Processing math: 81%
Research article

Some Ostrowski type inequalities via n-polynomial exponentially s-convex functions and their applications

  • Received: 13 June 2021 Accepted: 09 September 2021 Published: 16 September 2021
  • MSC : 26A51, 26A33, 26D07, 26D10, 26D15

  • This paper deals with introducing and investigating a new convex mapping namely, n-polynomial exponentially s-convex. Here, we present some algebraic properties and some logical examples to validate the theory of newly introduced convexity. Some novel adaptations of the well-known Hermite-Hadamard and Ostrowski type inequalities for this convex function have been established. Additionally, some special cases of the newly established results are derived as well. Finally, as applications some new limits for special means of positive real numbers are given. These new outcomes yield a few generalizations of the earlier outcomes already published in the literature.

    Citation: Muhammad Tariq, Soubhagya Kumar Sahoo, Jamshed Nasir, Hassen Aydi, Habes Alsamir. Some Ostrowski type inequalities via n-polynomial exponentially s-convex functions and their applications[J]. AIMS Mathematics, 2021, 6(12): 13272-13290. doi: 10.3934/math.2021768

    Related Papers:

    [1] Gültekin Tınaztepe, Sevda Sezer, Zeynep Eken, Sinem Sezer Evcan . The Ostrowski inequality for $ s $-convex functions in the third sense. AIMS Mathematics, 2022, 7(4): 5605-5615. doi: 10.3934/math.2022310
    [2] Serap Özcan, Saad Ihsan Butt, Sanja Tipurić-Spužević, Bandar Bin Mohsin . Construction of new fractional inequalities via generalized $ n $-fractional polynomial $ s $-type convexity. AIMS Mathematics, 2024, 9(9): 23924-23944. doi: 10.3934/math.20241163
    [3] Muhammad Samraiz, Kanwal Saeed, Saima Naheed, Gauhar Rahman, Kamsing Nonlaopon . On inequalities of Hermite-Hadamard type via $ n $-polynomial exponential type $ s $-convex functions. AIMS Mathematics, 2022, 7(8): 14282-14298. doi: 10.3934/math.2022787
    [4] Tekin Toplu, Mahir Kadakal, İmdat İşcan . On n-Polynomial convexity and some related inequalities. AIMS Mathematics, 2020, 5(2): 1304-1318. doi: 10.3934/math.2020089
    [5] Haoliang Fu, Muhammad Shoaib Saleem, Waqas Nazeer, Mamoona Ghafoor, Peigen Li . On Hermite-Hadamard type inequalities for $ n $-polynomial convex stochastic processes. AIMS Mathematics, 2021, 6(6): 6322-6339. doi: 10.3934/math.2021371
    [6] Naila Mehreen, Matloob Anwar . Ostrowski type inequalities via some exponentially convex functions with applications. AIMS Mathematics, 2020, 5(2): 1476-1483. doi: 10.3934/math.2020101
    [7] Attazar Bakht, Matloob Anwar . Ostrowski and Hermite-Hadamard type inequalities via $ (\alpha-s) $ exponential type convex functions with applications. AIMS Mathematics, 2024, 9(10): 28130-28149. doi: 10.3934/math.20241364
    [8] Humaira Kalsoom, Muhammad Idrees, Artion Kashuri, Muhammad Uzair Awan, Yu-Ming Chu . Some New $(p_1p_2,q_1q_2)$-Estimates of Ostrowski-type integral inequalities via n-polynomials s-type convexity. AIMS Mathematics, 2020, 5(6): 7122-7144. doi: 10.3934/math.2020456
    [9] Anjum Mustafa Khan Abbasi, Matloob Anwar . Ostrowski type inequalities for exponentially s-convex functions on time scale. AIMS Mathematics, 2022, 7(3): 4700-4710. doi: 10.3934/math.2022261
    [10] Wei Gao, Artion Kashuri, Saad Ihsan Butt, Muhammad Tariq, Adnan Aslam, Muhammad Nadeem . New inequalities via n-polynomial harmonically exponential type convex functions. AIMS Mathematics, 2020, 5(6): 6856-6873. doi: 10.3934/math.2020440
  • This paper deals with introducing and investigating a new convex mapping namely, n-polynomial exponentially s-convex. Here, we present some algebraic properties and some logical examples to validate the theory of newly introduced convexity. Some novel adaptations of the well-known Hermite-Hadamard and Ostrowski type inequalities for this convex function have been established. Additionally, some special cases of the newly established results are derived as well. Finally, as applications some new limits for special means of positive real numbers are given. These new outcomes yield a few generalizations of the earlier outcomes already published in the literature.



    These days, the investigation on convexity theory is considered as a unique symbol in the study of the theoretical conduct of mathematical inequalities. As of late, a few articles have been published with a special reference to integral inequalities for convex functions. Specifically, much consideration has been given to the theoretical investigations of inequalities on various kinds of convex functions, for example, s-type convex functions, Harmonic convex functions, tgs-convex functions, Exponential type convex functions, GA-convex functions, (α,m)-convex functions, MT-convex functions, Hyperbolic convex functions, Trigonometrically convex functions, Exponential s-type convex functions, and so on. Many researchers have worked on the above mentioned convexities in different directions with some innovative applications. The most interesting aspect of these variants of convex functions is that each definition is generalization of other one for some specific values. For example, if we choose s=1 in exponentially s-convex function, it simply reduces to exponentially convex function. For the attention of the readers, see the references [1,2,3,4,5,6,7,8].

    In 1938, Ostrowski introduced the following useful and interesting integral inequality (see [9], page 468).

    Let φ:JRR be a differentiable mapping on Jo, the interior of the interval J, such that φL[α1,α2], where α1,α2J with α2>α1. If |φ(z)|K, for all z[α1,α2], then the following inequality:

    |φ(z)1α2α1α2α1φ(u)du|K(α2α1)[14+(zα1+α22)2(α2α1)2] (1.1)

    holds. The above inequality (1.1), in literature is known as the well known Ostrowski inequality. For some detailed knowledge about the recent researches on this inequality and related generalizations and extensions, see ([10,11,12,13,14,15,16]). This inequality yields an upper bound for the approximation of the integral average 1α2α1α2α1φ(u)du by the value of φ(u) at the point u[α1,α2].

    Since the time it is established, broad research history on establishing numerous generalizations of Ostrowski type inequalities have been directed. Most of the earlier and current investigations use different properties of the function and additionally use convexity and bounded variation. The posterity of Ostrowski type inequalities has a great role in the numerical integration theory as utilized by numerous mathematicians. They furnish the numerical integration field with a huge class of quadrature and cubature rules as well.

    In assorted and rival research, inequalities have a ton of utilizations in measure theory, mathematical finance, statistical problems, probability, and numerical quadrature formulas. Meng et al. in [17,18] applied the convex model for optimization via probabilistic approach. Brown in his article[19], explained the relationship between inequalities and measure theory. Numerous broadly known outcomes about inequalities can be acquired utilizing the properties of convex functions. In 1994, for the first-time Hudzik and Maligranda [20] presented the class of s-convex functions in the second sense. Further towards this path, Dragomir and Fitzpatrick [21] put endeavors and set up new fundamental inequalities by means of s-convex functions. In 2019, İşcan [22] developed some new Hermite-Hadamard type inequalities for s-convex functions with the help of notable inequalities like improved power-mean Integral inequality and Hölder-İscan integral inequality.

    In the frame of simple calculus, we explore and attain the novel refinements of Ostrowski type inequalities. To the best of our knowledge, a comprehensive investigation of newly introduced definition, namely n-polynomial exponentially s-convex function in the present paper is new. Recently, it is seen that many scientists are interested in big data analysis, deep learning and information theory utilizing the concept of exponentially convex functions.

    Motivated by the ongoing research and literature, the present paper is structured in the following way, first in Section 2, we will give some necessary known definitions and literature. Second in Section 3, we will explore the concept of n-polynomial exponentially s-convex functions. In addition, some algebraic properties and examples for the newly introduced definition are elaborated. In Section 4, we attain the new sort of Hermite-Hadamrd type inequality. Further, in Section 5, we investigate some refinements of the Ostrowski type inequality and some special cases. Finally, in the next section we present some applications to special means and a conclusion.

    In this section, we recall some known concepts.

    Definition 2.1. [23] Let φ:IR be a real valued function. A function φ is said to be convex, if

    φ(χα1+(1χ)α2)χφ(α1)+(1χ)φ(α2), (2.1)

    holds for all α1,α2I and χ[0,1].

    The Hermite-Hadamard inequality states that, if a mapping φ:JRR is convex on J for α1,α2J and α2>α1, then

    φ(α1+α22)1α2α1α2α1φ(χ)dχφ(α1)+φ(α2)2. (2.2)

    Interested readers can refer to [21,24].

    Definition 2.2. [25] A function φ:[0,+)R is said to be s-convex in the second sense for a real number s(0,1] or φ belongs to the class of K2s, if

    φ(χα1+(1χ)α2)χsφ(α1)+(1χ)sφ(α2) (2.3)

    holds for all α1,α2[0,+) and χ[0,1].

    Breckner in his article [26] introduced, s-convex functions. Hudzik in his paper [20] presented a few properties and connections with s-convexity in the first sense. Usually, when we put s=1 for s-convexity, it reduces to the classical convexity. In [21], Dragomir et al. proved a generalized Hadamard's inequality, which holds for s-convex functions in the second sense.

    Recently, many researchers investigated about the importance and development of the theory of exponentially convex functions. In 2020, Kadakal et al.[27], investigated a new class of exponential convexity, which is stated as follows:

    Definition 2.3. [27] A non-negative real-valued function φ:JRR is known to be an exponential convex function if the following inequality holds:

    φ(χα1+(1χ)α2) (eχ1)φ(α1)+(e(1χ)1)φ(α2). (2.4)

    Definition 2.4. [28] A non-negative real-valued function φ:JR is called n-polynomial convex, if

    φ(χα1+(1χ)α2)1nni=1[1(1χ)i]φ(α1)+1nni=1[1χi]φ(α2), (2.5)

    holds for every α1,α2J, χ[0,1], s[0,1] and nN.

    Employing the above concepts Iscan et al. in [27,28] proved the following results respectively:

    Theorem 2.5. Let φ:[α1,α2]R be an exponential type convex function. If α1<α2 and φL[α1,α2], then the following Hermite-Hadamard type inequality holds:

    12(e121)φ(α1+α22)1α2α1α2α1φ(u) du(e2)[φ(α1)+φ(α2)]. (2.6)

    Theorem 2.6. Let φ:[α1,α2]R be an n polynomial convex function. If α1<α2 and φL[α1,α2], then the following Hermite-Hadamard type inequality holds:

    12(nn+2n1)φ(α1+α22)1α2α1α2α1φ(u)du(φ(α1)+φ(α2)n)ns=1ss+1. (2.7)

    In [30], the authors proved some refinements of Hermite-Hadamard inequality for exponential convex function. Qi et al. [31], presented Hermite-Hadamard inequality for exponential (α,(hm)) convex function. Recently, Naz et al. [32], used k-Hilfer Katugampola derivative to establish Ostrowski type inequality for n-polynomial P-convex function. For some recent developements on n-polynomial convexity interested readers can refer to [33,34] and the references cited therein.

    Next, due to afore-mentioned research activities, we are able and capable to introduce the generalized form of exponential type convexity, which is called an n-polynomial exponentially s-convex function. Further, we will try to discuss and explore its properties.

    Definition 3.1. Let nN and s[ln2.4,1]. Then the non-negative real-valued function φ:JRR is known to be an n-polynomial exponentially s-convex function if the following inequality holds:

    φ(χα1+(1χ)α2) 1nni=1(esχ1)iφ(α1)+1nni=1(es(1χ)1)iφ(α2). (3.1)

    We represent the class of all n-polynomial exponentially type convex functions on the interval J as POLEXPC(J) for each α1,α2J and χ[0,1].

    Remark 1. In above Definition 3.1, if n=s=1, then we get (2.4) given by İşcan in [27].

    Remark 2. The range of the exponentially s-convex functions for some fixed s[ln2.4,1] is [0,+).

    Lemma 3.2. For all χ[0,1] and for some fixed s[ln2.4,1] the following inequalities 1nni=1(esχ1)iχ and 1nni=1(es(1χ)1)i(1χ) hold.

    Proof. The proof is simple.

    Lemma 3.3. For all χ[0,1] and for some fixed s[ln2.4,1] the following inequalities 1nni=1(esχ1)iχs and 1nni=1(es(1χ)1)i(1χ)s hold.

    Proof. The proof is simple.

    From the above lemmas, it can be clearly seen that, the new class of n-polynomial exponentially convex function is very larger when compared to the known class of functions like convex, exponentially convex, s-convex and exponentially s-convex. This is an added advantage of the newly proposed Definition 3.1.

    Proposition 1. Every nonnegative convex function is an n-polynomial exponentially s-convex function for s[ln2.4,1].

    Proof. Applying Lemma 3.2 and s[ln2.4,1], we have

    φ(χα1+(1χ)α2)χφ(α1)+(1χ)φ(α2)1nni=1(esχ1)iφ(α1)+1nni=1(e(1χ)s1)iφ(α2).

    Proposition 2. Every nonnegative s-convex function is an n-polynomial exponentially s-convex function for s[ln2.4,1].

    Proof. Applying Lemma 3.3 and s[ln2.4,1], we have

    φ(χα1+(1χ)α2)χsφ(α1)+(1χ)sφ(α2)1nni=1(esχ1)iφ(α1)+1nni=1(e(1χ)s1)iφ(α2).

    Now, we will makes some examples in the support of the newly introduced function.

    Example 1. If φ(x)=ex,for all x>0 is a nonnegative convex function, from Proposition 1, it is also an n-polynomial exponentially s-convex function for s[ln2.4,1].

    Example 2. If φ(x)=c is a nonnegative convex function on R for any c0, from Proposition 1, it is also an n-polynomial exponentially s-convex function for s[ln2.4,1].

    Example 3. If φ(x)=1x, for all x>0 is a nonnegative convex function, from Proposition 1, it is also an n-polynomial exponentially s-convex function for s[ln2.4,1].

    Example 4. φ(x)=qs+qxsq+1, for s>1 is a nonnegative convex function. By using Proposition 1, it is also n-polynomial exponentially s-convex function for s[ln2.4,1].

    Example 5. The Great mathematician Dragomir clearly investigated and proved that in published article [21], the function φ(x)=xls, x>0 is s-convex function, for the all mentioned conditions s(0,1) and 1l1s. But, using Proposition 2, it is also an n-polynomial exponentially s-convex function for s[ln2.4,1].

    Theorem 3.4. Let ψ,φ:[α1,α2]R. If ψ and φ are n-polynomial exponentially s-convex functions and s[ln2.4,1] then

    (i) ψ+φ is an n-polynomial exponentially s-convex function.

    (ii) For nonnegative real number c, cψ is an n-polynomial exponentially s-convex function.

    Proof. (i) Let ψ and φ be n-polynomial exponentially s-convex functions, then

    (ψ+φ)[(χα1+(1χ)α2)]=ψ(χα1+(1χ)α2)+φ(χα1+(1χ)α2)1nni=1(esχ1)iψ(α1)+1nni=1(e(1χ)s1)iψ(α2)+1nni=1(esχ1)iφ(α1)+1nni=1(e(1χ)s1)iφ(α2)=1nni=1(esχ1)i[ψ(α1)+φ(α1)]+1nni=1(e(1χ)s1)i[ψ(α2)+φ(α2)]= 1nni=1(esχ1)i(ψ+φ)(α1)+1nni=1(e(1χ)s1)i(ψ+φ)(α2).

    (ii) Let ψ be an n-polynomial exponentially s-convex function, then

    (cψ)[(χα1+(1χ)α2)]=c[ψ(χα1+(1χ)α2)]c[1nni=1(esχ1)iψ(α1)+1nni=1(e(1χ)s1)iψ(α2)]=1nni=1(esχ1)icψ(α1)+1nni=1(e(1χ)s1)icψ(α2)= 1nni=1(esχ1)i(cψ)(α1)+1nni=1(e(1χ)s1)i(cψ)(α2).

    Remark 3. If we choose s=1 in Theorem 3.4, then we get Theorem 2.1 in [27].

    Theorem 3.5. Let φi:[α1,α2]R be an arbitrary family of n-polynomial exponentially s-convex functions for the same fixed s[ln2.4,1] and let φ(α)=supiφi(α). If P={α[α1,α2]:φ(α)<+}, then P is an interval and φ is an n-polynomial exponentially s-convex function on P.

    Proof. For all α1,α2P and χ[0,1], and for the same fixed numbers s[ln2.4,1], we have

    φ(χα1+(1φ)α2)=supiφi(χα1+(1χ)α2)supi[1nni=1(esχ1)iφi(α1)+1nni=1(e(1χ)s1)iφi(α2)]1nni=1(esχ1)isupiφi(α1)+1nni=1(e(1χ)s1)isupiφi(α2)=1nni=1(esχ1)iφ(α1)+1nni=1(e(1χ)s1)iφ(α2)<+.

    This shows that P is an interval.

    Theorem 3.6. If the function φ:[α1,α2]R is n-polynomial exponentially s-convex for some fixed s[ln2.4,1], then φ is bounded on [α1,α2].

    Proof. Let L=max{φ(α1),ψ(α2)} and x[α1,α2] be an arbitrary point. Then there exists χ[0,1] such that x=χα1+(1χ)α2. Thus, since esχes and e(1χ)ses for some fixed s[ln2.4,1], we have

    φ(x)=φ(χα1+(1χ)α2)1nni=1(esχ1)iφ(α1)+1nni=1(e(1χ)s1)iφ(α2)1nni=1(es1)iL+1nni=1(es1)iL=L1nni=1(es1)i=M.

    We have proved that φ is bounded above by M.

    Remark 4. If we choose n=s=1 in Theorem 3.6, then we get Theorem 2.4 in [27].

    In this section, we present one Hermite-Hadamard type inequality for the n-polynomial exponentially s-convex function.

    Theorem 4.1. Suppose s[ln2.4,1], α(0,1], α2>α1 and φ:J=[α1,α2]R is an n-polynomial exponentially s-convex function such that φL[α1,α2]. Then one has

    121nni=1(es21)iφ(α1+α22)1α2α1α2α1φ(u) du1nni=1(ess1s)i[φ(α1)+φ(α2)] . (4.1)

    Proof. Let z1,z2J. Then it follows from the n-polynomial exponentially s-convex function for φ on J that

    φ(z1+z22)  1nni=1(es21)i[φ(z1)+φ(z2)] (4.2)
    Suppose  z1=χα2+(1χ)α1     and   z2=χα1+(1χ)α2.

    Then (4.2) leads to

    φ(α1+α22)  1nni=1(es21)i[φ(χα2+(1χ)α1  )+φ(χα1+(1χ)α2)]. (4.3)

    Now, integrating both sides of the inequality (4.3) with respect to χ from 0 to 1, one has

    φ(α1+α22)  1nni=1(es21)i[10φ(χα2+(1χ)α1  )dχ+10φ(χα1+(1χ)α2) dχ].
    121nni=1(es21)iφ(α1+α22)1α2α1α2α1φ(u) du.

    This completes the proof of first part of inequality (4.1). Next, we prove the second part of inequality (4.1). Let χ[0,1]. Using the fact that φ is an n-polynomial exponentially s-convex function, we obtain

    φ(χα2+(1χ)α1  )1nni=1(esχ1)iφ(α2)+1nni=1(es(1χ)1)iφ(α1) (4.4)

    and

    φ(χα1+(1χ)α2  )1nni=1(esχ1)iφ(α1)+1nni=1(es(1χ)1)iφ(α2). (4.5)

    By adding the above inequalities, we obtain

    φ(χα2+(1χ)α1  )+φ(χα1+(1χ)α2  ) [φ(α1)+φ(α2)]{1nni=1(esχ1)i+1nni=1(es(1χ)1)i}. (4.6)

    Now, integrating both sides of the above inequality with respect to χ from 0 to 1, then making the change of variable, we obtain

    2α2α1α2α1φ(u) du [φ(α1)+φ(α2)]10{1nni=1(esχ1)i+1nni=1(es(1χ)1)i}dχ,

    which leads to the conclusion that

    2α2α1α2α1φ(u) du2nni=1(ess1s)i[φ(α1)+φ(α2)].

    The proof is completed.

    Remark 5. If we choose n=s=1, then Theorem 4.1 becomes to [Theorem 3.1, [27]].

    In this section, we present some enhancements of the Ostrowski type inequality for differentiable n-polynomial exponentially s-convex function. Here, we need the following lemma as given in [29].

    Lemma 5.1. Suppose φ:JRR is a differentiable mapping on Jo, where α1,α2J with α1<α2. If φL[α1,α2], then the following equality holds:

    φ(z)1α2α1α2α1φ(χ)dχ= (zα1)2α2α110χ φ(χz+(1χ)α1) dχ(α2z)2α2α110χ φ(χz+(1χ)α2) dχ, (5.1)

    for each z[α1,α2].

    Theorem 5.2. Suppose φ:JRR is a differentiable mapping on Jo, where α1,α2J with α1<α2. If |φ| is an n-polynomial exponentially s-convex function on [α1,α2] for some s[ln2.4,1], φL[α1,α2] and |φ(z)|K, for all z[α1,α2], then the following inequality holds:

    |φ(z)1α2α1α2α1φ(χ)dχ|K(α2α1)n[(zα1)2 {ni=1(2+2(s1)ess22s2)i+ni=1(2ess22s22s2)i}+ (α2z)2 {ni=1(2+2(s1)ess22s2)i+ni=1(2ess22s22s2)i} ], (5.2)

    for each z[α1,α2].

    Proof. From Lemma 5.1, the fact that |φ| is n-polynomial exponentially s-convex and |φ|K, we have

    |φ(z)1α2α1α2α1φ(χ)dχ| (zα1)2α2α110χ |φ(χz+(1χ)α1)| dχ+(α2z)2α2α110χ| φ(χz+(1χ)α2)| dχ (zα1)2α2α110χ {1nni=1(esχ1)i|φ(z)|+1nni=1(es(1χ)1)i|φ(α1)|} dχ+(α2z)2α2α110χ{1nni=1(esχ1)i|φ(z)|+1nni=1(es(1χ)1)i|φ(α2)|} dχ (zα1)2α2α1[|φ(z)|10χ 1nni=1(esχ1)i dχ+|φ(α1)|10χ 1nni=1(es(1χ)1)idχ] +(α2z)2α2α1[|φ(z)|10χ 1nni=1(esχ1)i dχ+|φ(α2)|10χ 1nni=1(es(1χ)1)idχ] K(zα1)2(α2α1)n{ni=1(2+2(s1)ess22s2)i+ni=1(2ess22s22s2)i}  +K(α2z)2(α2α1)n{ni=1(2+2(s1)ess22s2)i+ni=1(2ess22s22s2)i}=  K(α2α1)n[(zα1)2 {ni=1(2+2(s1)ess22s2)i+ni=1(2ess22s22s2)i} + (α2z)2 {ni=1(2+2(s1)ess22s2)i+ni=1(2ess22s22s2)i}].

    The proof is completed.

    Corollary 1. If we choose n=1 in Theorem 5.2, we obtain

    |φ(z)1α2α1α2α1φ(u)du| K(α2α1)[(zα1)2 {(2+2(s1)ess22s2)+(2ess22s22s2)} + (α2z)2 {(2+2(s1)ess22s2)+(2ess22s22s2)}].

    Corollary 2. Under the similar consideration in Theorem 5.2, by choosing s=1, we obtain

    |φ(z)1α2α1α2α1φ(u)du| Kn(α2α1)[(zα1)2 {ni=1(12)i+ni=1(2e52)i}+ (α2z)2 {ni=1(12)i+ni=1(2e52)i}].

    Also, we have

    1.If we choose z=α1+α22 in Corollary 2, then we have the following mid-point inequality:

    |φ(α1+α22)1α2α1α2α1φ(u) du| Kn (α2α1)2{ni=1(12)i+ni=1(2e52)i}.

    2.If we choose z=α1 in Corollary 2, then we have the following inequality:

    |φ(α1)1α2α1α2α1φ(u) du| Kn (α2α1){ni=1(12)i+ni=1(2e52)i}.

    3.If we choose z=α2 in Corollary 2, then we have the following inequality:

    |φ(α2)1α2α1α2α1φ(u) du| Kn (α2α1){ni=1(12)i+ni=1(2e52)i}.

    Theorem 5.3. Suppose φ:JRR is a differentiable mapping on Jo, where α1,α2J with α1<α2. If |φ|q is n-polynomial exponentially s-convex on [α1,α2] for some s[ln2.4,1], q>1, q1=1p1, φL[α1,α2] and |φ(z)|K, for all z[α1,α2], then the following inequality holds:

    |φ(z)1α2α1α2α1φ(χ)dχ|21qK(α2α1)qn(1p+1)1p[(zα1)2{ni=1(ess1s)i}1q+(α2z)2{ni=1(ess1s)i}1q], (5.3)

    for each z[α1,α2].

    Proof. From Lemma 5.1 and the famous Hölder's inequality, we have

    |φ(z)1α2α1α2α1φ(χ)dχ| (zα1)2α2α110χ |φ(χz+(1χ)α1)| dχ+(α2z)2α1α110χ| φ(χz+(1χ)α2)| dχ (zα1)2α2α1(10χpdχ)1p(10|φ(χz+(1χ)α1)|qdχ)1q+ (α2z)2α2α1(10χpdχ)1p(10|φ(χz+(1χ)α2)|qdχ)1q. (5.4)

    Since |φ|q is n-polynomial exponentially s-convex and |φ(z)|K, we obtain

    10|φ(χz+(1χ)α1)|qdχ= 10{1nni=1(esχ1)i|φ(z)|q+1nni=1(es(1χ)1)i|φ(α1)|q}dχ Kq 1nni=1(ess1s)i+Kq 1nni=1(ess1s)i 2Kq 1nni=1(ess1s)i (5.5)

    and

    10|φ(χz+(1χ)α2)|qdχ= 10{1nni=1(esχ1)i|φ(z)|q+1nni=1(es(1χ)1)i|φ(α2)|q}dχ Kq 1nni=1(ess1s)i+Kq 1nni=1(ess1s)i 2Kq 1nni=1(ess1s)i. (5.6)

    By connecting (5.5) and (5.6) with (5.4), we get (5.3). The proof is completed.

    Corollary 3. If we choose n=1 in Theorem 5.3, we obtain

    |φ(z)1α2α1α2α1φ(u)du|21qK(α2α1)(1p+1)1p[(zα1)2(ess1s)1q+(α2z)2(ess1s)1q].

    Corollary 4. Under the similar consideration in Theorem 5.3, by choosing s=1, we obtain

    |φ(x)1α2α1α2α1φ(u)du|21qKqn(α2α1)(1p+1)1p[(zα1)2{ni=1(e2)i}1q+(α2z)2{ni=1(e2)i}1q].

    Also we have

    1.If we choose z=α1+α22 in Corollary 4, then we have the following mid-point inequality:

    |φ(α1+α22)1α2α1α2α1φ(u) du| 21q1K(α2α1)qn(1p+1)1p{ni=1(e2)i}1q.

    2.If we choose z=α1 in Corollary 4, then we have the following inequality:

    |φ(α1)1α2α1α2α1φ(u) du| 21qKqn (α2α1)(1p+1)1p{ni=1(e2)i}1q.

    3.If we choose z=α2 in Corollary 4, then we have the following inequality:

    |φ(α2)1α2α1α2α1φ(u) du| 21qKqn (α2α1)(1p+1)1p{ni=1(e2)i}1q.

    Theorem 5.4. Suppose φ:JRR is a differentiable mapping on Jo, where α1,α2J with α1<α2. If |φ|q is n-polynomial exponentially s-convex on [α1,α2] for some s[ln2.4,1], q1, q1=1p1, φL[α1,α2] and |φ(z)|K, for all z[α1,α2], then the following inequality holds:

    |φ(z)1α2α1α2α1φ(χ)dχ| Kqn(α2α1)211q[(zα1)2 {ni=1(2+(2s2)ess22s2)i+ni=1(2ess22s22s2)i}1q+ (α2z)2 {ni=1(2+(2s2)ess22s2)i+ni=1(2ess22s22s2)i}1q], (5.7)

    for each z[α1,α2].

    Proof. From Lemma 5.1 and power mean inequality, we have

    |φ(z)1α2α1α2α1φ(χ)dχ| (zα1)2α2α110χ |φ(χz+(1χ)α1)| dχ+(α2z)2α2α110χ| φ(χz+(1χ)α2)| dχ (zα1)2α2α1(10χ dχ)11q(10χ|φ(χz+(1χ)α1)|qdχ)1q+ (α2z)2α2α1(10χ dχ)11q(10χ|φ(χz+(1χ)α2)|qdχ)1q. (5.8)

    Since |φ|q is n-polynomial exponentially s-convex and |φ(z)|K, we obtain

    10χ|φ(χz+(1χ)α1)|qdχ= 10χ{1nni=1(esχ1)i|φ(z)|q+1nni=1(es(1χ)1)i|φ(α1)|q}dχ Kq 1nni=1((2s2)ess2+22s2)i+Kq 1nni=1(2ess22s22s2)i (5.9)

    and

    10χ|φ(χz+(1χ)α2)|qdχ=10χ{1nni=1(esχ1)i|φ(z)|q+1nni=1(es(1χ)1)i|φ(α2)|q}dχKq1nni=1((2s2)ess2+22s2)i+Kq1nni=1(2ess22s22s2)i. (5.10)

    By connecting (5.9) and (5.10) with (5.8), we get (5.7). The proof is completed.

    Corollary 5. If we choose n=1 in Theorem 5.4, we obtain

    |φ(z)1α2α1α2α1φ(u)du| K(α2α1)211q[(zα1)2 {(2+(2s2)ess22s2)+(2ess22s22s2)}1q + (α2z)2 {(2+(2s2)ess22s2)+(2ess22s22s2)}1q].

    Corollary 6. Under the similar consideration in Theorem 5.4, by choosing s=1, we obtain

    |φ(z)1α2α1α2α1φ(u)du| Kqn(α2α1)211q[(zα1)2 {ni=1(12)i+ni=1(2e52)i}1q + (α2z)2 {ni=1(12)i+ni=1(2e52)i}1q ].

    We also have

    1.If we choose z=α1+α22 in Corollary 6, then we have the following mid-point inequality:

    |φ(α1+α22)1α2α1α2α1φ(u) du| K 2qn(α2α1)211q{ni=1(12)i+ni=1(2e52)i}1q.

    2.If we choose z=α1 in Corollary 6, then we have the following inequality:

    |φ(α1)1α2α1α2α1φ(u) du| K qn(α2α1)211q{ni=1(12)i+ni=1(2e52)i}1q.

    3.If we choose z=α2 in Corollary 6, then we have the following inequality:

    |φ(α2)1α2α1α2α1φ(u) du|K qn(α2α1)211q{ni=1(12)i+ni=1(2e52)i}1q.

    Theorem 5.5. Suppose φ:JRR is a differentiable mapping on Jo, where α1,α2J with α2>α1. If |φ|q is n-polynomial exponentially s-concave on [α1,α2], for some s[ln2.4,1], φL[α1,α2], p,q>1, q1+p1=1, then the following inequality holds:

    |φ(z)1α2α1α2α1φ(χ)dχ|1α2α1(1p+1)1p(121nni=1(es21)i)1q×{(zα1)2|φ(z+α12)|+(α2z)2|φ(z+α22)|}. (5.11)

    Proof. Suppose p>1, by Lemma 5.1 and using the Hölder inequality, we obtain

    |φ(z)1α2α1α2α1φ(χ)dχ|(zα1)2α2α1(10χpdχ)1p (10|φ(χz+(1χ)α1)|qdχ)1q+(α2z)2α2α1(10χpdχ)1p (10|φ(χz+(1χ)α2)|qdχ)1q (5.12)

    |\varphi'|^q is n -polynomial exponentially s -concave, so using the left hand side of (4.1) inequality, we obtain

    \begin{align} & \int_{0}^{1}\left\vert \varphi ^{{\prime }}\left( \chi z+\left( 1-\chi \right) \alpha _{1}\right) \right\vert ^{q}d\chi \geq \ \left( \frac{1}{2\frac{1}{n}\sum\limits_{i = 1}^{n}\big(e^{\frac{s}{2}}-1\big)^i}\right) \left\vert \varphi ^{{\prime }}\left( \frac{z+\alpha _{1}}{2} \right) \right\vert^q \end{align} (5.13)

    and

    \begin{align} \int_{0}^{1}\left\vert \varphi ^{{\prime }}\left( \chi z+\left( 1-\chi \right) \alpha _{2}\right) \right\vert ^{q}d\chi \geq \ \left( \frac{1}{2\frac{1}{n}\sum\limits_{i = 1}^{n}\big(e^{\frac{s}{2}}-1\big)^i}\right)\left\vert \varphi ^{{\prime }}\left( \frac{z+\alpha _{2}}{2} \right) \right\vert^q. \end{align} (5.14)

    By connecting the (5.13), (5.14) with (5.12), we get (5.11). The proof is completed.

    Corollary 7. If we choose n = 1 in Theorem 5.5, we obtain

    \begin{align*} &\left\vert \varphi\left(z\right) -\frac{1}{\alpha_2-\alpha_1}\int_{\alpha_1}^{\alpha_2}\varphi\left( u\right) du\right\vert\\ & \leq \ \frac{1}{\alpha _{2}-\alpha _{1}}\left( \frac{1}{p+1}\right) ^{ \frac{1}{p}}\left( \frac{1}{2\big(e^{\frac{s}{2}}-1\big)}\right) ^{\frac{1}{q}} \bigg\{\left( z-\alpha _{1}\right) ^{2}\left\vert \varphi ^{{\prime }}\left( \frac{ z+\alpha _{1}}{2}\right) \right\vert +\left( \alpha _{2}-z\right) ^{2}\left\vert \varphi ^{{\prime }}\left( \frac{z+\alpha _{2}}{2}\right) \right\vert \bigg\}. \end{align*}

    Corollary 8. Under the similar consideration in Theorem 5.5, by choosing s = 1, we obtain

    \left\vert \varphi\left( z\right) -\frac{1}{\alpha_2-\alpha_1}\int_{\alpha_1}^{\alpha_2}\varphi\left( u\right) du\right\vert\\ \leq \ \frac{1}{\alpha _{2}-\alpha _{1}}\left( \frac{1}{p+1}\right) ^{ \frac{1}{p}}\left( \frac{1}{2\frac{1}{n}\sum _{i = 1}^{n}\big(e^{\frac{s}{2}}-1\big)^i}\right) ^{\frac{1}{q}} \\ \bigg\{\left( z-\alpha _{1}\right) ^{2}\left\vert \varphi ^{{\prime }}\left( \frac{z+\alpha _{1}}{2}\right) \right\vert +\left( \alpha _{2}-z\right) ^{2}\left\vert \varphi ^{{\prime }}\left( \frac{z+\alpha _{2}}{2}\right) \right\vert \bigg\}.

    Consider the following special means for different positive real numbers \alpha_1, \alpha_2 and \alpha_1 < \alpha_2 as follows:

    1. The Arithmetic mean:

    \begin{equation*} A(\alpha_1, \alpha_2) = \frac{\alpha_1+\alpha_2}{2}. \end{equation*}

    2.The Harmonic mean:

    \begin{equation*} H(\alpha_1, \alpha_2) = \frac{2\alpha_1\alpha_2}{\alpha_1+\alpha_2}, \ \ \alpha_1, \alpha_2 > 0. \end{equation*}

    3. The log-mean:

    \begin{equation*} L = L\left( \alpha_1, \alpha_2\right) = \frac{\alpha_2-\alpha_1}{\ln \alpha_2-\ln \alpha_1}, \ \ \ \alpha_1\neq \alpha_2. \end{equation*}

    4. The Generalized log-mean:

    \begin{equation*} L_{r}(\alpha_1, \alpha_2) = \Bigg[\frac{\alpha_2^{r+1}-\alpha_1^{r+1}}{(r+1)(\alpha_2-\alpha_1)}\Bigg]^{\frac{1}{r}};\;\;r\in R\setminus \{-1, 0\}. \end{equation*}

    5. The Identric mean:

    \begin{equation*} I\left( \alpha_1, \alpha_2\right) = \left\{ \begin{array}{c} \alpha_1\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \alpha_1 = \alpha_2 \\ \frac{1}{e}\left( \frac{\alpha_2^{\alpha_2}}{\alpha_1^{\alpha_1}} \right) ^{\frac{1}{\alpha_2-\alpha_1}}\ \ \ \ \ \ \ \ \alpha_1\neq \alpha_2 \end{array} \right\}. \end{equation*}

    Dragomir et al. [21], have proved that for s\in (0, 1), where 1\leq r\leq \frac{1}{s}, the function \varphi(z) = z^{rs}, \ z > 0 is an s -convex function.

    Now, we present some applications to special means for positive real numbers using results of Section 5, as:

    Proposition 3. Let 0 < \alpha_1 < \alpha_2. Then for some fixed s\in [\ln 2.4, 1), we obtain

    \begin{align} & \left\vert A^{rs}\left( \alpha_1, \alpha_2\right) -L_{rs}^{rs}\left( \alpha_1, \alpha_2\right) \right\vert \\ \leq& \left( \alpha_2-\alpha_1\right)\frac{K}{ 2n}\bigg\{\sum\limits_{i = 1}^{n}\left( \frac{2+2\left( s-1\right) e^{s}-s^{2}}{2s^{2}}\right) ^{i}+\sum\limits_{i = 1}^{n}\left( \frac{2e^{s}-s^{2}-2s-2}{2s^{2}}\right) ^{i} \bigg\} . \end{align} (6.1)

    Proof. The result holds by letting z = \frac{\alpha_1 + \alpha_2}{2} in Theorem 5.2 with n -polynomial exponentially s -convexity for \varphi:(0, \infty)\rightarrow \mathbb{R} , \varphi(z) = z^{rs}, we obtain the required result.

    Proposition 4. Let 0 < \alpha_1 < \alpha_2 and q > 1. Then for some fixed s\in [\ln 2.4, 1), we obtain

    \begin{equation} \left\vert \ln I\left( \alpha_1, \alpha_2\right) -\ln A\left( \alpha_1, \alpha_2\right) \right\vert \leq 2^{\frac{1}{q}-1}\frac{K}{\sqrt[q]{n}}\frac{}{ }\left( \alpha_2-\alpha_1\right)\left( \frac{1}{p+1}\right) ^{\frac{1 }{p}}\bigg\{\sum\limits_{i = 1}^{n}\left( \frac{e^{s}-s-1}{s} \right)^i\bigg\} ^{\frac{1}{q}} . \end{equation} (6.2)

    Proof. The result holds by letting z = \frac{\alpha_1 + \alpha_2}{2} in Theorem 5.2 with n -polynomial exponentially s -convexity for \varphi:(0, \infty)\rightarrow \mathbb{R} , \varphi(z) = -lnz, we obtain the required result.

    Proposition 5. Let 0 < \alpha_1 < \alpha_2 and q\geq1. Then for some fixed s\in [\ln 2.4, 1), we obtain

    \begin{align} & \left\vert H\left( \alpha_1, \alpha_2\right) -L^{-1}\left( \alpha_1, \alpha_2\right) \right\vert \\ & \leq \frac{\left( \alpha_2-\alpha_1\right)}{\sqrt[q]{n}} \frac{K}{ 2^{2-\frac{1}{q}}} \bigg\{\sum\limits_{i = 1}^{n}\left( \frac{2+\left( 2s-2\right) e^{s}-s^{2}}{2s^{2}}\right) ^{i} +\sum\limits_{i = 1}^{n}\left( \frac{2e^{s}-s^{2}-2s-2}{2s^{2}}\right) ^{i} \bigg\} ^{\frac{1}{q}}. \end{align} (6.3)

    Proof. The result holds by letting z = \frac{\alpha_1 + \alpha_2}{2} in Theorem 5.4 with n -polynomial exponentially s -convexity for \varphi:(0, \infty)\rightarrow \mathbb{R} , \varphi(z) = \frac{1}{z}, we obtain the required result.

    In this paper, we have taken into consideration a critical extension of convexity, that is referred as n -polynomial exponentially s -convex functions and acquired new variants of Hermite-Hadamard inequality employing this new definition. We have also obtained refinements of the Ostrowski inequality for functions whose first derivatives in absolute value at certain power are n -polynomial exponential-type s -convex. Moreover, for different values of parameters, i.e., s, n and z , we have deduced some special cases of our main results. We presented some applications of our established results to special means of two positive real numbers. In the future, new inequalities for the other n - polynomial convex functions can be obtained by utilising the techniques used in this paper.

    The authors extend their appreciations to the Deanship of Post Graduate and Scientific Research at Dar Al Uloom University for funding this work.

    The authors declare that there are no conflicts of interest regarding the publication of this paper.



    [1] B. Y. Xi, F. Qi, Some integral inequalities of Hermite-Hadamard type for convex functions with applications to means, J. Funct. Spaces. Appl., 2012 (2012), 980438.
    [2] K. Mehren, P. Agarwal, New Hermite-Hadamard type integral inequalities for the convex functions and theirs applications, J. Comp. Appl. Math., 350 (2019), 274–285. doi: 10.1016/j.cam.2018.10.022
    [3] S. I. Butt, A. Kashuri, M. Tariq, J. Nasir, A. Aslam, W. Geo, n-polynomial exponential-type p-convex function with some related inequalities and their applications, Heliyon, 6 (2020), e05420. doi: 10.1016/j.heliyon.2020.e05420
    [4] K. S. Zhang, J. P. Wan, p-convex functions and their applications, Pure. Appl. Math., 23 (2017), 130–133.
    [5] S. I. Butt, M. Tariq, A. Aslam, H. Ahmad, T. A. Nofel, Hermite-Hadamard type inequalities via generalized harmonic exponential convexity, J. Funct. Spaces., 2021 (2021), 5533491.
    [6] S. I. Butt, M. Nadeem, S. Qaisar, A. O. Akdemir, T. Abdeljawad, Hermite-Jensen-Mercer type inequalities for conformable integrals and related results, Adv. Differ. Equ., 2020 (2020), 501. doi: 10.1186/s13662-020-02968-4
    [7] P. O. Mohammed, H. Aydi, A. Kashuri, Y. S. Hamed, K. M. Abualnaja, Midpoint inequalities in fractional calculus defined using positive weighted symmetry function kernels, Symmetry, 13 (2021), 550. doi: 10.3390/sym13040550
    [8] S. I. Butt, A. Kashuri, M. Tariq, J. Nasir, A. Aslam, W. Geo, Hermite-Hadamard-type inequalities via n-polynomial exponential-type convexity and their applications, Adv. Differ. Equ., 2020 (2020), 508. doi: 10.1186/s13662-020-02967-5
    [9] D. S. Mitrinovic, J. Pecaric, A. M. Fink, Inequalities involving functions and their integrals and derivatives, Springer Science and Business Media, 1991.
    [10] M. Alomari, M. Darus, Some Ostrowski type inequalities for quasi-convex functions with applications to special means, RGMIA Res. Rep. Coll., 13 (2010), 1–9.
    [11] M. Alomari, M. Darus, S. S. Dragomir, P. Cerone, Ostrowski type inequalities for functions whose derivatives are s-convex in the second sense, Appl. Math. Lett., 23 (2010), 1071–1076. doi: 10.1016/j.aml.2010.04.038
    [12] S. S. Dragomir, On the Ostrowski's integral inequality for mappings with bounded variation and applications, RGMIA Res. Rep. Coll., 2 (1999), 63–69.
    [13] E. Set, M. Z. Sarikaya, M. E. Özdemir, Some Ostrowski's type inequalities for functions whose second derivatives are s-convex in the second sense and applications, arXiv, 2010. Available from: https://arXiv.org/abs/1006.2488.
    [14] B. G. Pachpatte, On an inequality of Ostrowski type in three independent variables, J. Math. Anal. Appl., 249 (2000), 583–591. doi: 10.1006/jmaa.2000.6913
    [15] M. Tariq, J. Nasir, S. K. Sahoo, A. A. Mallah, A note on some Ostrowski type inequalities via generalized exponentially convexity, J. Math. Anal. Model., 2 (2021), 1–15. doi: 10.48185/jmam.v2i1.127
    [16] M. Tariq, S. K. Sahoo, J. Nasir, S. K. Awan, Some Ostrowski type integral inequalities using hypergeometric functions, J. Fractional Calculus Nonlinear Syst., 2 (2021), 24–41. doi: 10.48185/jfcns.v2i1.240
    [17] Z. Meng, Z. Zhang, H. Zhou, A novel experimental data-driven exponential convex model for reliability assessment with uncertain-but-bounded parameters, App. Math. Model., 77 (2020), 773–787. doi: 10.1016/j.apm.2019.08.010
    [18] Z. Meng, H. Zhou, New target performance approach for a super parametric convex model of non-probabilistic reliability-based design optimization, Comp. Meth. App. Mech. Eng., 339 (2018), 644–662. doi: 10.1016/j.cma.2018.05.009
    [19] G. Brown, Some inequalities that arise in measure theory, J. Aust. Math. Soc., 45 (1988), 83–94. doi: 10.1017/S1446788700032298
    [20] H. Hudzik, L. Maligranda, Some remarks on s-convex functions, Aeq. Math, 48 (1994), 100–111. doi: 10.1007/BF01837981
    [21] S. S. Dragomir, S. Fitzpatrik, The Hadamard inequality for s-convex functions in the second sense, Demonstr. Math., 32 (1999), 687–696.
    [22] S. Özcan, İ. İşcan, Some new Hermite-Hadamard type inequalities for s-convex functions and their applications, J. Inequal. Appl., 2019 (2019), 201. doi: 10.1186/s13660-019-2151-2
    [23] C. P. Niculescu, L. E. Persson, Convex functions and their applications, New York: Springer, 2006.
    [24] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Amsterdam: Elsevier, 2006.
    [25] E. Set, M. E. Özdemir, M. Z. Sarikaya, New inequalities of Ostrowski's type for s-convex functions in the second sense with applications, arXiv, 2010. Available from: https://arXiv.org/abs/1005.0702.
    [26] W. W. Breckner, Stetigkeitsaussagen für eine Klasse verallgemeinerter konvexer funktionen in topologischen linearen Raumen, Pupl. Inst. Math., 23 (1978), 13–20.
    [27] M. Kadakal, İ. İşcan, Exponential type convexity and some related inequalities, J. Inequal. Appl., 2020 (2020), 82. doi: 10.1186/s13660-020-02349-1
    [28] T. Toplu, M. Kadakal, İ. İşcan, On n-polynomial convexity and some relatd inequalities, AIMS Math., 5 (2020), 1304–1318. doi: 10.3934/math.2020089
    [29] P. Cerone, S. S. Dragomir, Ostrowski type inequalities for functions whose derivatives satisfy certain convexity assumptions, Demonstr. Math., 37 (2004), 299–308. doi: 10.1515/dema-2004-0208
    [30] J. Wang, S. I. Butt, A. Kashuri, M. Tariq, New integral inequalities using exponential type convex functions with applications, AIMS Math., 6 (2021), 7684–7703. doi: 10.3934/math.2021446
    [31] H. X. Qi, M. Yussouf, S. Mehmood, Y. M. Chu, G. Farid, Fractional integral versions of Hermite-Hadamard type inequality for generalized exponentially convexity, AIMS Math., 5 (2020), 6030–6042. doi: 10.3934/math.2020386
    [32] S. Naz, M. N. Naeem, Y. M. Chu, Ostrowski-type inequalities for n-polynomial \mathscr{P}-convex function for k-fractional Hilfer-Katugampola derivative, J. Inequal. Appl., 2021 (2021), 117. doi: 10.1186/s13660-021-02657-0
    [33] S. I. Butt, H. Budak, M. Tariq, M. Nadeem, Integral inequalities for n-polynomial s-type preinvex functions with applications, Math. Meth. App. Sci., 44 (2021), 11006–11021. doi: 10.1002/mma.7465
    [34] E. R. Nwaeze, M. A. Khan, A. Ahmadian, M. N. Ahmad, A. K. Mahmood, Fractional inequalities of the Hermite-Hadamard type for m -polynomial convex and harmonically convex functions, AIMS Math., 6 (2021), 1889–1904. doi: 10.3934/math.2021115
  • This article has been cited by:

    1. Muhammad Bilal Riaz, Aziz Ur Rehman, Jan Awrejcewicz, Fahd Jarad, Double Diffusive Magneto-Free-Convection Flow of Oldroyd-B Fluid over a Vertical Plate with Heat and Mass Flux, 2022, 14, 2073-8994, 209, 10.3390/sym14020209
    2. Rozana Liko, Hari Mohan Srivastava, Pshtiwan Othman Mohammed, Artion Kashuri, Eman Al-Sarairah, Soubhagya Kumar Sahoo, Mohamed S. Soliman, Parameterized Quantum Fractional Integral Inequalities Defined by Using n-Polynomial Convex Functions, 2022, 11, 2075-1680, 727, 10.3390/axioms11120727
    3. Muhammad Bilal Khan, Hatim Ghazi Zaini, Jorge E. Macías-Díaz, Savin Treanțǎ, Mohamed S. Soliman, Some Fuzzy Riemann–Liouville Fractional Integral Inequalities for Preinvex Fuzzy Interval-Valued Functions, 2022, 14, 2073-8994, 313, 10.3390/sym14020313
    4. Muhammad Samraiz, Kanwal Saeed, Saima Naheed, Gauhar Rahman, Kamsing Nonlaopon, On inequalities of Hermite-Hadamard type via n -polynomial exponential type s -convex functions, 2022, 7, 2473-6988, 14282, 10.3934/math.2022787
    5. Mohammad Younus Bhat, Badr Alnssyan, Aamir H. Dar, Javid G. Dar, Sampling Techniques and Error Estimation for Linear Canonical S Transform Using MRA Approach, 2022, 14, 2073-8994, 1416, 10.3390/sym14071416
    6. Jarunee Soontharanon, Muhammad Aamir Ali, Hüseyin Budak, Pinar Kösem, Kamsing Nonlaopon, Thanin Sitthiwirattham, Behrouz Parsa Moghaddam, Some New Generalized Fractional Newton’s Type Inequalities for Convex Functions, 2022, 2022, 2314-8888, 1, 10.1155/2022/6261970
    7. Bakhtiar Ahmad, Wali Khan Mashwani, Serkan Araci, Saima Mustafa, Muhammad Ghaffar Khan, Bilal Khan, A subclass of meromorphic Janowski-type multivalent q-starlike functions involving a q-differential operator, 2022, 2022, 2731-4235, 10.1186/s13662-022-03683-y
    8. Muhammad Tariq, Omar Mutab Alsalami, Asif Ali Shaikh, Kamsing Nonlaopon, Sotiris K. Ntouyas, New Fractional Integral Inequalities Pertaining to Caputo–Fabrizio and Generalized Riemann–Liouville Fractional Integral Operators, 2022, 11, 2075-1680, 618, 10.3390/axioms11110618
    9. LEI XU, SHUHONG YU, TINGSONG DU, PROPERTIES AND INTEGRAL INEQUALITIES ARISING FROM THE GENERALIZED n-POLYNOMIAL CONVEXITY IN THE FRAME OF FRACTAL SPACE, 2022, 30, 0218-348X, 10.1142/S0218348X22500840
    10. Asif Ali Shaikh, Evren Hincal, Sotiris K. Ntouyas, Jessada Tariboon, Muhammad Tariq, Some Hadamard-Type Integral Inequalities Involving Modified Harmonic Exponential Type Convexity, 2023, 12, 2075-1680, 454, 10.3390/axioms12050454
    11. Muhammad Tariq, Sotiris K. Ntouyas, Bashir Ahmad, Ostrowski-Type Fractional Integral Inequalities: A Survey, 2023, 3, 2673-9321, 660, 10.3390/foundations3040040
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2062) PDF downloads(72) Cited by(11)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog