AIMS Mathematics, 2020, 5(5): 5106-5120. doi: 10.3934/math.2020328
    [7] Ahmet Ocak Akdemir, Saad Ihsan Butt, Muhammad Nadeem, Maria Alessandra Ragusa . Some new integral inequalities for a general variant of polynomial convex functions. AIMS Mathematics, 2022, 7(12): 20461-20489. doi: 10.3934/math.20221121
    [8] Muhammad Tariq, Asif Ali Shaikh, Sotiris K. Ntouyas, Jessada Tariboon . Some novel refinements of Hermite-Hadamard and Pachpatte type integral inequalities involving a generalized preinvex function pertaining to Caputo-Fabrizio fractional integral operator. AIMS Mathematics, 2023, 8(11): 25572-25610. doi: 10.3934/math.20231306
    [9] Thanin Sitthiwirattham, Muhammad Aamir Ali, Hüseyin Budak, Saowaluck Chasreechai . Quantum Hermite-Hadamard type integral inequalities for convex stochastic processes. AIMS Mathematics, 2021, 6(11): 11989-12010. doi: 10.3934/math.2021695
    [10] Serap Özcan, Saad Ihsan Butt, Sanja Tipurić-Spužević, Bandar Bin Mohsin . Construction of new fractional inequalities via generalized n-fractional polynomial s-type convexity. AIMS Mathematics, 2024, 9(9): 23924-23944. doi: 10.3934/math.20241163
  • In this note, our purpose is to introduce the concept of n-polynomial convex stochastic processes and study some of their algebraic properties. We establish new refinements for integral version of Hölder and power mean inequality. Also, we are concerned to extend several Hermite-Hadamard type inequalities for n-polynomial convex stochastic processes by using Hölder, Hölder-İşcan, power mean and improved power mean integral inequalities. Moreover, we give comparison of obtained results.



    In 1980, Nikodem [1] proposed convex stochastic processes and examined the regularity properties of these processes. Skowroński in 1992, obtained some further results on Jensen-convex and Wright-convex stochastic processes [2,3]. Some interesting properties of convex and Jensen-convex processes are also presented in [4]. Moreover, Kotrys [5] in 2011 developed Hermite-Hadamard type inequalities for convex stochastic processes. In recent years, many studies have been done in the literature on some types of convexity for stochastic processes see [9,10,11] and Hermite-Hadamard inequalities for related convex stochastic processes [12,13,14,15,16,17,18].

    A stochastic process X:I×ΩR is said to be convex if we have

    X(tc+(1t)d,.)tX(c,.)+(1t)X(d,.)(a.e.),

    for all c,dI, t[0,1]. X is said to be concave on I, if above inequality reverses.

    The notion of stochastic processes for convexity is of great importance in optimization and also useful for numerical approximations when there exist probabilistic quantities in the literature [19]. In [20], the authors studied stochastic optimization problem under constraints in a general framework including fnancial models with constrained portfolios, labor income and large investor models and reinsurance models (see [21,22,23,24,25,26,27] for more details). A constrained stochastic successive convex approximation (CSSCA) algorithm is proposed in [28] to find a stationary point for a general non-convex stochastic optimization problem, whose objective and constraint functions are non-convex and involve expectations over random states. The algorithm solved a sequence of convex objective/feasibility optimization problems obtained by replacing the objective/constraint functions in the original problems with some convex surrogate functions. For more on applications of convex stochastic processes see [29,30,31,32,33,34,35,36].

    Let X:I×ΩR be the Jensen convex and mean-square continuous in the interval I×Ω then

    X(c+d2,.)1dcdcX(x,.)dxX(c,.)+X(d,.)2(a.e.), (1.1)

    for any c,dI, c<d. If the stochastic process X is concave then both inequalities hold in the reversed direction. This double inequality is well known in the literature as Hermite-Hadamard inequality [5]. In this article, we establish new refinements of Hölder and power mean integral inequality. Also, we present the counterpart of the research made by T. Toplu et al. in [6] for stochastic processes.

    Let us present some important and useful definitions for this research.

    Let (Ω,A,P) be a probability space. A function X:ΩR is a random variable if it is A-measurable. A function X:I×ΩR, where IR is an interval, is a stochastic process if for every xI, the function X(x,.) is a random variable. Readers can look at [7,8] for the defnitions and basic properties.

    Definition 1.1. [8] Consider a stochastic process X(t,.) such that the expectation squared is bounded, i.e. E[X(t,.)]2< for all tI. The stochastic process X is defined:

    (i) continuous in probability on I, if

    μlimccX(c,.)=X(c,.),

    for all cI, where μlim represents limit in the probability;

    (ii) mean-square continuous in I, if

    limccE(X(c,.)X(c,.))2=0,

    for all cI;

    (iii) increasing (decreasing) if for all c,dI, c<v

    X(c,.)X(d,.);X(c,.)X(d,.)(a.e.);

    (iv) mean-square differentiable at a point cI, if there is a stochastic process X (derivative of X) such that

    X(c,.)=PlimccX(c,.)X(c,.)cc.

    The stochastic process X:I×ΩR is continuous (differentiable) if it is continuous (differentiable) at every point of interval I.

    Definition 1.2. [8] Assume a stochastic process X:I×ΩR with E[X(a)2]<, where aI. A random variable Y:ΩR is said to be the mean-square integral of the process X on [c,d] if for every normal sequence of partitions of [c,d]I, c=t<t1<...<tn=d and for all Θk[tk1,tk], k = 1, ..., n, we have

    limnE[(nk=1X(Θk,.)(tktk1)Y(.))2]=0.

    Then we write

    dcX(s,.)ds=Y(.)(a.e).

    For the existence of the mean-square integral it is enough to assume the mean-square continuity of the stochastic process X.

    The paper is organized as follow: In section 2, we derive Hölder-İşcan and improved power mean integral inequality, whereas in section 3, we introduce the notion of n-polynomial convex stochastic process and present some interesting properties for these processes. Furthermore, section 4 and section 5 are devoted to state and prove Hermite-Hadamard inequality and some new type of Hermite-Hadamard inequalities respectively for n-polynomial convex stochastic processes.

    In this section, we establish new refinements of Hölder and power mean integral inequality.

    Theorem 2.1. (Hölder-İşcan integral inequality) Let X,Y:[c,d]×ΩR be real stochastic processes and |X|p, |Y|p be mean square integrable on [c,d]. If p>1 and 1p+1q=1, then we have almost everywhere:

    dc|X(x,.)Y(x,.)|dx1dc{(dc(dx)|X(x,.)|pdx)1p(dc(dx)|Y(x,.)|qdx)1q+(dc(xc)|X(x,.)|pdx)1p(dc(xc)|Y(x,.)|qdx)1q}. (2.1)

    Proof. Using the Hölder integral inequality, we obtain

    dc|X(x,.)Y(x,.)|dx1dc{dc|(dx)1pX(x,.)(dx)1qY(x,.)|dx+dc|(xc)1pX(x,.)(xc)1qY(x,.)|dx}1dc{(dc(dx)|X(x,.)|Pdx)1p(dc(dx)|Y(x,.)|qdx)1q+(dc(xc)|X(x,.)|pdx)1p(dc(xc)|Y(x,.)|qdx)1q}.

    Theorem 2.2. (Improved power mean integral inequality) Let X,Y:[c,d]×ΩR be real stochastic processes and |X|, |X||Y|q be mean square integrable on [c,d]. If q1, then the following inequality holds almost everywhere:

    dc|X(x,.)Y(x,.)|dx1dc{(dc(dx)|X(x,.)|dx)11q(dc(dx)||X(x,.)|Y(x,.)|qdx)1q+(dc(xc)|X(x,.)|dx)11q(dc(xc)||X(x,.)|Y(x,.)|qdx)1q}. (2.2)

    Proof. Firstly, let q>1. Using Hölder inequality, we easily see that

    dc|X(x,.)Y(x,.)|dx=1dc{dc|(dx)1pX1p(x,.)(dx)1qX1q(x,.)Y(x,.)|dx+dc|(xc)1pX1p(x,.)(xc)1qX1qY(x,.)|dx}1dc{(dc(dx)|X(x,.)|dx)11q(dc(dx)|X(x,.)||Y(x,.)|qdx)1q+(dc(xc)|X(x,.)|dx)11q(dc(xc)|X(x,.)||Y(x,.)|qdx)1q}.

    For q=1, the inequality (2.2) holds trivially.

    In this section, we introduce our main definition and present some results concerning to the basic properties of n-polynomial convex stochastic processes.

    Definition 3.1. Let X:I×ΩR be a non-negative stochastic process and nN. Then X is said to be n-polynomial convex if

    X(tc+(1t)d,.)1nnk=1[1(1t)k]X(c,.)+1nnk=1[1tk]X(d,.)(a.e.), (3.1)

    for every c,dI and t[0,1].

    Remark 3.2. It is worth pointing out that for

    1. n=1 in (3.1), the 1-polynomial convexity implies classical convexity.

    2. h(t)=1nnk=1[1(1t)k] in (3.1), we obtain an h-convex stochastic process (see [10]).

    Remark 3.3. Let X:I×ΩR be a 2-polynomial convex stochastic process, then

    X(tc+(1t)d,.)3tt22X(c,.)+2tt22X(d,.)(a.e.),

    for every c,dI and t[0,1]. It is clear that for all t[0,1]

    t3tt22and1t2tt22.

    This shows that every non-negative convex stochastic process is also a 2-polynomial convex stochastic process. More generally, every non-negative convex stochastic process is also an n-polynomial convex stochastic process.

    Proposition 3.4. Let X,Y:I×ΩR be n-polynomial convex stochastic processes and γR (γ0), then X+Y and γX are also n-polynomial convex stochastic processes.

    Proof. Consider c,dI and t(0,1) arbitrary.

    (X+Y)(tc+(1t)d,.)=X(tc+(1t)d,.)+Y(tc+(1t)d,.)1nnk=1[1(1t)k](X(c,.)+Y(c,.))+1nnk=1[1tk](X(d,.)+Y(d,.))=1nnk=1[1(1t)k](X+Y)(c,.)+1nnk=1[1tk](X+Y)(d,.))(a.e.).

    Now consider γ0. Then,

    γX(tc+(1t)d,.)γ1nnk=1[1(1t)k]X(c,.)+γ1nnk=1[1tk]X(d,.)=1nnk=1[1(1t)k]γX(c,.)+1nnk=1[1tk]γX(d,.)(a.e.).

    Proposition 3.5. If X:I×ΩR is convex and Y:I×ΩR is an n-polynomial convex and non-decreasing stochastic process, then YX:I×ΩR is n-polynomial convex stochastic process.

    Proof. By definition of composition, we have

    (YX)(tc+(1t)d,.)=Y(X(tc+(1t)d,.))Y(tX(c,.)+(1t)X(d,.))1nnk=1[1(1t)k]Y(X(c,.))+1nnk=1[1tk]Y(X(d,.))=1nnk=1[1(1t)k](YX)(c,.)+1nnk=1[1tk](YX)(d,.)(a.e.),

    which completes the prove.

    Theorem 3.6. Let Xα:[a,b]×ΩR, b>0, be an arbitrary collection of n-polynomial convex stochastic processes and define a stochastic process Y(c,.)=supαXα(c,.). If J={v[a,b]:Y(v,.)<}is non-empty, then J is an interval and Y is an n-polynomial convex stochastic process on J×Ω.

    Proof. Let t[0,1] and c,dJ be arbitrary. Then

    Y(tc+(1t)d,.)=supαXα(tc+(1t)d,.)supα[1nnk=1[1(1t)k]Xα(c,.)+1nnk=1[1tk]Xα(d,.)]1nnk=1[1(1t)k]supαXα(c,.)+1nnk=1[1tk]supαXα(d,.)=1nnk=1[1(1t)k]Y(c,.)+1nnk=1[1tk]Y(d,.)<.

    This implies that J is an interval and Y is an n-polynomial convex stochastic process on J×Ω.

    In this section, we will establish Hermite-Hadamard inequality for n-polynomial convex, mean square integrable stochastic process.

    Theorem 4.1. Let X:I×ΩR be an n-polynomial convex, mean square integrable stochastic process. Then for every c,dI, c<d, we have almost everywhere

    12(nn+2n1)X(c+d2,.)1dcdcX(x,.)dx(X(c,.)+X(d,.)n)nk=1kk+1. (4.1)

    Proof. By using inequality (3.1), we have

    X(c+d2,.)=X([tc+(1t)d]+[(1t)c+td]2,.)1nnk=1[1(112)k]X(tc+(1t)d,.)+1nnk=1[1(12)k]X((1t)c+td,.)=1nnk=1[1(12)k][X(tc+(1t)d,.)+X((1t)c+td,.)].

    By integrating last inequality with respect to t[0,1], we get

    X(c+d2,.)1nnk=1[1(12)k][10X(tc+(1t)d,.)dt+10X((1t)c+td,.)dt]=2dc(n+2n1n)dcX(x,.)dx,

    implies

    12(nn+2n1)X(c+d2,.)1dcdcX(x,.)dx. (4.2)

    Now, changing the variable as x=tc+(1t)d, and using the inequality (3.1), we have

    1dcdcX(x,.)dx=10X(tc+(1t)d,.)dt10[1nnk=1[1(1t)k]X(c,.)+1nnk=1[1tk]X(d,.)]dt=X(c,.)n10nk=1[1(1t)k]dt+X(d,.)n10nk=1[1tk]dt=X(c,.)nnk=110[1(1t)k]dt+X(d,.)nnk=110[1tk]dt=X(c,.)nnk=1kk+1+X(d,.)nnk=1kk+1=X(c,.)+X(d,.)nnk=1kk+1, (4.3)

    where

    10[1(1t)k]dt=10[1tk]dt=kk+1.

    Combining (4.2) and (4.3) yields (4.1).

    Remark 4.2. For n=1, the inequality (4.1) coincides with the inequality (1.1).

    In this section, we purpose to develop new Hermite-Hadamard type inequalities for stochastic processes whose first derivative in absolute value, raised to a certain power is n-polynomial convex stochastic process. In order to prove these inequalities it is necessary to use the following lemma:

    Lemma 5.1. Let X:I×ΩR be a mean square differentiable stochastic process on I and X is mean square integrable on [c,d], where c,dI, c<d. Then we have almost everywhere

    X(c,.)+X(d,.)21dcdcX(x,.)dx=dc210(12t)X(tc+(1t)d,.)dt. (5.1)

    Proof. Using integration by parts, we get

    10(12t)X(tc+(1t)d,.)dt=X(tc+(1t)d,.)cd(12t)|10+210X(tc+(1t)d,.)cddt=X(c,.)+X(d,.)dc2dc.1dcdcX(x,.)dx.

    This implies that

    dc210(12t)X(tc+(1t)d,.)dt=X(c,.)+X(d,.)21dcdcX(x,.)dx.

    Theorem 5.2. Let X:I×ΩR be a mean square differentiable stochastic process on I and X be mean square integrable on [c,d]. If |X| is an n-polynomial convex stochastic process on [c,d], then we have almost everywhere:

    |X(c,.)+X(d,.)21dcdcX(x,.)dx|dcnnk=1[(k2+k+2)2k2(k+1)(k+2)2k+1]A(|X(c,.)|,|X(d,.)|), (5.2)

    where A is the arithmetic mean.

    Proof. Using Lemma 5.1 and the property of n-polynomial convexity of stochastic process |X|, we have

    |X(c,.)+X(d,.)21dcdcX(x,.)dx|=|dc210(12t)X(tc+(1t)d,.)dt|dc210|12t|(1nnk=1[1(1t)k]|X(c,.)|+1nnk=1[1tk]|X(d,.)|)dtdc2n(|X(c,.)|10|12t|nk=1[1(1t)k]dt+|X(d,.)|10|12t|nk=1[1tk]dt)=dc2n(|X(c,.)|nk=110|12t|[1(1t)k]dt+|X(d,.)|nk=110|12t|[1tk]dt)=dc2n(|X(c,.)|nk=1[(k2+k+2)2k2(k+1)(k+2)2k+1]+|X(d,.)|nk=1[(k2+k+2)2k2(k+1)(k+2)2k+1])=dcnnk=1[(k2+k+2)2k2(k+1)(k+2)2k+1](|X(c,.)|+|X(d,.)|2)=dcnnk=1[(k2+k+2)2k2(k+1)(k+2)2k+1]A(|X(c,.)|,|X(d,.)|),

    where A is the arithmetic mean and

    10|12t|[1(1t)k]dt=10|12t|[1tk]dt=(k2+k+2)2k2(k+1)(k+2)2k+1.

    Corollary 5.3. For n=1 in (5.2), we obtain the following inequality for convex stochastic processes:

    |X(c,.)+X(d,.)21dcdcX(x,.)dx|dc4A(|X(c,.)|,|X(d,.)|)(a.e.).

    Theorem 5.4. Let X:I×ΩR be a mean square differentiable stochastic process on I with q>1, 1p+1q=1 and assume that X be mean square integrable on [c,d]. If |X|q is an n-polynomial convex stochastic process on [c,d], then the following inequality holds almost everywhere for t[0,1]:

    |X(c,.)+X(d,.)21dcdcX(x,.)dx|dc2(1p+1)1p(2nnk=1kk+1)1qA1q(|X(c,.)|q,|X(d,.)|q). (5.3)

    Proof. By using Lemma 5.1, Hölder's integral inequality and the definition of n-polynomial convexity of stochastic process |X|q, we get

    |X(c,.)+X(d,.)21dcdcX(x,.)dx|dc210|12t|X(tc+(1t)d,.)dtdc2(10|12t|pdt)1p(10|X(tc+(1t)d,.)|qdt)1qdc2(1p+1)1p(|X(c,.)|qnnk=110[1(1t)k]dt+|X(d,.)|qnnk=110[1tk]dt)1q=dc2(1p+1)1p(|X(c,.)|q1nnk=1kk+1+|X(d,.)|q1nnk=1kk+1)1q=dc2(1p+1)1p(2nnk=1kk+1)1qA1q(|X(c,.)|q,|X(d,.)|q),

    where A is the arithmetic mean and

    10|12t|pdt=1p+1,10[1(1t)k]dt=10[1tk]dt=kk+1.

    Corollary 5.5. For n=1 in (5.3), we obtain the following inequality for convex stochastic processes:

    |X(c,.)+X(d,.)21dcdcX(x,.)dx|dc2(1p+1)1pA1q(|X(c,.)|q,|X(d,.)|q)(a.e.).

    Theorem 5.6. Let X:I×ΩR be a mean square differentiable stochastic process on I with q1 and X be mean square integrable on [c,d]. If |X|q is an n-polynomial convex stochastic process on [c,d], then the following inequality holds almost everywhere for t[0,1]:

    |X(c,.)+X(d,.)21dcdcX(x,.)dx|dc2(12)12q(1nnk=1(k2+k+2)2k2(k+1)(k+2)2k+1)1qA1q(|X(c,.)|q,|X(d,.)|q). (5.4)

    Proof. Assume q>1. By using Lemma 5.1, Hölder's integral inequality and the property of n-polynomial convexity of stochastic process |X|q, we get

    |X(c,.)+X(d,.)21dcdcX(x,.)dx|dc210|12t|X(tc+(1t)d,.)dtdc2(10|12t|dt)11q(10|12t||X(tc+(1t)d,.)|qdt)1qdc2(12)11q(10|12t|[1nnk=1[1(1t)k]|X(c,.)|q+1nnk=1[1tk]|X(d,.)|q]dt)1q=dc2(12)11q[|X(c,.)|qnnk=110|12t|[1(1t)k]dt+|X(d,.)|qnnk=110|12t|[1tk]dt]1q=dc2(12)11q[|X(c,.)|qnnk=1(k2+k+2)2k2(k+1)(k+2)2k+1+|X(d,.)|qnnk=1(k2+k+2)2k2(k+1)(k+2)2k+1]1q=dc2(12)12q(1nnk=1(k2+k+2)2k2(k+1)(k+2)2k+1)1qA1q(|X(c,.)|q,|X(d,.)|q),

    where

    10|12t|dt=12,10|12t|[1(1t)k]dt=10|12t|[1tk]dt=(k2+k+2)2k2(k+1)(k+2)2k+1.

    For q=1, we use the estimates from the proof of Theorem 5.2. Thus, the proof of Theorem 5.6 is completed.

    Remark 5.7. If we take q=1 in Theorem 5.6, then we get the conclusion of Theorem 5.2.

    Corollary 5.8. For n=1 in (5.4), we obtain the following inequality for convex stochastic processes:

    |X(c,.)+X(d,.)21dcdcX(x,.)dx|dc4A1q(|X(c,.)|q,|X(d,.)|q)(a.e.).

    Now, we will prove the Theorem 5.4 by using Hölder-İşcan integral inequality. Then we will compare the results obtained in this Theorem and Theorem 5.4.

    Theorem 5.9. Let X:I×ΩR be mean square differentiable on I with c<d, q>1, 1p+1q=1. Assume that X be mean square integrable on [c,d] and |X|q be an n-polynomial convex stochastic process on [c,d], then the following inequality holds almost everywhere for t[0,1]:

    |X(c,.)+X(d,.)21dcdcX(x,.)dx|dc2(12(p+1))1p(|X(c,.)|qnnk=1k2(k+2)+|X(d,.)|qnnk=1k(k+3)2(k+1)(k+2))1q+dc2(12(p+1))1p(|X(c,.)|qnnk=1k(k+3)2(k+1)(k+2)+|X(d,.)|qnnk=1k2(k+2))1q. (5.5)

    Proof. By using Lemma 5.1, Hölder-İşcan integral inequality and the property of n-polynomial convexity of stochastic process |X|q, we obtain

    |X(c,.)+X(d,.)21dcdcX(x,.)dx|dc210|12t|X(tc+(1t)d,.)dtdc2(10(1t)|12t|pdt)1p(10(1t)|X(tc+(1t)d,.)|qdt)1q+dc2(10t|12t|pdt)1p(10t|X(tc+(1t)d,.)|qdt)1q

    implies

    |X(c,.)+X(d,.)21dcdcX(x,.)dx|dc2(12(p+1))1p(|X(c,.)|qnnk=110(1t)[1(1t)k]dt+|X(d,.)|qnnk=110(1t)[1tk]dt)1q+dc2(12(p+1))1p(|X(c,.)|qnnk=110t[1(1t)k]dt+|X(d,.)|qnnk=110t[1tk]dt)1q,

    which gives

    |X(c,.)+X(d,.)21dcdcX(x,.)dx|dc2(12(p+1))1p(|X(c,.)|qnnk=1k2(k+2)+|X(d,.)|qnnk=1k(k+3)2(k+1)(k+2))1q+dc2(12(p+1))1p(|X(c,.)|qnnk=1k(k+3)2(k+1)(k+2)+|X(d,.)|qnnk=1k2(k+2))1q

    where

    10(1t)|12t|pdt=10t|12t|pdt=12(p+1),10(1t)[1(1t)k]dt=10t[1tk]dt=k2(k+2),

    and

    10(1t)[1tk]dt=10t[1(1t)k]=k(k+3)2(k+1)(k+2).

    Hence, the proof of Theorem 5.9 is completed..

    Corollary 5.10. For n=1 in (5.5), we obtain the following inequality for convex stochastic processes:

    |X(c,.)+X(d,.)21dcdcX(x,.)dx|dc4(1p+1)1p[(|X(c,.)|q+2|X(d,.)|q3)1q+(2|X(c,.)|q+|X(d,.)|q3)1q](a.e.).

    Remark 5.11. The inequality (5.5) gives better result than (5.3). We will prove it by showing that

    dc2(12(p+1))1p(|X(c,.)|qnnk=1k2(k+2)+|X(d,.)|qnnk=1k(k+3)2(k+1)(k+2))1q+dc2(12(p+1))1p(|X(c,.)|qnnk=1k(k+3)2(k+1)(k+2)+|X(d,.)|qnnk=1k2(k+2))1qdc2(1p+1)1p(2nnk=1kk+1)1qA1q(|X(c,.)|q,|X(d,.)|q).

    If we use the concavity of the stochastic process Y:[0,)×ΩR, defined by Y(u,.)=uλ, 0<λ1, we get

    dc2(12(p+1))1p(|X(c,.)|qnnk=1k2(k+2)+|X(d,.)|qnnk=1k(k+3)2(k+1)(k+2))1q+dc2(12(p+1))1p(|X(c,.)|qnnk=1k(k+3)2(k+1)(k+2)+|X(d,.)|qnnk=1k2(k+2))1qdc2(12(p+1))1p2[12|X(c,.)|qnnk=1kk+1+12|X(d,.)|qnnk=1kk+1]=dc221q(1p+1)1p(1nnk=1kk+1)1qA1q(|X(c,.)|q,|X(d,.)|q)

    which is required.

    Theorem 5.12. Let X:I×ΩR be mean square differentiable on I with c<d, q1. Assume that X be mean square integrable on [c,d] and |X|q be an n-polynomial convex stochastic process on [c,d], then the following inequality holds almost everywhere for t[0,1]:

    |X(c,.)+X(d,.)21dcdcX(x,.)dx|dc2(12)22q(|X(c,.)|qnnk=1S1(k)+|X(d,.)|qnnk=1S2(k))1q+dc2(12)22q(|X(c,.)|qnnk=1S2(k)+|X(d,.)|qnnk=1S1(k))1q, (5.6)

    where

    S1(k)=10(1t)|12t|[1(1t)k]dt=10t|12t|[1tk]dt=(k2+k+2)2k22k+2(k+2)(k+3),S2(k)=10t|12t|[1(1t)k]dt=10(1t)|12t|[1tk]dt=(k+5)[(k2+k+2)2k2]2k+2(k+1)(k+2)(k+3).

    Proof. Assume first that q>1. From Lemma 5.1, improved power-mean integral inequality and the definition of n-polynomial convexity of stochastic process |X|q, we have

    |X(c,.)+X(d,.)21dcdcX(x,.)dx|dc210|12t|X(tc+(1t)d,.)dtdc2(10(1t)|12t|dt)11q(10(1t)|12t||X(tc+(1t)d,.)|qdt)1q+dc2(10t|12t|dt)11q(10t|12t||X(tc+(1t)d,.)|qdt)1qdc2(14)11q(|X(c,.)|qnnk=110(1t)|12t|[1(1t)k]dt+|X(d,.)|qnnk=110(1t)|12t|[1tk]dt)1q+dc2(14)11q(|X(c,.)|qnnk=110t|12t|[1(1t)k]dt+|X(d,.)|qnnk=110t|12t|[1tk]dt)1q=dc2(12)22q(|X(c,.)|qnnk=1S1(k)+|X(d,.)|qnnk=1S2(k))1q+dc2(12)22q(|X(c,.)|qnnk=1S2(k)+|X(d,.)|qnnk=1S1(k))1q

    where

    10(1t)|12t|dt=10t|12t|dt=14.

    For q=1, we use the estimates from the proof of Theorem 5.2. Thus, the proof of Theorem 5.12 is completed.

    Corollary 5.13. For n=1 in (5.6), we obtain the following inequality for convex stochastic processes:

    |X(c,.)+X(d,.)21dcdcX(x,.)dx|dc8[(|X(c,.)|q4+3|X(d,.)|q4)1q+(3|X(c,.)|q4+|X(d,.)|q4)1q](a.e.).

    Remark 5.14. The inequality (5.6) gives better estimate than (5.4). Let us prove it by showing

    dc2(12)22q(|X(c,.)|qnnk=1S1(k)+|X(d,.)|qnnk=1S2(k))1q+dc2(12)22q(|X(c,.)|qnnk=1S2(k)+|X(d,.)|qnnk=1S1(k))1qdc2(12)12q(1nnk=1(k2+k+2)2k2(k+1)(k+2)2k+1)1qA1q(|X(c,.)|q,|X(d,.)|q).

    By using concavity of the stochastic process Y:[0,)×ΩR, defined by Y(u,.)=uλ, 0<λ1, we obtain

    dc2(12)22q(|X(c,.)|qnnk=1S1(k)+|X(d,.)|qnnk=1S2(k))1q+dc2(12)22q(|X(c,.)|qnnk=1S2(k)+|X(d,.)|qnnk=1S1(k))1qdc2(12)22q(1nnk=1[S1(k)+S2(k)])1qA1q(|X(c,.)|q,|X(d,.)|q),

    where

    S1(k)+S2(k)=(k2+k+2)2k2(k+1)(k+2)2k+1,

    which completes the proof of remark.

    For two positive numbers c,d with c<d, define

    A(c,d)=c+d2,G(c,d)=cd,H(c,d)=2cdc+d,I(c,d)={1e(ddcc)1dc,cdc,c=d
    L(c,d)={dclndlnc,cdc,c=d,Lp(c,d)={(dp+1cp+1(p+1)(dc))1p,cd,pR{1,0}c,c=d

    These means are respectively called the arithmetic, geometric, harmonic, identric, logarithmic and p-logarithmic means of two positive numbers c and d.

    Applying Theorem 4.1 to X(u,.)=lnu, u(0,1] results in the following inequality for means:

    Corollary 6.1. Assume c,d(0,1] with c<d, then

    12(mm+2m1)lnGlnIlnAmmk=1kk+1(a.e.).

    Applying Theorem 4.1 to X(u,.)=um, u[0,) results in the following inequality for means.

    Corollary 6.2. Assume m(,0)[1,){1} and c,d[0,) with c<d, then

    12(mm+2m1)An(c,d)Lmm(c,d)2mA(cm,dm)mk=1kk+1(a.e.).

    Taking X(u,.)=u1, u(0,) in Theorem 4.1 results in the inequality for means as follows.

    Corollary 6.3. Assume c,d(0,) with c<d, then

    12(mm+2m1)A1(c,d)L1(c,d)2mH1(c,d)mk=1kk+1(a.e.).

    The more generalized class of convex stochastic processes named as n-polynomial convex stochastic process is introduced in the present note. Hermite-Hadamard inequality and some of its refined forms hold for this new generalization. Some existing results in literature became the particular cases of these results as mentioned in remarks. All the results and inequalities derived here are new, interesting and important in the field of integral inequalities.

    This work was sponsored in part by NSFC China, Grant (11571067).

    The authors declare that they do not have any competing interests.



    [1] K. Nikodem, On convex stochastic processes, Aequationes Math., 20 (1980), 184–197. doi: 10.1007/BF02190513
    [2] A. Skowronski, On some properties of j-convex stochastic processes, Aequationes Math., 44 (1992), 249–258. doi: 10.1007/BF01830983
    [3] A. Skowronski, On Wright-convex stochastic processes, Ann. Math. Sil, 9 (1995), 29–32.
    [4] Z. Pales, Nonconvex functions and separation by power means, Math. Inequal. Appl., 3 (2000), 169–176.
    [5] D. Kotrys, Hermite-Hadamard inequality for convex stochastic processes, Aequationes Math., 83 (2012), 143–151. doi: 10.1007/s00010-011-0090-1
    [6] T. Toplu, M. kadakal, I. İşcan, On n-polynomial convexity and some related inequalities, AIMS Math., 5 (2020), 1304–1318. doi: 10.3934/math.2020089
    [7] Z. Brzezniak, T. Zastawniak, Basic stochastic processes: a course through exercises, Springer Science & Business Media, 2000.
    [8] K. Sobczyk, Stochastic differential equations with applications to physics and engineering, Springer Science & Business Media, 2013.
    [9] D. Kotrys, Remarks on strongly convex stochastic processes, Aequationes Math., 86 (2013), 91–98. doi: 10.1007/s00010-012-0163-9
    [10] D. Barrez, L. Gonzlez, N. Merentes, A. Moros, On h-convex stochastic processes, Mathematica Aeterna, 5 (2015), 571–581.
    [11] M. Shoaib Saleem, M. Ghafoor, H. Zhou, J. Li, Generalization of h-convex stochastic processes and some classical inequalities, Math. Probl. Eng., 2020 (2020), 1–9.
    [12] G. Farid, W. Nazeer, M. S. Saleem, S. Mehmood, S. M. Kang, Bounds of Riemann-Liouville fractional integrals in general form via convex functions and their applications, Mathematics, 6 (2018), 248. doi: 10.3390/math6110248
    [13] S. Zhao, S. I. Butt, W. Nazeer, J. Nasir, M. Umar, Y. Liu, Some Hermiteensenercer type inequalities for k-Caputo-fractional derivatives and related results, Adv. Differ. Equ-NY, 2020 (2020), 1–17. doi: 10.1186/s13662-019-2438-0
    [14] H. Bai, M. S. Saleem, W. Nazeer, M. S. Zahoor, T. Zhao, Hermite-Hadamard-and Jensen-type inequalities for interval nonconvex function, J. Math., 2020 (2020), 1–6.
    [15] S. M. Kang, G. Farid, W. Nazeer, B. Tariq, Hadamard and Fejadamard inequalities for extended generalized fractional integrals involving special functions, J. Inequal. Appl., 2018 (2018), 1–11. doi: 10.1186/s13660-017-1594-6
    [16] Y. C. Kwun, G. Farid, S. Ullah, W. Nazeer, K. Mahreen, S. M. Kang, Inequalities for a unified integral operator and associated results in fractional calculus, IEEE Access, 7 (2019), 126283–126292. doi: 10.1109/ACCESS.2019.2939166
    [17] X. Z. Yang, G. Farid, W. Nazeer, Y. M. Chu, C. F. Dong, Fractional generalized Hadamard and Fej-Hadamard inequalities for m-convex function, AIMS Math., 5 (2020), 6325–6340. doi: 10.3934/math.2020407
    [18] Y. C. Kwun, G. Farid, W. Nazeer, S. Ullah, S. M. Kang, Generalized riemann-liouville k-fractional integrals associated with Ostrowski type inequalities and error bounds of hadamard inequalities, IEEE access, 6 (2018), 64946–64953. doi: 10.1109/ACCESS.2018.2878266
    [19] P. Chen, A. Quarteroni, G. Rozza, Stochastic optimal Robin boundary control problems of advection-dominated elliptic equations, SIAM J. Numer. Anal., 51 (2013), 2700–2722. doi: 10.1137/120884158
    [20] M. Mnif, H. Pham, Stochastic optimization under constraints, Stoch. Proc. Appl., 93 (2001), 149–180. doi: 10.1016/S0304-4149(00)00089-2
    [21] P. Bank, F. Riedel, Optimal consumption choice under uncertainty with intertemporal substitution, Ann. Appl. Probab., 11 (1999), 788.
    [22] D. Cuoco, Optimal consumption and equilibrium prices with portfolio constraints and stochastic income, J. Econom. Theory, 72 (1997), 33–73. doi: 10.1006/jeth.1996.2207
    [23] D. Cuoco, J. CvitaniCc, Optimal consumption choice for a large investor, J. Econom. Dyn. Control, 22 (1998), 401–436. doi: 10.1016/S0165-1889(97)00065-1
    [24] J. Cvitanić, I. Karatzas, Convex duality in convex portfolio optimization, Ann. Appl. Probab., 2 (1992), 767–818.
    [25] N. El Karoui, M. Jeanblanc, Optimization of consumption with labor income, Financ. Stoch., 4 (1998), 409–440.
    [26] H. He, H. Pagès, Labor income, borrowing constraints and equilibrium asset prices, Economic Theory, 3 (1993), 663–696. doi: 10.1007/BF01210265
    [27] R. Merton, Optimum consumption and portfolio rules in a continuous-time model, J. Econom. Theory, 3 (1971), 373–413. doi: 10.1016/0022-0531(71)90038-X
    [28] A. Liu, V. K. Lau, B. Kananian, Stochastic successive convex approximation for non-convex constrained stochastic optimization, IEEE T. Signal Proces., 67 (2019), 4189–4203. doi: 10.1109/TSP.2019.2925601
    [29] A. Nemirovski, A. Shapiro, Convex approximations of chance constrained programs, SIAM J. Optimiz., 17 (2007), 969–996. doi: 10.1137/050622328
    [30] A. Rakhlin, O. Shamir, K. Sridharan, Making gradient descent optimal for strongly convex stochastic optimization, arXiv preprint arXiv: 1109.5647, 2011.
    [31] S. Ghadimi, G. Lan, Optimal stochastic approximation algorithms for strongly convex stochastic composite optimization i: A generic algorithmic framework, SIAM J. Optimiz., 22 (2012), 1469–1492. doi: 10.1137/110848864
    [32] H. Yu, M. Neely, X. Wei, Online convex optimization with stochastic constraints, Advances in Neural Information Processing Systems, 30 (2017), 1428–1438.
    [33] A. Defazio, F. Bach, S. Lacoste-Julien, SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives, Advances in neural information processing systems, 27 (2014), 1646–1654.
    [34] Y. Xu, W. Yin, Block stochastic gradient iteration for convex and nonconvex optimization, SIAM J. Optimiz., 25 (2015), 1686–1716. doi: 10.1137/140983938
    [35] A. K. Sahu, D. Jakovetic, D. Bajovic, S. Kar, Communication-efficient distributed strongly convex stochastic optimization: Non-asymptotic rates, arXiv preprint arXiv: 1809.02920, 2018.
    [36] M. Mahdavi, T. Yang, R. Jin, Stochastic convex optimization with multiple objectives, Advances in Neural Information Processing Systems, 26 (2013), 1115–1123.
  • This article has been cited by:

    1. Xishan Yu, Muhammad Shoaib Saleem, Shumaila Waheed, Ilyas Khan, Ji Gao, Hermite–Hadamard-Type Inequalities for the Generalized Geometrically Strongly Modified h -Convex Functions, 2021, 2021, 2314-4785, 1, 10.1155/2021/9970389
    2. Nidhi Sharma, Rohan Mishra, Abdelouahed Hamdi, On strongly generalized convex stochastic processes, 2022, 0361-0926, 1, 10.1080/03610926.2022.2150055
    3. Hongling Zhou, Muhammad Shoaib Saleem, Waqas Nazeer, Ahsan Fareed Shah, Hermite-Hadamard type inequalities for interval-valued exponential type pre-invex functions via Riemann-Liouville fractional integrals, 2022, 7, 2473-6988, 2602, 10.3934/math.2022146
    4. Tareq Saeed, Muhammad Bilal Khan, Savin Treanțǎ, Hamed H. Alsulami, Mohammed Sh. Alhodaly, Interval Fejér-Type Inequalities for Left and Right-λ-Preinvex Functions in Interval-Valued Settings, 2022, 11, 2075-1680, 368, 10.3390/axioms11080368
    5. Yeliang Xiao, Ahsan Fareed Shah, Tariq Javed Zia, Ebenezer Bonyah, Muhammad Gulzar, Positive Weighted Symmetry Function Kernels and Some Related Inequalities for a Generalized Class of Convex Functions, 2022, 2022, 2314-8888, 1, 10.1155/2022/9372629
    6. Muhammad Bilal Khan, Muhammad Aslam Noor, Nehad Ali Shah, Khadijah M. Abualnaja, Thongchai Botmart, Some New Versions of Hermite–Hadamard Integral Inequalities in Fuzzy Fractional Calculus for Generalized Pre-Invex Functions via Fuzzy-Interval-Valued Settings, 2022, 6, 2504-3110, 83, 10.3390/fractalfract6020083
    7. Waqar Afzal, Evgeniy Yu. Prosviryakov, Sheza M. El-Deeb, Yahya Almalki, Some New Estimates of Hermite–Hadamard, Ostrowski and Jensen-Type Inclusions for h-Convex Stochastic Process via Interval-Valued Functions, 2023, 15, 2073-8994, 831, 10.3390/sym15040831
    8. Fahd Jarad, Soubhagya Kumar Sahoo, Kottakkaran Sooppy Nisar, Savin Treanţă, Homan Emadifar, Thongchai Botmart, New stochastic fractional integral and related inequalities of Jensen–Mercer and Hermite–Hadamard–Mercer type for convex stochastic processes, 2023, 2023, 1029-242X, 10.1186/s13660-023-02944-y
    9. Waqar Afzal, Najla M. Aloraini, Mujahid Abbas, Jong-Suk Ro, Abdullah A. Zaagan, Some novel Kulisch-Miranker type inclusions for a generalized class of Godunova-Levin stochastic processes, 2024, 9, 2473-6988, 5122, 10.3934/math.2024249
    10. Ahsan Fareed Shah, Serap Özcan, Miguel Vivas-Cortez, Muhammad Shoaib Saleem, Artion Kashuri, Fractional Hermite–Hadamard–Mercer-Type Inequalities for Interval-Valued Convex Stochastic Processes with Center-Radius Order and Their Related Applications in Entropy and Information Theory, 2024, 8, 2504-3110, 408, 10.3390/fractalfract8070408
    11. Waqar Afzal, Mujahid Abbas, Sayed M. Eldin, Zareen A. Khan, Some well known inequalities for (h1,h2)-convex stochastic process via interval set inclusion relation, 2023, 8, 2473-6988, 19913, 10.3934/math.20231015
    12. Jaya Bisht, Rohan Mishra, Abdelouahed Hamdi, On strongly m-convex stochastic processes, 2024, 0001-9054, 10.1007/s00010-024-01128-3
    13. Jaya Bisht, Rohan Mishra, A. Hamdi, Hermite-Hadamard and Fejér-type inequalities for generalized η -convex stochastic processes , 2024, 53, 0361-0926, 5299, 10.1080/03610926.2023.2218506
    14. HUMAIRA KALSOOM, ZAREEN A. KHAN, NEW INEQUALITIES OF HERMITE–HADAMARD TYPE FOR n-POLYNOMIAL s-TYPE CONVEX STOCHASTIC PROCESSES, 2023, 31, 0218-348X, 10.1142/S0218348X23401953
    15. Ahsan Fareed Shah, Salah Mahmoud Boulaaras, Patricia J. Y. Wong, Muhammad Shoaib Saleem, Muhammad Umair Shahzad, Quantum Integral Inequalities Via Different Variants of Parameterized Harmonically Convex Functions on Finite Intervals With Related Applications, 2025, 0170-4214, 10.1002/mma.10792
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2523) PDF downloads(118) Cited by(15)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog