Loading [Contrib]/a11y/accessibility-menu.js
Research article

A high order numerical method for solving Caputo nonlinear fractional ordinary differential equations

  • In this paper, we construct a high order numerical scheme for Caputo nonlinear fractional ordinary differential equations. Firstly, we use the piecewise Quadratic Lagrange interpolation method to construct a high order numerical scheme for Caputo nonlinear fractional ordinary differential equations, and then analyze the local truncation error of the high order numerical scheme. Secondly, based on the local truncation error, the convergence order of $ 3-\theta $ order is obtained. And the convergence are strictly analyzed. Finally, the numerical simulation of the high order numerical scheme is carried out. Through the calculation of typical problems, the effectiveness of the numerical algorithm and the correctness of theoretical analysis are verified.

    Citation: Xumei Zhang, Junying Cao. A high order numerical method for solving Caputo nonlinear fractional ordinary differential equations[J]. AIMS Mathematics, 2021, 6(12): 13187-13209. doi: 10.3934/math.2021762

    Related Papers:

    [1] Alessandra Jannelli, Maria Paola Speciale . On the numerical solutions of coupled nonlinear time-fractional reaction-diffusion equations. AIMS Mathematics, 2021, 6(8): 9109-9125. doi: 10.3934/math.2021529
    [2] Sara S. Alzaid, Pawan Kumar Shaw, Sunil Kumar . A study of Ralston's cubic convergence with the application of population growth model. AIMS Mathematics, 2022, 7(6): 11320-11344. doi: 10.3934/math.2022632
    [3] Xiaopeng Yi, Chongyang Liu, Huey Tyng Cheong, Kok Lay Teo, Song Wang . A third-order numerical method for solving fractional ordinary differential equations. AIMS Mathematics, 2024, 9(8): 21125-21143. doi: 10.3934/math.20241026
    [4] Najat Almutairi, Sayed Saber . Chaos control and numerical solution of time-varying fractional Newton-Leipnik system using fractional Atangana-Baleanu derivatives. AIMS Mathematics, 2023, 8(11): 25863-25887. doi: 10.3934/math.20231319
    [5] Sara S. Alzaid, Pawan Kumar Shaw, Sunil Kumar . A numerical study of fractional population growth and nuclear decay model. AIMS Mathematics, 2022, 7(6): 11417-11442. doi: 10.3934/math.2022637
    [6] Ali Turab, Hozan Hilmi, Juan L.G. Guirao, Shabaz Jalil, Nejmeddine Chorfi, Pshtiwan Othman Mohammed . The Rishi Transform method for solving multi-high order fractional differential equations with constant coefficients. AIMS Mathematics, 2024, 9(2): 3798-3809. doi: 10.3934/math.2024187
    [7] Din Prathumwan, Thipsuda Khonwai, Narisara Phoochalong, Inthira Chaiya, Kamonchat Trachoo . An improved approximate method for solving two-dimensional time-fractional-order Black-Scholes model: a finite difference approach. AIMS Mathematics, 2024, 9(7): 17205-17233. doi: 10.3934/math.2024836
    [8] Naimi Abdellouahab, Keltum Bouhali, Loay Alkhalifa, Khaled Zennir . Existence and stability analysis of a problem of the Caputo fractional derivative with mixed conditions. AIMS Mathematics, 2025, 10(3): 6805-6826. doi: 10.3934/math.2025312
    [9] Abdon Atangana, Seda İğret Araz . A successive midpoint method for nonlinear differential equations with classical and Caputo-Fabrizio derivatives. AIMS Mathematics, 2023, 8(11): 27309-27327. doi: 10.3934/math.20231397
    [10] Khalid K. Ali, Mohamed A. Abd El Salam, Mohamed S. Mohamed . Chebyshev fifth-kind series approximation for generalized space fractional partial differential equations. AIMS Mathematics, 2022, 7(5): 7759-7780. doi: 10.3934/math.2022436
  • In this paper, we construct a high order numerical scheme for Caputo nonlinear fractional ordinary differential equations. Firstly, we use the piecewise Quadratic Lagrange interpolation method to construct a high order numerical scheme for Caputo nonlinear fractional ordinary differential equations, and then analyze the local truncation error of the high order numerical scheme. Secondly, based on the local truncation error, the convergence order of $ 3-\theta $ order is obtained. And the convergence are strictly analyzed. Finally, the numerical simulation of the high order numerical scheme is carried out. Through the calculation of typical problems, the effectiveness of the numerical algorithm and the correctness of theoretical analysis are verified.



    Fractional calculus is a branch of study that of any order integral or derivative. It is obtained by replacing the integer order of differential equations with the fractional order. Because fractional derivative has heredity or memory, the fractional differential equation is widely used in various fields. In the past few decades, fractional derivative has been studied by a large number of scholars. They firstly proved a $ (3-\theta) $-order convergence and stability scheme for time-fractional derivative $ \theta $ under the time step $ k\geq 2 $ in [1]. The similar $ (3-\theta) $-order scheme to efficiently solve the time-fractional diffusion equation in time was first constructed in [2]. Based on the idea of block-by-block approach method, the reference [3] presented a general technique to construct high order schemes for the numerical solution of the fractional ordinary differential equations. The reference [4] established a fractional Gronwall inequality to prove some stability and convergence estimates of schemes for fractional reaction-subdiffusion problems. In [5], a space-time finite element method was used to solve the distributed-order time fractional reaction diffusion equations. The scheme with $ (3-\theta) $ convergence order for time step $ k\geq 2 $ and $ (2-\theta) $ convergence order for time step $ k = 1 $ was constructed for time-fractional derivative in [6]. They proved the $ (2-\theta) $-order convergence and stability of the time scheme, where $ \theta $ is the order of the time-fractional derivative in [7]. A series of high order numerical approximations to $ \theta $-Caputo derivatives $ (0 < \theta < 2) $ and Riemann-Liouville derivatives were given in [8]. They investigated numerical solutions of coupled nonlinear time-fractional reaction-diffusion equations obtained by the Lie symmetry analysis in [9]. They built a robust finite difference scheme for a nonlinear Caputo fractional differential equation on an adaptive grid with first-order convergent result in [10]. Spectral methods was popularly used to solve fractional derivative in [11,12,13]. An implicit numerical method was constructed to solve the two-dimensional $ \theta (1 < \theta < 2) $ time fractional diffusion-wave equation with the convergence order $ 3-\theta $ in [14]. They used the piecewise linear and quadratic Lagrange interpolation functions to construct a $ (3-\theta) $-order numerical approximate method for the Caputo fractional derivative in [15]. In [16], a fast high order numerical method for nonlinear fractional-order differential equations with non-singular kernel was constructed. The numerical scheme for nonlinear fractional differential equations was constructed by the Galerkin finite element method in [17]. The reference [18] established a $ hp $-version Chebyshev collocation method for nonlinear fractional differential equations. The Spectral collocation method for nonlinear Riemann-Liouville fractional differential equations was given in [19]. The above high order schemes are either implicit or low-order schemes are used in the first step or obtained by discretizing the equivalent form of the original equation. Therefore, we will give a high order numerical scheme with uniform convergence order in this paper using the direct numerical discretization of original equations based on the idea of [1,2,3].

    This paper is arranged as follows: In Section 2 the higher order numerical scheme is proposed. And the local truncation error of the constructed higher order numerical scheme is given in Section 3. The convergence analysis is studied in Section 4. In Section 5 some numerical examples are given. Finally, some conclusion are given in Section 6.

    We consider the following initial value problem of nonlinear fractional ordinary differential equations

    $ \left\{ \begin{array}{l} _0D_t^\theta u(t) = f(t, u(t)), 0 \le t \le T, 0 < \theta < 1, \;\;\;\;\;\left( {2.1} \right)\\ u(0) = {u_0}, \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\left( {2.2} \right) \end{array} \right. $

    where $ \theta $ is the order of the fractional derivative, $ _{0}D_{t}^{\theta} u(t) $ in (2.1) is defined as the Caputo fractional derivatives of order $ \theta $ given by

    $ \begin{eqnarray} _{0}D_{t}^{\theta} u(t) = \int_{0}^{t}\omega_{1-\theta}~~ (t-\tau) u^{\prime}(\tau) d \tau, \end{eqnarray} $ (2.3)

    with $ \omega_{1-\theta}~~ $ is defined by $ \omega_{1-\theta}~~(t) = \frac{1}{t^{\theta}\Gamma(1-\theta)}, $ and $ \Gamma(\cdot) $ denotes Gamma function [20].

    First, the finite difference scheme is introduced to discretize the fractional derivative. Dividing the interval $ [0, T] $ into $ K $ equal subintervals, set $ t_k = k\Delta t, k = 0, 1, \ldots, K $, with $ \Delta t = \frac{T}{K} $, the numerical solution of (2.1) at $ t_k $ is $ u_k $, and $ _{0}D_{t}^{\theta} u\left(t_{k}\right) = {_{0}D}_{t}^{\theta} u_{k} $, $ f_{k} = f\left(t_{k}, u_{k}\right) $.

    Next, we start discretizing the fractional derivative (2.1). Firstly, the values of $ u(t) $ on $ t_1 $ and $ t_2 $ are determined. Using Quadratic Lagrange interpolation, the approximation formula of $ u(t) $ on the interval [$ t_0 $, $ t_2 $] is

    $ \begin{eqnarray} J_{\left[t_{0}, t_{2}\right]} u(t) = \varpi_{0, 0}(t)u_{0}+\varpi_{1, 0}(t)u_{1}+\varpi_{2, 0}(t)u_{2}, \end{eqnarray} $ (2.4)

    where $ \varpi_{i, 0}(t), i = 0, 1, 2, $ are the Quadratic Lagrangian interpolation basis functions on point $ t_0 $, $ t_1 $ and $ t_2 $, are defined as following

    $ \begin{eqnarray*} \varpi_{0, 0}(t) = \frac{(t-t_1)(t-t_2)}{2 \Delta t^{2}}, \ \varpi_{1, 0}(t) = \frac{(t-t_0)(t-t_2)}{-\Delta t^{2}}, \ \varpi_{2, 0}(t) = \frac{(t-t_0)(t-t_1)}{2 \Delta t^{2}}. \end{eqnarray*} $

    Let $ \Delta u_{k} = u_{k}-u_{k-1}, \Delta u_{0} = u_{0}, \forall k\geq1 $. when $ k = 1, 2 $, we use $ _{0}D_{t}^{\theta}\left(J_{\left[t_{0}, t_{2}\right]} u\right)\left(t_{1}\right), \ _{0}D_{t}^{\theta}\left(J_{\left[t_{0}, t_{2}\right]} u\right)\left(t_{2}\right) $ to approximate $ _{0}D_{t}^{\theta}u(t_1), \ _{0}D_{t}^{\theta}u(t_2) $, respectively, then we get

    $ _{0}D_{t}^{\theta} u(t_{1}) \!\!\! = \!\!\! \int_{0}^{t_{1}}\omega_{1-\theta}~~ (t_1-\tau)u^{\prime}(\tau) d \tau \approx \int_{0}^{t_{1}}\omega_{1-\theta}~~ (t_1-\tau)\left[J_{\left[t_{0}, t_{2}\right]} u(\tau)\right]^{\prime} d \tau \\ \!\!\! = \!\!\! { } \frac{1}{\Delta t^{2}}\int_{0}^{t_{1}}\omega_{1-\theta}~~(t_{1}-\tau)[(\tau-t_{\frac{1}{2}})\Delta u_{2}-(\tau-t_{\frac{3}{2}})\Delta u_{1}]d \tau = { } B_{1}^{1}\Delta u_{1}+B_{1}^{2} \Delta u_{2}\doteq \ _{0}D_{\Delta{t}}^{\theta} u_{1}, $ (2.5)
    $ { } _{0}D_{t}^{\theta} u\left(t_{2}\right)\!\!\! = \!\!\! { } \int_{0}^{t_{2}}\omega_{1-\theta}~~ (t_2-\tau) u^{\prime}(\tau) d \tau \approx { } \int_{0}^{t_{2}}\omega_{1-\theta}~~ (t_2-\tau)\left[J_{\left[t_{0}, t_{2}\right]} u(\tau)\right]^{\prime} d \tau \\ \!\!\! = \!\!\! { } \frac{1}{\Delta t^{2}}\int_{0}^{t_{2}}\omega_{1-\theta}~~(t_{2}-\tau)[(\tau-t_{\frac{1}{2}})\Delta u_{2}-(\tau-t_{\frac{3}{2}})\Delta u_{1}]d \tau = { } B_{2}^{1}\Delta u_{1}+B_{2}^{2} \Delta u_{2}\doteq \ _{0}D_{\Delta{t}}^{\theta} u_{2}, $ (2.6)

    where

    $ \begin{eqnarray} B_{j}^{1} = -\frac{1}{\Delta t^{2}}\int_{0}^{t_{j}}\omega_{1-\theta}~~(t_{j}-\tau)(\tau-t_{\frac{3}{2}})d\tau, \ \ B_{j}^{2} = \frac{1}{\Delta t^{2}}\int_{0}^{t_{j}}\omega_{1-\theta}~~(t_{j}-\tau)(\tau-t_{\frac{1}{2}})d\tau, j = 1, 2. \end{eqnarray} $ (2.7)

    When $ k \geq 3 $, we have

    $ \begin{eqnarray*} \begin{array}{l}{ } _{0}D_{t}^{\theta}u(t_{k}) = \int_{0}^{t_{1}}\omega_{1-\theta}~~(t_{k}-\tau)u^{\prime}(\tau)d\tau +\sum\limits_{j = 1}^{k-1}\int_{t_{j}}^{t_{j+1}}\omega_{1-\theta}~~(t_{k}-\tau)u^{\prime}(\tau)d\tau\\ \approx { }\int_{0}^{t_{1}}\omega_{1-\theta}~~(t_{k}-\tau)\left[J_{\left[t_{0}, t_{2}\right]} u(\tau)\right]^{\prime}d\tau +\sum\limits_{j = 1}^{k-1}\int_{t_{j}}^{t_{j+1}}\omega_{1-\theta}~~(t_{k}-\tau)\left[J_{\left[t_{j-1}, t_{j+1}\right]} u(\tau)\right]^{\prime}d\tau \\ = { } \int_{0}^{t_{1}}\omega_{1-\theta}~~(t_{k}-\tau)\Big[\frac{2\tau-t_{1}-t_{2}}{2\Delta t^{2}}u_{0}+\frac{2\tau-t_{0}-t_{2}}{-\Delta t^{2}}u_{1}+\frac{2\tau-t_{0}-t_{1}}{2\Delta t^{2}}u_{2}\Big]d\tau\\ \ \ \ + { } \sum\limits_{j = 1}^{k-1}\int_{t_{j}}^{t_{j+1}}\omega_{1-\theta}~~(t_{k}-\tau)\Big[\frac{2\tau-t_{j}-t_{j+1}}{2\Delta t^{2}}u_{j-1}+\frac{2\tau-t_{j-1}-t_{j+1}}{-\Delta t^{2}}u_{j} + { } \frac{2\tau-t_{j-1}-t_{j}}{2\Delta t^{2}}u_{j+1}\Big] d\tau\\ = { } \frac{1}{\Delta t^{2}}\int_{0}^{t_{1}}\omega_{1-\theta}~~(t_{k}-\tau)[(\tau-t_{\frac{1}{2}})\Delta u_{2}-(\tau-t_{\frac{3}{2}})\Delta u_{1}]d\tau\\ \ \ \ + { } \frac{1}{\Delta t^{2}}\sum\limits_{j = 1}^{k-1}\int_{t_{j}}^{t_{j+1}}\omega_{1-\theta}~~(t_{k}-\tau)[(\tau-t_{j-\frac{1}{2}})\Delta u_{j+1}-(\tau-t_{j+\frac{1}{2}})\Delta u_{j}]d\tau\\ = { } -\frac{1}{\Delta t^{2}}\Big[\int_{0}^{t_{2}}\omega_{1-\theta}~~(t_{k}-\tau)(\tau-t_{\frac{3}{2}})d\tau\Big]\Delta u_{1} + { } \frac{1}{\Delta t^{2}}\Big[\int_{0}^{t_{2}}\omega_{1-\theta}~~(t_{k}-\tau)(\tau-t_{\frac{1}{2}})d\tau\Big]\Delta u_{2}\\ \ \ \ + { } \frac{1}{\Delta t^{2}} \sum\limits_{j = 2}^{k-1} \int_{t_{j}}^{t_{j+1}} \omega_{1-\theta}~~(t_{k}-\tau)[(\tau-t_{j-\frac{1}{2}})\Delta u_{j+1}-(\tau-t_{j+\frac{1}{2}})\Delta u_{j}]d\tau \doteq \ _{0}D_{\Delta{t}}^{\theta} u_{k}, \end{array} \end{eqnarray*} $

    we can conclude that

    $ \begin{eqnarray} \begin{array}{lll}{ } _{0}D_{\Delta t}^{\theta}u_{k} = { } A_{k-1}^{k}\Delta u_{1}+A_{k-2}^{k}\Delta u_{2}+\sum\limits_{j = 3}^{k-1}A_{k-j}^{k}\Delta u_{j}+A_{0}^{k}\Delta u_{k}, \quad 3\leq k \leq K, \end{array} \end{eqnarray} $ (2.8)

    where

    $ \begin{eqnarray} \begin{array}{l}{ } A_{0}^{k} = \frac{1}{\Delta t^{2}} \int_{t_{k-1}}^{t_{k}} \omega_{1-\theta}~~(t_{k}-\tau)(\tau-t_{k-\frac{3}{2}})d\tau, \ \ A_{k-1}^{k} = { } -\frac{1}{\Delta t^{2}}\int_{0}^{t_{2}}\omega_{1-\theta}~~(t_{k}-\tau)(\tau-t_{\frac{3}{2}})d\tau, \\ A_{k-2}^{k} = { } \frac{1}{\Delta t^{2}}\Big[\int_{0}^{t_{2}}\omega_{1-\theta}~~(t_{k}-\tau)(\tau-t_{\frac{1}{2}})d\tau -\int_{t_{2}}^{t_{3}}\omega_{1-\theta}~~(t_{k}-\tau)(\tau-t_{\frac{5}{2}})d\tau\Big], \\ A_{k-j}^{k} = { } \frac{1}{\Delta t^{2}}\Big[\int_{t_{j-1}}^{t_{j}}\omega_{1-\theta}~~(t_{k}-\tau)(\tau-t_{j-\frac{3}{2}})d\tau -{ } \int_{t_{j}}^{t_{j+1}}\omega_{1-\theta}~~(t_{k}-\tau)(\tau-t_{j+\frac{1}{2}})d\tau\Big], \\j = 3, \ldots, k-1 . \end{array} \end{eqnarray} $ (2.9)

    According to approximations (2.5), (2.6) and (2.8), the higher order numerical scheme of Eq (2.1) corresponding to the initial value (2.2) is as follows

    $ \begin{eqnarray} _{0}D_{\Delta{t}}^{\theta} u_{k} = f_{k}, k = 1, 2, \ldots, K. \end{eqnarray} $ (2.10)

    Remark 2.1. The numerical algorithm in this paper is different from [15]. In [15], in order to obtain $ (3-\theta) $-order numerical scheme for the linear form of (2.1), they changed (2.1) into the following equation

    $ \begin{eqnarray} \frac{1}{\Gamma(1-\theta)}\int_0^t \frac{u(s)}{(t-s)^\theta}ds = \frac{u(0)t^{1-\theta}~~}{\Gamma(1-\theta)(1-\theta)}+\int_0^t f(s)ds. \end{eqnarray} $ (2.11)

    And using the linear Lagrange interpolation in $ [t_0, t_1] $ to $ u(s) $, they obtain a $ (3-\theta) $-order numerical scheme. In this paper, we use the Quadratic Lagrange interpolation in $ [t_0, t_2] $ to $ u(s) $ in (2.1) and directly obtain the $ (3-\theta) $-order numerical scheme (2.5) and (2.6).

    Next, we will introduce a lemma to prove the sign of $ A_{k-j}^{k} $ and judge its size relation.

    Lemma 2.1. $ A_{0}^{k} > 0 $, the sign of $ A_{1}^{k} $ is uncertain, $ A_{2}^{k} > A_{3}^{k} > \ldots > A_{k-1}^{k} > 0. $

    Proof. Through calculation, we can get the following results

    $ \begin{eqnarray} A_{0}^{k} & = &{ } \frac{-1}{\Delta t^{2}\Gamma(2-\theta)}\int_{t_{k-1}}^{t_{k}}(\tau-t_{k-\frac{3}{2}})d(t_{k}-\tau)^{1-\theta}~~ = { } \frac{1}{\Delta t^{\theta}\Gamma(3-\theta)}(2-\frac{\theta}{2}) > 0, \end{eqnarray} $ (2.12)
    $ \begin{eqnarray} A_{1}^{k} &\!\!\!\! = &\!\!\!\! { } \frac{1}{\Delta t^{2}}\Big[\int_{t_{k-2}}^{t_{k-1}}\omega_{1-\theta}~~(t_{k}-\tau)(\tau-t_{k-\frac{5}{2}})d\tau -\int_{t_{k-1}}^{t_{k}}\omega_{1-\theta}~~(t_{k}-\tau)(\tau-t_{k-\frac{1}{2}})d\tau\Big] \\ \nonumber &\!\!\!\! = &\!\!\!\! \frac{1}{\Delta t^{\theta}\Gamma(3-\theta)}[(6-\theta)2^{-\theta}-4+\theta] \doteq \frac{1}{\Delta t^{\theta}\Gamma(3-\theta)}M(\theta). \end{eqnarray} $ (2.13)

    The sign of $ A_{1}^{k} $ is determined by the sign of $ M(\theta) $, which satisfies

    $ \begin{eqnarray*} M^{\prime\prime}(\theta) = 2^{-\theta}(\log2)[2+(6-\theta)\log2] > 0, \ \ M^{\prime}(1) = \frac{1}{2}(1-5\log2) < 0. \end{eqnarray*} $

    Therefore $ M(\theta) $ is a decrease function on $ \theta\in(0, 1) $. By $ M(0) = 2 > 0 $ and $ M(1) = -\frac{1}{2} < 0 $, we know that $ M(\theta) $ has only one zero $ \theta_0 $ in $ (0, 1) $, and $ M(\theta) > 0 $ if $ \theta\in(0, \theta_0) $ and $ M(\theta) < 0 $ if $ \theta\in(\theta_0, 1) $, which agrees with the conclusion of Lemma 2.1.

    For $ j = 3, \ldots, k-2 $, we have

    $ \begin{eqnarray} \begin{array}{llll}{ } A_{k-j}^{k} & = &{ } \frac{1}{\Delta t^{\theta}\Gamma(3-\theta)} \Big\{\frac{1}{2}(2-\theta)\big[(k-j-1)^{1-\theta}~~-2(k-j)^{1-\theta}~~\\ &&+{ } (k-j+1)^{1-\theta}~~\big]+(k-j-1)^{2-\theta}-2(k-j)^{2-\theta}+(k-j+1)^{2-\theta}\Big\}, \end{array} \end{eqnarray} $ (2.14)

    let $ \bar j = k-j $, $ \bar j \geq 2 $, then using Taylor expansion, we can get the following results

    $ \begin{eqnarray} A_{k-j}^{k} = \frac{1}{\Delta t^{\theta}\Gamma(2-\theta)}\bar j^{-\theta}\sum\limits_{i = 0}^{+\infty} a_{i}\bar j^{-i}, \end{eqnarray} $ (2.15)

    where $ a_{i} = \Pi_{n = 0}^{i}(1-\theta-n)\frac{1}{(i+2)!}[(-1)^{i} (\frac{-i}{2})+\frac{i+4}{2}] $. Next, we will prove $ \bar j^{-\theta}\sum_{i = 0}^{+\infty} a_{i}\bar j^{-i} $ is decrease function on $ \bar j $. Because $ \sum_{i = 0}^{+\infty} a_{i}\bar j^{-i} $ is a convergence series, and the radius of convergence exists, it can exchange the derivative and the sum.

    $ \begin{eqnarray*} \Big(\bar j^{-\theta}\sum\limits_{i = 0}^{+\infty} a_{i}\bar j^{-i}\Big)^{\prime} = -\bar j^{-\theta}\Big[\theta\bar j^{-1}\sum\limits_{i = 0}^{+\infty} a_{i}\bar j^{-i} +\sum\limits_{i = 1}^{+\infty} ia_{i}\bar j^{-i-1}\Big] = -\bar j^{-\theta}\\ \Big[\theta\bar j^{-1}a_0+(1+\theta)\bar j^{-2}a_{1} +\sum\limits_{i = 2}^{+\infty} (i+\theta)a_{i}\bar j^{-i-1}\Big]. \end{eqnarray*} $

    We can find $ \sum_{i = 2}^{+\infty} (i+\theta)a_{i}\bar j^{-i-1} $ is an alternating series with positive first term. So $ \sum_{i = 2}^{+\infty} (i+\theta)a_{i}\bar j^{-i-1} > 0 $, we have

    $ \begin{eqnarray*} &&\theta\bar j^{-1}a_0+(1+\theta)\bar j^{-2}a_{1} +\sum\limits_{i = 2}^{+\infty} (i+\theta)a_{i}\bar j^{-i-1} > \theta\bar j^{-1}a_0+(1+\theta)\bar j^{-2}a_{1}\\ && = \theta\bar j^{-1}(1-\theta)+(1+\theta)\bar j^{-2}(-\frac{1}{2})(1-\theta)\theta = (1-\theta)\theta[\bar j^{-1}-\frac{1}{2}(1+\theta)\bar j^{-2}] > 0. \end{eqnarray*} $

    Therefore, we have already proved $ \bar j^{-\theta}\sum_{i = 0}^{+\infty} a_{i}\bar j^{-i} $ is decrease function on $ \bar j $. According to (2.15), we obtain

    $ \begin{eqnarray} A_{2}^{k} > A_{3}^{k} > \ldots > A_{k-3}^{k}. \end{eqnarray} $ (2.16)

    Next, let's prove $ A_{k-3}^{k} > A_{k-2}^{k} > A_{k-1}^{k} > 0. $ Through careful calculation, we can get

    $ \begin{eqnarray*} \begin{array}{lll}{ } A_{k-2}^{k}-A_{k-1}^{k} = \frac{1}{\Gamma(3-\theta)\Delta t^{\theta}}F_{1}, \quad A_{k-3}^{k}-A_{k-2}^{k} = \frac{1}{\Gamma(3-\theta)\Delta t^{\theta}}F_{2}, \end{array} \end{eqnarray*} $

    where

    $ F_{1}\!\!\!\! = \!\!\!\! { } -\frac{3}{2}(2-\theta)(k-2)^{1-\theta}~~+\frac{1}{2}(2-\theta)(k-3)^{1-\theta}~~\\-2(2-\theta)k^{1-\theta}~~ + { } (k-3)^{2-\theta}-3(k-2)^{2-\theta}+2k^{2-\theta}, \\ F_{2} \!\!\!\! = \!\!\!\! { } \frac{1}{2}(2-\theta)k^{1-\theta}~~+\frac{3}{2}(2-\theta)(k-2)^{1-\theta}~~-\frac{3}{2}(2-\theta)(k-3)^{1-\theta}~~+\frac{1}{2}(2-\theta)(k-4)^{1-\theta}~~\\ \!\!\!\!\!\!\!\!- { } k^{2-\theta}+3(k-2)^{2-\theta}-3(k-3)^{2-\theta}+(k-4)^{2-\theta}, $

    According to (1) in Lemma A.1, we get $ F_{1} > 0, F_{2} > 0 $. Therefore, we have

    $ \begin{eqnarray} A_{k-2}^{k}-A_{k-1}^{k} > 0, \ \ \ A_{k-3}^{k}-A_{k-2}^{k} > 0. \end{eqnarray} $ (2.17)

    The following step, we will prove $ A_{k-1}^{k} > 0 $. By carefully calculation, we have

    $ \begin{eqnarray} A_{k-1}^{k} = \frac{1}{\Delta t^{\theta}\Gamma(3-\theta)}\Big\{\frac{2-\theta}{2}[(k-2)^{1-\theta}~~+3k^{1-\theta}~~]+(k-2)^{2-\theta}-k^{2-\theta}\Big\}, \end{eqnarray} $ (2.18)

    According to (2.33), we have

    $ \begin{eqnarray} A_{k-1}^{k} > 0. \end{eqnarray} $ (2.19)

    Combining (2.12), (2.13), (2.16), (2.17) with (2.19), we already proved Lemma 2.1.

    We let $ \Delta \bar u_{j} = \Delta (u_{j}-\rho u_{j-1}) $, $ \Delta \bar u_{0} = \Delta u_{0} $. Let $ \rho = \frac{1}{2}(1-\frac{A_1^k}{A_0^k}) = \frac{1}{2}(3+\frac{\theta-6}{4-\theta}\cdot2^{1-\theta}~~) $. Therefore, from (2.8), we can get that

    $ \begin{eqnarray} \begin{array}{lll}{ } _{0}D_{\Delta t}^{\theta}u_{k} & = & { } A_{0}^{k}\Delta u_{k}+A_{1}^{k}\Delta u_{k-1}+A_{2}^{k}\Delta u_{k-2}+\ldots+A_{k-2}^{k}\Delta u_{2}+A_{k-1}^{k}\Delta u_{1}\\ & = & { } A_{0}^{k}\Delta (u_{k}-\rho u_{k-1})+(A_{1}^{k}+\rho A_{0}^{k})\Delta (u_{k-1}-\rho u_{k-2})+\ldots\\ &&+ { } (A_{k-j}^k+\rho A_{k-j-1}^{k}+\ldots+\rho^{k-j}A_{0}^{k})\Delta (u_{j}-\rho u_{j-1})\\ &&+ \ldots + { } (A_{k-1}^{k}+\rho A_{k-2}^{k}+\ldots+\rho^{k-1}A_{0}^{k})\Delta (u_{1}-\rho u_{0})\\ &&+ { } (\rho A_{k-1}^{k}+\rho^{2} A_{k-2}^{k}+\ldots+\rho^{k}A_{0}^{k})\Delta u_{0}\\ & = & { } \sum\limits_{j = 1}^{k}\bar A_{k-j}^{k}\Delta \bar u_{j}+\Delta u_{0}\sum\limits_{i = 1}^{n}\rho^{i}A_{k-i}^{k}, \end{array} \end{eqnarray} $ (2.20)

    where

    $ \begin{eqnarray} \bar A_{k-j}^{k} = \sum\limits_{i = j}^{k}\rho^{i-j}A_{k-i}^{k}. \end{eqnarray} $ (2.21)

    Next, we discuss the relationship between the size of $ \bar A_{k-j}^{k} $.

    Lemma 2.2. $ \bar A_{0}^{k} > \bar A_{1}^{k} > \bar A_{2}^{k} > \ldots > \bar A_{k-1}^{k} > 0 $.

    Proof. When $ k = 3 $, we only need to prove $ \bar A_{0}^{3} > \bar A_{1}^{3} > \bar A_{2}^{3} > 0. $ By careful calculation, we can get

    $ \begin{eqnarray*} \begin{array}{llll}{ } \bar A_{1}^{3}-\bar A_{0}^{3} & = & { } -\frac{1}{2\Delta t^{\theta}\Gamma(3-\theta)}\Big[\frac{3}{2}(4-\theta)-(4+\theta)3^{1-\theta}~~+(6-\theta)2^{-\theta}\Big]. \end{array} \end{eqnarray*} $

    According to (2) in Lemma A.1, we get

    $ \begin{eqnarray} \bar A_{0}^{3} > \bar A_{1}^{3}. \end{eqnarray} $ (2.22)

    By direct calculation, we have

    $ \begin{eqnarray*} \begin{array}{llll}{ } \bar A_{2}^{3}-\bar A_{1}^{3} = A_{2}^{3}-A_{1}^{3}+\rho(\bar A_{1}^{3}-\bar A_{0}^{3})\\ = { } -\frac{4-\theta}{2\Delta t^{\theta}\Gamma(3-\theta)}\Big[-\frac{3}{4}+\frac{5\theta-4}{2(4-\theta)}\cdot3^{1-\theta}~~ +\frac{(4+\theta)(6-\theta)}{(4-\theta)^2}\cdot3^{1-\theta}~~\cdot2^{-\theta} -\frac{(6-\theta)^2}{(4-\theta)^2}(2^{-\theta})^2\Big]. \end{array} \end{eqnarray*} $

    According to (3) in Lemma A.1, we have

    $ \begin{eqnarray} \bar A_{1}^{3} > \bar A_{2}^{3}. \end{eqnarray} $ (2.23)

    Next, we will prove $ \bar A_{2}^{3} = A_{2}^{3}+\rho\bar A_{1}^{3} > 0 $. According to (2.41), we get $ \bar A_{1}^{3} > 0 $. Hence, we just need to prove $ A_{2}^{3} > 0 $. By calculation, we have $ A_{2}^{3} = \frac{1}{2\Delta t^{\theta}\Gamma(3-\theta)}[4-\theta-\theta\cdot3^{2-\theta}] > 0 $, therefore,

    $ \begin{eqnarray} \bar A_{2}^{3} > 0. \end{eqnarray} $ (2.24)

    Combining (2.22), (2.23) and (2.24), when $ k = 3 $, we know that Lemma 2.2 holds.

    When $ k\geq 4, $ through careful calculation, we can draw the following conclusions

    $ \begin{eqnarray} \bar A_{1}^{k}-\bar A_{0}^{k} = -\frac{2-\frac{\theta}{2}}{\Delta t^{\theta}\Gamma(3-\theta)}\Big[\frac{3}{2}+\frac{(\theta-6)2^{-\theta}}{4-\theta}\Big] = -\frac{2-\frac{\theta}{2}}{\Delta t^{\theta}\Gamma(3-\theta)}\rho. \end{eqnarray} $ (2.25)

    According to (4) in Lemma A.1, we can get $ \rho > 0 $, we have $ \bar A_{0}^{k} > \bar A_{1}^{k}. $ Because

    $ \begin{eqnarray*} \bar A_{2}^{k}-\bar A_{1}^{k} = A_{2}^{k}-A_{1}^{k}+\rho(\bar A_{1}^{k}-\bar A_{0}^{k}) = { } -\frac{1}{8(4-\theta)\Delta t^{\theta}\Gamma(3-\theta)}\tilde f(\theta), \end{eqnarray*} $

    where $ \tilde f(\theta) = -3(4-\theta)^2+6(4-\theta)(6-\theta)2^{1-\theta}~~-4(4-\theta)(8-\theta)3^{1-\theta}~~ +(6-\theta)^2\cdot4^{1-\theta}~~. $ According to (5) in Lemma A.1, we can get $ \tilde f(\theta) > 0 $. It can be concluded that

    $ \begin{eqnarray} \bar A_{1}^{k} > \bar A_{2}^{k}. \end{eqnarray} $ (2.26)

    By careful calculation, we can get $ \bar A_{3}^{k}-\bar A_{2}^{k} = A_{3}^{k}-A_{2}^{k}+\rho(\bar A_{2}^{k}-\bar A_{1}^{k}). $ According to $ \rho > 0 $, (2.26) and Lemma 2.1, we can get

    $ \begin{eqnarray} \bar A_{2}^{k} > \bar A_{3}^{k}. \end{eqnarray} $ (2.27)

    By mathematical induction, and Lemma 2.1 we can conclude that

    $ \begin{eqnarray*} \bar A_{k-1-j}-\bar A_{k-2-j} = A_{k-1-j}^{k}-A_{k-2-j}^{k}+\rho (\bar A_{k-2-j}^{k}-\bar A_{k-3-j}^{k}) > 0, \quad j = 0, \ldots, k-4. \end{eqnarray*} $

    So we have

    $ \begin{eqnarray} \bar A_{0}^{k} > \bar A_{1}^{k} > \bar A_{2}^{k} > \ldots > \bar A_{k-1}^{k}. \end{eqnarray} $ (2.28)

    Next we prove that $ \bar A_{k-1}^{k} > 0. $ According to (2.21), we have

    $ \begin{eqnarray*} \bar A_{k-1}^{k} = A_{k-1}^{k}+\sum\limits_{i = 2}^{k-2}\rho^{i-j}A_{k-i}^{k}+\rho^{k-2}\bar A_{1}^{k}. \end{eqnarray*} $

    According to (2.37), we get $ \bar A_{1}^{k} > 0 $. Using Lemma 2.1, $ \rho > 0 $, we have

    $ \begin{eqnarray} \bar A_{k-1}^{k} > 0. \end{eqnarray} $ (2.29)

    Combining (2.28) with (2.29), we already proved Lemma 2.2.

    Lemma 2.3. There is a constant $ \pi_{A}\geq6 $ such that the discrete kernel satisfies the lower bound.

    $ \begin{eqnarray} \bar A_{j}^{k}\geq \frac{1}{\pi_{A}\Delta t}\int_{t_{k-j-1}}^{t_{k-j}}\omega_{1-\theta}~~(t_{k}-\tau)d\tau = \frac{1}{\pi_{A}\Delta t^{\theta}\Gamma(2-\theta)}[(j+1)^{1-\theta}~~-j^{1-\theta}~~]. \end{eqnarray} $ (2.30)

    Proof. When $ k\geq4 $, According to (2.21), Lemma 2.1 and Lemma 2.2, we can get

    $ \begin{eqnarray*} \bar A_{k-j}^{k} = A_{k-j}^{k}+\sum\limits_{i = j+1}^{k-2}A_{k-i}^{k}\rho^{i-j}+\rho^{k-1-j}\bar A_{1}^{k}\geq A_{k-j}^{k}. \end{eqnarray*} $

    For $ j = 1 $, we have

    $ \begin{eqnarray} \bar A_{k-1}^{k}\geq A_{k-1}^{k} = \frac{1}{\Delta t^{\theta}\Gamma(3-\theta)}\Big\{\frac{2-\theta}{2}[(k-2)^{1-\theta}~~+3k^{1-\theta}~~]+(k-2)^{2-\theta}-k^{2-\theta}\Big\}, \end{eqnarray} $ (2.31)

    let $ \tilde{j} = k-1, \tilde{j}\geq 3 $, using Taylor formula to expand the calculation, we can get the following results

    $ \begin{eqnarray} A_{k-1}^{k} = \frac{\tilde{j}^{-\theta}}{\Delta t^{\theta}\Gamma(2-\theta)}\sum\limits_{i = 0}^{+\infty}a_{i}, \end{eqnarray} $ (2.32)

    where $ a_{i} = \Pi_{i = 0}^{i}(1-\theta-i)\frac{1}{(i+2)!}(\frac{1}{\tilde{j}})^{i}[(-1)^{i+1}\frac{i}{2} +\frac{3i+4}{2}] $, $ a_{0} = (1-\theta) $, $ a_{1} = \frac{8(1-\theta)(-\theta)}{12\tilde{j}} $, $ \sum_{i = 2}^{+\infty}a_{i} $ is a convergent alternating series, and $ a_{2} > 0 $, therefore, we have $ 0 \leq \sum_{i = 2}^{+\infty}a_{i} \leq a_{2}, $ so

    $ \begin{eqnarray} A_{k-1}^{k} = \frac{\tilde{j}^{-\theta}}{\Delta t^{\theta}\Gamma(2-\theta)}\Big(a_{0}+a_{1}+\sum\limits_{i = 2}^{+\infty}a_{i}\Big)\geq \frac{\tilde{j}^{-\theta}}{\Delta t^{\theta}\Gamma(1-\theta)}\Big(1-\frac{8}{36}\Big) = \frac{\tilde{j}^{-\theta}}{\Delta t^{\theta}\Gamma(1-\theta)\frac{9}{7}}. \end{eqnarray} $ (2.33)

    We have

    $ \begin{eqnarray} \pi_{A}\geq\frac{9}{7}. \end{eqnarray} $ (2.34)

    For $ j = 2 $, we have

    $ \bar{A}_{k-2}^{k}\geq A_{k-2}^{k} = \frac{1}{\Delta t^{\theta}\Gamma(3-\theta)}\Big\{\frac{2-\theta}{2}[(k-3)^{1-\theta}~~-2(k-2)^{1-\theta}~~-k^{1-\theta}~~] \\+(k-3)^{2-\theta}-2(k-2)^{2-\theta}+k^{2-\theta}\Big\}, $

    let $ \hat{j} = k-2, \hat{j}\geq2 $, and then using Taylor expansion, similar to $ j = 1 $, it can be obtained by calculation

    $ \begin{eqnarray*} A_{k-2}^{k} = \frac{\hat{j}^{-\theta}}{\Delta t^{\theta}\Gamma(3-\theta)}\sum\limits_{i = 0}^{+\infty}a_{i}, \end{eqnarray*} $

    where $ a_{i} = \Pi_{n = 0}^{i}(1-\theta-n)\frac{1}{(i+2)!}(\frac{1}{\hat{j}})^{i} [\frac{i}{-2}\cdot(-1)^{i}+\frac{2-i}{2}2^{i+1}] $, because $ \sum_{i = 3}^{+\infty}a_{i} $ is a convergent staggered series, and $ a_{3} > 0 $, $ 0 < \sum_{i = 3}^{+\infty}a_{i} < a_{3}, $ we get

    $ \begin{eqnarray*} \bar A_{k-2}^{k}\geq \frac{\hat{j}^{-\theta}}{\Delta t^{\theta}\Gamma(2-\theta)}[a_{0}+a_{1}+a_{2}]\geq \frac{\hat{j}^{-\theta}}{\Delta t^{\theta}\Gamma(2-\theta)}\Big[1-\frac{5}{12\cdot2}-\frac{1}{24\cdot2}\Big] = \frac{\hat{j}^{-\theta}}{\Delta t^{\theta}\Gamma(2-\theta)}\cdot \frac{37}{48}, \end{eqnarray*} $

    therefore, we have

    $ \begin{eqnarray} \pi_{A}\geq\frac{48}{37}. \end{eqnarray} $ (2.35)

    For $ j = 3, 4, \ldots, k-2 $, we have

    $ \begin{eqnarray*} \bar A_{k-j}^{k} &\geq & A_{k-j}^{k} = \frac{1}{\Delta t^{\theta}\Gamma(3-\theta)} \Big\{\frac{1}{2}(2-\theta)[(k-j-1)^{1-\theta}~~-2(k-j)^{1-\theta}~~\\ &&+ (k-j+1)^{1-\theta}~~]+(k-j-1)^{2-\theta}-2(k-j)^{2-\theta}+(k-j+1)^{2-\theta}\Big\}, \end{eqnarray*} $

    let $ \bar j = k-j $, $ \bar j \geq 2 $, we have

    $ \begin{eqnarray*} \begin{array}{lll}{ } A_{k-j}^{k} = { } \frac{\bar j^{1-\theta}~~}{\Delta t^{\theta}\Gamma(3-\theta)}\Big\{\frac{1}{2}(2-\theta)\Big[\Big(1-\frac{1}{\bar j}\Big)^{1-\theta}~~-2+\Big(1+\frac{1}{\bar j}\Big)^{1-\theta}~~\Big] + { } \bar j \Big[\Big(1-\frac{1}{\bar j}\Big)^{2-\theta}-2+(1+\frac{1}{\bar j})^{2-\theta}\Big]\Big\}, \end{array} \end{eqnarray*} $

    then using Taylor expansion, we can get the following results

    $ \begin{eqnarray*} A_{k-j}^{k} = \frac{\bar j^{-\theta}}{\Delta t^{\theta}\Gamma(2-\theta)}\sum\limits_{i = 0}^{+\infty} a_{i}, \\ \end{eqnarray*} $

    where $ a_{i} = \Pi_{n = 0}^{i}(1-\theta-n)\frac{1}{(i+2)!}(\frac{1}{\bar j})^{i}[(-1)^{i} (\frac{-i}{2})+\frac{i+4}{2}]. $ Because $ \sum_{i = 2}^{+\infty} a_{i} $ is a convergent alternating series and $ a_{2} > 0, 0\leq \sum_{i = 2}^{+\infty} a_{i}\leq a_{2} $, so

    $ \begin{eqnarray*} \bar A_{k-j}^{k} \geq \frac{\bar j^{-\theta}}{\Delta t^{\theta}\Gamma(1-\theta)}\cdot\frac{1}{1-\theta}~~\Big[1-\theta+\frac{3}{3!}(1-\theta)(-\theta)\frac{1}{\bar j}\Big] \geq \frac{\bar j^{-\theta}}{\Delta t^{\theta}\Gamma(1-\theta)}\Big(1-\frac{1}{4}\Big) , \end{eqnarray*} $

    so we can get

    $ \begin{eqnarray} \pi_{A}\geq\frac{4}{3}. \end{eqnarray} $ (2.36)

    When $ j = k-1 $,

    $ \begin{eqnarray} \bar A_{1}^{k}& = & { } \rho\bar A_{0}^{k}+A_{1}^{k} = { } \frac{1}{\Delta t^{\theta}\Gamma(3-\theta)}\Big[\frac{\theta}{4}-1+(3-\frac{\theta}{2})2^{-\theta}\Big]\\ &\geq&{ } \frac{1}{2\Delta t^{\theta}\Gamma(1-\theta)}\Big[\frac{\theta}{4}-1+(3-\frac{\theta}{2})2^{-\theta}\Big] \geq { } \frac{1}{4\Delta t^{\theta}\Gamma(1-\theta)}. \end{eqnarray} $ (2.37)

    Therefore, we have

    $ \begin{eqnarray} \pi _{A}\geq4. \end{eqnarray} $ (2.38)

    When $ j = k $, according to (2.30), we can get

    $ \begin{eqnarray} \begin{array}{llll}{ } \bar A_{0}^{k} = A_{0}^{k} = \frac{1}{\Delta t^{\theta}\Gamma(3-\theta)}\Big(2-\frac{\theta}{2}\Big) \geq\frac{1}{2\Delta t^{\theta}\Gamma(2-\theta)}\Big(2-\frac{\theta}{2}\Big) \geq\frac{1}{\Delta t^{\theta}\Gamma(2-\theta)}. \end{array} \end{eqnarray} $ (2.39)

    We have

    $ \begin{eqnarray} \pi_{A}\geq1. \end{eqnarray} $ (2.40)

    When $ k = 3 $, $ \bar A_{0}^{3} $ is in (2.39), so $ \frac{1}{\pi_{A}} \leq 1 $. According to (2.30), we only need

    $ \begin{eqnarray} \begin{array}{llll}{ } \bar A_{1}^{3}& = & { } \rho \bar A_{0}^{3}+A_{1}^{3} = \frac{1}{\Delta t^{\theta}\Gamma(3-\theta)} \Big[\frac{\theta}{4}-1+(\frac{\theta}{2}-3)2^{-\theta}+(\frac{\theta}{2}+2)3^{1-\theta}~~\Big]\\ & = & { } \frac{2^{1-\theta}~~-1}{\Delta t^{\theta}\Gamma(2-\theta)} \frac{\frac{\theta}{4}-1+(\frac{\theta}{2}-3)2^{-\theta} +(\frac{\theta}{2}+2)3^{1-\theta}~~}{(2^{1-\theta}~~-1)(2-\theta)}\\ &\geq & { } \frac{2^{1-\theta}~~-1}{2\Delta t^{\theta}\Gamma(2-\theta)} \frac{1}{(2^{1-\theta}~~-1)(2-\theta)} \geq \frac{2^{1-\theta}~~-1}{4\Delta t^{\theta}\Gamma(2-\theta)}. \end{array} \end{eqnarray} $ (2.41)

    Therefore, we have

    $ \begin{eqnarray} \pi_{A}\geq4. \end{eqnarray} $ (2.42)

    Next, we calculate $ \bar A_{2}^{3} $,

    $ \begin{eqnarray*} &\!\!\!\!&\!\!\!\!\bar A_{2}^{3} = A_{2}^{3}+\rho\cdot\bar{A}_{1}^{3} = \frac{1}{\Delta t^{\theta}\Gamma(3-\theta)}\cdot\frac{1}{8(4-\theta)}[(\theta-4)^2+4(4-\theta)(\theta-6)2^{-\theta} +4(6-\theta)^{2}(2^{-\theta})^{2}\\ &\!\!\!\!&\!\!\!\! \ \ \ +[6(4-\theta)^{2}-4(6-\theta)(4+\theta)2^{-\theta}]3^{1-\theta}~~] \geq\frac{3^{1-\theta}~~-2^{1-\theta}~~}{\Delta t^{\theta}\Gamma(2-\theta)}\cdot \frac{1}{8(4-\theta)(3^{1-\theta}~~-2^{1-\theta}~~)(2-\theta)(2+\theta)}\\ &\!\!\!\!&\!\!\!\! \ \ \ \cdot[\theta^3-6\theta^2+32+4(-\theta^3+17\theta^2-76\theta+96)2^{-\theta} +4(\theta^3-4\theta^2-72)2^{-2\theta}] \\ &\!\!\!\!&\!\!\!\!\geq\frac{3^{1-\theta}~~-2^{1-\theta}~~}{\Delta t^{\theta}\Gamma(2-\theta)} \cdot\frac{1}{16(4-\theta)(2+\theta)}[\theta^3-6\theta^2+32+4(-\theta^3+17\theta^2-76\theta+96)2^{-\theta} \\ &\!\!\!\!&\!\!\!\! \ \ \ +4(\theta^3-4\theta^2-72)2^{-2\theta}]\geq\frac{3^{1-\theta}~~-2^{1-\theta}~~}{\Delta t^{\theta}\Gamma(2-\theta)}\cdot \frac{24}{16(4-\theta)(2+\theta)}\geq\frac{3^{1-\theta}~~-2^{1-\theta}~~}{6\Delta t^{\theta}\Gamma(2-\theta)}. \end{eqnarray*} $

    Therefore, we have

    $ \begin{eqnarray} \pi_{A}\geq6. \end{eqnarray} $ (2.43)

    Combining (2.33)–(2.38) with (2.12)–(2.43), we have already proved Lemma 2.3.

    Now we turn to derive an estimate for the truncation errors of the scheme (2.10). We start with deriving an error estimate for the finite difference operator $ {_{0}D}_{\Delta_{t}}^{\theta}u_{k} $.

    Theorem 3.1. Assume $ u(t) \in C^{3}[0, T] $. Let

    $ \begin{eqnarray} r_{k}(\Delta t) = {_{0}D}_{t}^{\theta} u(t_{k})-{_{0}D}_{\Delta t}^{\theta} u_{k}, \quad \forall k \geq 1. \end{eqnarray} $ (3.1)

    Then there exists a constant $ C_{u} $ depending only on the function u, such that for all $ \Delta t > 0 $,

    $ \begin{eqnarray} \left|r_{k}(\Delta t)\right| \leq C_{u} \Delta t^{3-\theta}. \end{eqnarray} $ (3.2)

    Proof. Our error estimation will be established on the following Taylor theorem

    $ \begin{eqnarray} u(t)-J_{[t_{0}, t_{2}]} u(t) = \frac{u^{(3)}\left(\xi(\tau)\right)}{6}\left(\tau-t_{0}\right)\left(\tau-t_{1}\right)\left(\tau-t_{2}\right), \quad \forall \tau \in [t_{0}, t_{2}], \end{eqnarray} $ (3.3)

    where $ \xi(\tau) $ is a function defined on $ [t_{0}, t_{2}] $ with range $ (t_{0}, t_{2}) $. We first estimate $ r_1(\Delta t) $

    $ \begin{eqnarray*} |r_{1}(\Delta t)|& = & { } \Big|\frac{1}{\Gamma(1-\theta)}\Big\{\int_{0}^{t_{1}} u^{\prime}(\tau)(t_{1}-\tau)^{-\theta} d \tau -\int_{0}^{t_{1}}[J_{[t_{0}, t_{2}]} u(\tau)]^{\prime}(t_{1}-\tau)^{-\theta} d \tau\Big\}\Big| \\ & = & { } \frac{\theta}{\Gamma(1-\theta)}\Big|\int_{0}^{t_{1}}[u(\tau)-J_{[t_{0}, t_{2}]} u(\tau)](t_{1}-\tau)^{-\theta-1} d \tau\Big| \\ & = & { } \frac{\theta}{\Gamma(1-\theta)}\Big|\int_{0}^{t_{1}} \frac{u^{(3)}(\xi(\tau))}{6}(\tau-t_{0})(\tau-t_{2})(t_{1}-\tau)^{-\theta} d \tau\Big| \\ &\leq& { } \frac{\theta}{\Gamma(1-\theta)} \frac{\max \limits_{t \in[0, T]}|u^{(3)}(t)|}{6} \int_{0}^{t_{1}} \tau(t_{2}-\tau)(t_{1}-\tau)^{-\theta} d \tau \\ & = & { } \frac{\theta}{3(3-\theta) \Gamma(2-\theta)}\max\limits_{t \in[0, T]}|u^{(3)}(t)|\Delta t^{3-\theta} \leq C_{u} \Delta t^{3-\theta}. \end{eqnarray*} $

    This proves (3.2) for $ k = 1 $. The case $ k = 2 $ can be similarly proven, and here we omit the details.

    When $ k \geq 3 $, we have

    $ \begin{eqnarray*} |r_{k}(\Delta t)|& = & |_{0}D_{t}^{\theta} u(t_{k})-{_{0}D}_{\Delta t}^{\theta} u(t_{k})| = { } \frac{1}{\Gamma(1-\theta)}\Big|\int_{0}^{t_{1}}(t_{k}-\tau)^{-\theta}[u(\tau)-J_{[t_{0}, t_{2}]} u(\tau)]^{\prime} d \tau \\ &&+ \sum\limits_{j = 1}^{k-1} \int_{t_{j}}^{t_{j+1}}(t_{k}-\tau)^{-\theta}[u(\tau)-J_{[t_{j-1}, t_{j+1}]} u(\tau)]^{\prime} d \tau\Big|\doteq |M+N|. \end{eqnarray*} $

    Similar to the proof of $ |r_1(\Delta t)| $, we have

    $ \begin{eqnarray} |M| \leq C_{u} \Delta t^{3-\theta}. \end{eqnarray} $ (3.4)

    For $ N $, we have

    $ \begin{eqnarray*} &\!\!\!&\!\!\!|N| = \frac{1}{\Gamma(1-\theta)}\Big{|}\sum\limits_{j = 1}^{k-1}\int_{t_{j}}^{t_{j+1}}(t_{k}-\tau)^{-\theta}d[u(\tau)-J_{[t_{j-1}, t_{j+1}]}u(\tau)]\Big{|}\\ &\!\!\! = &\!\!\! \frac{1}{\Gamma(1-\theta)}\Big{|}\sum\limits_{j = 1}^{k-2} \int_{t_{j}}^{t_{j+1}}(t_{k}-\tau)^{-\theta}d[u(\tau)-J_{[t_{j-1}, t_{j+1}]}u(\tau)] +\int_{t_{k-1}}^{t_{k}}(t_{k}-\tau)^{-\theta}d[u(\tau)-J_{[t_{j-1}, t_{j+1}]}u(\tau)]\Big{|}\\ &\!\!\! = &\!\!\! \frac{1}{\Gamma(1-\theta)}\Big{\{}\Big{|}-\sum\limits_{j = 1}^{k-2}\int_{t_{j}}^{t_{j+1}}\frac{u^{(3)}(\xi)}{6}(\tau-t_{j-1})(\tau-t_{j})(\tau-t_{j+1})d(t_{k}-\tau)^{-\theta}\\ &\!\!\!&\!\!\!- \int_{t_{k-1}}^{t_{k}}\frac{u^{(3)}(\xi)}{6}(\tau-t_{k-2})(\tau-t_{k-1})(\tau-t_{k})d(t_{k}-\tau)^{-\theta}\Big{|}\Big{\}}\\ &\!\!\!\leq &\!\!\! \frac{\sqrt{3} \theta}{27\Gamma(1-\theta)} \max\limits_{t \in[0, T]}\Big{|}u^{(3)}(t)\Big{|}\Delta t^{3}\int_{t_{j}}^{t_{j+1}}(t_{k}-\tau)^{-\theta-1}d\tau\\ &\!\!\!&\!\!\!+ \frac{\theta}{6\Gamma(1-\theta)}\max _{t \in[0, T]}|u^{(3)}(t)|\Big{|}\Delta t^{2}\int_{t_{k-1}}^{t_{k}}(t_{k}-\tau)^{-\theta}d\tau\\ &\!\!\! \leq &\!\!\! \frac{\sqrt{3} \theta}{27\Gamma(1-\theta)}\max\limits_{t\in[0, T]}\Big{|}u^{(3)}(t)\Big{|}\Delta t^{3-\theta}+\frac{\theta}{6\Gamma(1-\theta)}\max\limits_{t\in[0, T]}\Big{|}u^{(3)}(t)\Big{|}\Delta t^{3-\theta}. \end{eqnarray*} $

    In the above inequality, we use $ |(\tau-t_{j-1})(\tau-t_{j})(\tau-t_{j+1})|\leq\frac{2\sqrt{3}}{9}\Delta t^{3}. $

    We can get the following conclusions

    $ \begin{eqnarray} |r_{k}(\Delta t)| = |M+N| \leq C_{u} \Delta t^{3-\theta}. \end{eqnarray} $ (3.5)

    Complete the proof of Theorem 3.1.

    In order to obtain the convergence analysis, we now introduce an important tool: complementary discrete convolution kernel. Because of $ \omega_{\theta} \ast \omega_{\beta} = \omega_{\theta+\beta} $, therefore

    $ \begin{eqnarray} \int_{s}^{t}\omega_{\theta}(t-\mu)\omega_{1-\theta}~~(\mu-s)d\mu = \omega_{1}(t-s) = 1, \quad for \quad 0 < s < t < \infty. \end{eqnarray} $ (4.1)

    A class of complementary discrete convolution kernels $ P_{k-i}^{k} $ with the same properties are given

    $ \begin{eqnarray} \sum\limits_{i = m}^{k}P_{k-i}^{k} \bar A_{i-m}^{i} \equiv 1, \quad for \quad 3\leq m \leq k \leq K . \end{eqnarray} $ (4.2)

    According to [3], we have

    $ \begin{eqnarray} \begin{array}{llll}{ } P_{0}^{k} = \frac{1}{\bar A_{0}^{k}} , \quad P_{i}^{k} = \frac{1}{\bar A_{0}^{k-i}}\sum\limits_{j = 0}^{i-1}(\bar A_{i-j-1}^{k-j}-\bar A_{i-j}^{k-j})P_{j}^{k} , \quad for \quad 1 \leq i \leq k-3, \end{array} \end{eqnarray} $ (4.3)

    where $ P_{i}^{k} > 0, i = 0, 1, ..., k-3 $ was obtained from Lemma 2.2.

    Next, we introduce Lemma 2.1 of [3], as follows.

    Lemma 4.1. In (4.3), the discrete kernel $ P_{i}^{k} $ has the property of (4.2) and satisfies the following conditions

    $ \begin{eqnarray} 0 \leq P_{k-i}^{k} \leq \pi_{A}\Gamma(2-\theta)\Delta t^{\theta}, \quad 1 \leq i\leq k \leq N, \end{eqnarray} $ (4.4)
    $ \begin{eqnarray} \sum\limits_{j = 1}^{k}P_{k-i}^{k}\omega_{1-\theta}~~(t_{i})\leq \pi_{A}, \quad 1\leq k \leq K. \end{eqnarray} $ (4.5)

    Now we can analyze the convergence of $ _0D_{\Delta t}^{\theta}u_{j} $. First, we consider $ f(t, u) $ and assume that it satisfies the following differential mean value theorem and that there exists a constant $ L $, such that

    $ \begin{eqnarray} f(t_{k}, u(t_{k}))-f(t_{k}, u_{k}) = L_{k}(u(t_{k})-u_{k}) = L_{k}e_{k}, \quad \forall k = 1, 2, ..., K, \end{eqnarray} $ (4.6)

    and $ |L_{k}|\leq L, \forall k\geq1 $.

    Theorem 4.1. Assumes that $ u $ is the exact solution of (2.1) and (2.2), and $ \{u_{k}\}_{k = 1}^{K} $ is the numerical solution of (2.10). If $ \theta \in (0, 1) $ and step $ \Delta t $ satisfy

    $ \begin{eqnarray} \Delta t \leq \frac{1}{\sqrt [\theta]{2\pi_{A}\Gamma(2-\theta)\Lambda}}, \end{eqnarray} $ (4.7)

    where $ \pi_A\geq6 $, and $ \Lambda = 12L $, then the following error estimates hold,

    $ \begin{eqnarray} |u(t_{k})-u_{k}|\leq C\Delta t^{3-\theta}, \end{eqnarray} $ (4.8)

    here $ C $ is only dependent on the function $ u $.

    Proof. Because $ \Delta u_{1} = u_{1}-u_{0}, \Delta u_{2} = u_{2}-u_{1}, $ through calculation, we can get

    $ \begin{eqnarray} \begin{array}{lll}{ } \begin{cases} _{0}D_{t}^{\theta}u(t_{1}) = -B_{1}^{1}u_{0}+(B_{1}^{1}-B_{1}^{2})u_{1}+B_{1}^{2}u_{2}, \\ _{0}D_{t}^{\theta}u(t_{2}) = -B_{2}^{1}u_{0}+(B_{2}^{1}-B_{2}^{2})u_{1}+B_{2}^{2}u_{2}, \end{cases} \end{array} \end{eqnarray} $ (4.9)

    let $ -B_{1}^{1} = \Delta t^{-\theta}\bar D_{0}^{1} $, $ B_{1}^{1}-B_{1}^{2} = \Delta t^{-\theta}\bar D_{1}^{1} $, $ B_{1}^{2} = \Delta t^{-\theta}\bar D_{2}^{1} $; $ -B_{2}^{1} = \Delta t^{-\theta}D_{0}^{1}, $ $ B_{2}^{1}-B_{2}^{2} = \Delta t^{-\theta}D_{1}^{1}, $ $ B_{2}^{2} = \Delta t^{-\theta}D_{2}^{1}. $ It is easy to obtain by calculation

    $ \begin{eqnarray} \begin{array}{lll}{ } \begin{cases} \Delta t^{-\theta}\bar D^{1}_{1}e_{1}+\Delta t^{-\theta}\bar D_{2}^{1}e_{2} = f(t_{1}, u(t_{1}))-f(t_{1}, u_{1})-r_{1}(\Delta t), \\ \Delta t^{-\theta} D^{1}_{1}e_{1}+\Delta t^{-\theta} D_{2}^{1}e_{2} = f(t_{2}, u(t_{2}))-f(t_{2}, u_{2})-r_{2}(\Delta t).\\ \end{cases} \end{array} \end{eqnarray} $ (4.10)

    Among (4.6), then we can get

    $ \begin{eqnarray*} \begin{array}{lll}{ } \begin{cases} \Delta t^{-\theta}\bar D^{1}_{1}e_{1}+\Delta t^{-\theta}\bar D^{1}_{2}e_{2} = L_{1}e_{1}-r_{1}(\Delta t), \\ \Delta t^{-\theta} D^{1}_{1}e_{1}+\Delta t^{-\theta} D^{1}_{2}e_{2} = L_{2}e_{2}-r_{2}(\Delta t).\\ \end{cases} \end{array} \end{eqnarray*} $

    That is

    $ \begin{eqnarray}\begin{array}{lll} \left\|\left(\begin{array}{l} e_{1} \\ e_{2} \end{array}\right)\right\|_{\infty} & = & \left\|\Delta t^{\theta} D^{-1}\left(\begin{array}{l} L_{1} e_{1}-r_{1}(\Delta t) \\ L_{2} e_{2}-r_{2}(\Delta t)\\ \end{array}\right)\right\|_{\infty} \leq \Delta t^{\theta}\left\|D^{-1}\right\|_{\infty}\left\|\begin{array}{l} L_{1} e_{1}-r_{1}(\Delta t) \\ L_{2} e_{2}-r_{2}(\Delta t)\\ \end{array}\right\|_{\infty}\\ &\leq& \Delta t^{\theta}\left\|D^{-1}\right\|_{\infty}\left(L \max \left\{\left|e_{1}\right|, \left|e_{2}\right|\right\}+\max \left\{\left|r_{1}(\Delta t)\right|, \left|r_{2}(\Delta t)\right|\right\}\right), \end{array} \end{eqnarray} $ (4.11)

    where $ D = \begin{pmatrix} \bar D^{1}_{1} & \bar D^{1}_{2}\\ D^{1}_{1} & D^{1}_{2}\\ \end{pmatrix}. $ Since $ \bar D^{1}_{1}D^{1}_{2}-\bar D^{1}_{2}D^{1}_{1} $ is bounded, then

    $ \begin{eqnarray} \max \{ \vert e_{1} \vert , \vert e_{2} \vert \} \leq C_{1}\Delta t^{\theta} \max \{ \vert r_{1} (\Delta t) \vert , \vert r_{2}(\Delta t) \vert \}, \end{eqnarray} $ (4.12)

    therefore,

    $ \begin{eqnarray} \begin{array}{lll}{ } \begin{cases} \vert e_{1} \vert \leq C\Delta t^{3-\theta}, \\ \vert e_{2} \vert \leq C\Delta t^{3-\theta}, \\ \end{cases} \end{array} \end{eqnarray} $ (4.13)

    when $ j = 1, 2, $ (4.8) is proved.

    When $ i\geq 3 $, let's set $ \bar e_{i} = e_{i}-\rho e_{i-1}, i = 1, ..., j $, and $ \bar e_{0} = e_{0} $ for (4.13), we have

    $ \begin{eqnarray} \begin{array}{llll}{ } \begin{cases} \vert \bar e_{1}\vert = \vert e_{1}-\rho e_{0}\vert \leq C\Delta t^{3-\theta}, \\ \vert \bar e_{2}\vert = \vert e_{2}-\rho e_{1}\vert \leq \frac{5}{3}C\Delta t^{3-\theta}.\\ \end{cases} \end{array} \end{eqnarray} $ (4.14)

    Combining with (2.20) and (4.6), $ \bar e_{j} $, $ j\geq 3 $, satisfy

    $ \begin{eqnarray} \begin{array}{llll}{ } \sum\limits_{j = 1}^{k}\bar A_{k-j}^{k}\Delta \bar e_{j} = f(t_{k}, u(t_{k}))-f(t_{k}, u_{k})-r_{k}(\Delta t). \end{array} \end{eqnarray} $ (4.15)

    Because of $ e_{j} = \sum_{n = 1}^{j}\rho^{j-n}\bar e_{n} $, then

    $ \begin{eqnarray} \begin{array}{lll}{ } \sum\limits_{j = 3}^{k} \bar A_{k-j}^{k}\Delta \bar e_{j} = L_{k}\sum\limits_{j = 3}^{k}\rho^{k-j}\bar e_{j}-\bar r_{k}(\Delta t), \end{array} \end{eqnarray} $ (4.16)

    where

    $ \begin{eqnarray} \begin{array}{lll}{ } \bar r_{k}(\Delta t) = r_{k}(\Delta t)-L_{k}\sum\limits_{j = 1}^{2}\rho^{k-j}\bar e_{j}+\sum\limits_{j = 1}^{2}\bar A_{k-j}^{k}\Delta \bar e_{j}, \end{array} \end{eqnarray} $ (4.17)

    by multiplying $ 2\bar e_{k} $ on both sides of (4.16), from Lemma A.1 in Liao [3], we can obtain that

    $ \begin{eqnarray*} &\!\!\!&\!\!\!2\bar e_{k}\sum\limits_{j = 3}^{k}\bar A_{k-j}^{k}\Delta \bar e_{j}\geq \sum\limits_{j = 3}^{k}\bar A_{k-j}^{k}\Delta(\vert \bar e_{j}\vert^{2}), \\ &\!\!\!&\!\!\! 2\bar e_{k}[L_{k}\sum\limits_{j = 3}^{k}\rho^{k-j}\bar e_{j}-\bar r_{k}(\Delta t)] \leq L \sum\limits_{j = 3}^{k}\rho^{k-j}(\vert \bar e_{j}\vert^{2}+\vert \bar e_{k}\vert^{2})+2\vert \bar e_{k}\vert \vert \bar r_{k}(\Delta t)\vert\\ &\!\!\!&\!\!\! \leq 4L \sum\limits_{j = 3}^{k}\rho^{k-j}\vert \bar e_{j}\vert^{2}+2\vert \bar e_{k}\vert \vert \bar r_{k}(\Delta t)\vert. \end{eqnarray*} $

    To sum up, we can get the following conclusions

    $ \begin{eqnarray} \begin{array}{lll}{ } \sum\limits_{j = 3}^{k}\bar A_{k-j}^{k}\Delta(\vert \bar e_{j}\vert^{2})\leq 4L\sum\limits_{j = 3}^{k}\rho^{k-j}\vert \bar e_{j}\vert^{2}+2\vert \bar e_{k}\vert \cdot\vert \bar r_{k}(\Delta t)\vert. \end{array} \end{eqnarray} $ (4.18)

    We change $ k $ to $ i $, and then multiply both sides of (4.18) by a $ \sum_{i = 3}^{k}P_{k-i}^{k} $, then

    $ \begin{eqnarray} \begin{array}{llll}{ } \sum\limits_{i = 3}^{k}P_{k-i}^{k}\sum\limits_{j = 3}^{i}\bar A_{i-j}^{i}\Delta (\vert \bar e_{j}\vert^{2})\leq \sum\limits_{i = 3}^{k}P_{k-i}^{k}\sum\limits_{j = 3}^{i}4L\rho^{i-j}\vert \bar e_{j}\vert^{2}+2\sum\limits_{i = 3}^{k}P_{k-i}^{k}\vert \bar e_{i}\vert \vert \bar r_{i}(\Delta t)\vert . \end{array} \end{eqnarray} $ (4.19)

    From (4.2) and $ \Delta u_{j} = u_{j}-u_{j-1} $, we can get the following results

    $ \begin{eqnarray} \begin{array}{lll}{ } \sum\limits_{i = 3}^{k}P_{k-i}^{k}\sum\limits_{j = 3}^{i}\bar A_{i-j}^{i}\Delta (\vert \bar e_{j}\vert^{2}) = \sum\limits_{j = 3}^{k}\Delta(\vert\bar e_{j}\vert^{2})\sum\limits_{i = j}^{k}P_{k-i}^{k}\bar{A}_{i-j}^{i} = \sum\limits_{j = 3}^{k}\Delta(\vert\bar e_{j}\vert^{2}) = \vert \bar e_{k}\vert^{2}-\vert \bar e_{2}\vert^{2}, \end{array} \end{eqnarray} $ (4.20)

    substituting (4.20) into (4.19) yields

    $ \begin{eqnarray} \begin{array}{lll}{ } \vert \bar e_{k}\vert^{2}\leq 4L\sum\limits_{i = 3}^{k}P_{k-i}^{k}\sum\limits_{j = 3}^{i}\rho^{i-j}\vert \bar e_{j}\vert^{2}+\vert e_{2}\vert^{2}+2\sum\limits_{i = 3}^{k}P_{k-i}^{k}\vert \bar e_{i}\vert \vert \bar r_{i}(\Delta t)\vert. \end{array} \end{eqnarray} $ (4.21)

    Next, we will prove it by mathematical induction

    $ \begin{eqnarray} \begin{array}{llll}{ } \vert \bar e_{k}\vert \leq 2E_{\theta}(2\pi_{A}\Lambda t_{k}^{\theta})(\vert \bar e_{2}\vert+2 \max \limits_{3 \leq j \leq k} \sum\limits_{i = 3}^{k} p_{j-i}^{j}\left|\bar{r}_{i}(\Delta t)\right|)\doteq F_{k}G_{k}, \quad for \quad k\geq 2, \end{array} \end{eqnarray} $ (4.22)

    where $ \Lambda = 12L $, $ E_{\theta} $ stands for the Mittag-Leffler function, we usually define it as: $ E_{\theta}(z) = \sum_{j = 0}^{\infty}\frac{Z^{j}}{\Gamma(1+j\theta)} $, and $ E_{\theta}(0) = 1, \quad \forall Z\in R $, and $ Z > 0, E_{\theta}^{'}(Z) > 0 $, so $ F_{k}\geq F_{k-1}\geq2 $ for all $ k\geq2 $. where $ G_{k} = |\bar{e}_{2}|+2 {\max_{3 \leq j\leq k}} \sum_{i = 3}^{k} P_{j-i}^{j}\left|\bar{r}_{i}(\Delta t)\right| $.

    When $ k = 3 $, (i) if $ |\bar e_{3}| \leq | e_{2}|, G_{3} = |e_{2}|+2P_{0}^{3}|\bar r_{3}(\Delta t)| \geq |\bar e_{2}| $, we have $ |\bar e_{3}|\leq |\bar e_{2}| \leq G_{3}\leq F_{3}G_{3}, $

    (ii) if $ |\bar e_{3}| > |e_{2}| $, from (4.21), it can be concluded that

    $ \begin{eqnarray*} |\bar e_{3}|^{2}\leq4 L P_{0}^{3} |\bar e_{3}|^{2}+ |\bar e_{2}|^{2}+2P_{0}^{3}|\bar e_{3}| |\bar r_{3}(\Delta t)|. \end{eqnarray*} $

    According to (4.4), it can be concluded that

    $ \begin{eqnarray*} \begin{array}{lll}{ } 4LP_{0}^{3}\leq \pi_{A}\Gamma(2-\theta)\Delta t^{\theta}\Lambda \leq \frac{1}{2} \quad \Longrightarrow \Delta t\leq\frac{1}{\sqrt[\theta]{2\pi_{A}\Gamma(2-\theta)\Lambda}}, \end{array} \end{eqnarray*} $

    so $ |\bar e_{3}|\leq 2(|\bar{e}_{2}|+2P_{0}^{3}|\bar{r}_{3}(\Delta t)|)\leq 2G_{3}\leq F_{3}G_{3}. $

    When $ 4\leq k\leq K $, we assume that: $ |\bar e_{j}|\leq F_{j}G_{j} $, for $ 3 \leq j\leq k-1 $, let $ | \bar e_{j(k)}| = \max_{2\leq i\leq k-1}|\bar e_{i}|. $

    (i) When $ |\bar e_{k}|\leq |\bar e_{j(k)}| $, because $ F_{j} $ and $ G_{j} $ monotonically increase with $ j $, so

    $ \begin{eqnarray*} |\bar e_{k}|\leq |\bar e_{j(k)}|\leq F_{j(k)}G_{j(k)}\leq F_{k}G_{k}. \end{eqnarray*} $

    (ii) When $ |\bar e_{k}|\geq |\bar e_{j(k)}| $, from (4.21) we can obtain that

    $ \begin{eqnarray*} |\bar e_{k}|^{2}\leq |\bar e_{k}|\sum\limits_{i = 3}^{k-1}P_{k-i}^{k}\sum\limits_{j = 3}^{i}4L\rho^{i-j}|\bar e_{j}|+|\bar e_{k}|^{2}P_{0}^{k}\sum\limits_{j = 3}^{k}4L\rho^{i-j} +{ } |\bar e_{k}||\bar e_{2}|+2|\bar e_{k}|\sum\limits_{i = 3}^{k}P_{k-i}^{k}|\bar r_{i}(\Delta t)|. \end{eqnarray*} $

    From (4.4), we give the limit of the maximum step size, which means that

    $ \begin{eqnarray*} \begin{array}{lll}{ } P_{0}^{k}\sum\limits_{j = 3}^{k}4L\rho^{i-j}\leq \pi_{A}\Gamma(2-\theta)\Delta t^{\theta}\Lambda < \frac{1}{2} \Longrightarrow \Delta t\leq \frac{1}{\sqrt[\theta]{2\pi_{A}\Gamma(2-\theta)\Lambda}}. \end{array} \end{eqnarray*} $

    Using of Lemma 2.3 in [3] for any real $ \mu > 0 $,

    $ \begin{eqnarray*} \begin{array}{lll}{ } \sum\limits_{i = 3}^{k-1}P_{k-i}^{k}E_{\theta}(\mu t_{i}^{\theta})\leq \pi_{A}\frac{E_{\theta}(\mu t_{k}^{\theta})-1}{\mu}, \quad for \quad 3\leq k\leq K. \end{array} \end{eqnarray*} $

    We have

    $ \begin{eqnarray*} |\bar e_{k}| &\leq& 2\sum\limits_{i = 3}^{k-1}P_{k-i}^{k}\sum\limits_{j = 3}^{i}4L\rho^{i-j}|\bar e_{j}|+2|\bar e_{2}|+4\sum\limits_{i = 3}^{k}P_{k-i}^{k}|\bar r_{i}(\Delta t)| \leq 2\Lambda \sum\limits_{i = 3}^{k-1}P_{k-i}^{k}F_{i}G_{k}+2G_{k}\\ & \leq & 2\sum\limits_{i = 3}^{k-1}P_{k-i}^{k}\sum\limits_{j = 3}^{i}4L \theta^{i-j}F_{j}G_{j}+2G_{k} \leq[4\Lambda\sum\limits_{i = 3}^{k-1}P_{k-i}^{k}E_{\theta}(2\pi_{A}\Lambda t_{i}^{\theta})+2]G_{k}\\ &\leq & \{4\Lambda \cdot \frac{\pi_{A}}{2\pi_{A}\Lambda}[E_{\theta}(2\pi_{A}t_{k}^{\theta})-1]+2\}G_{k} = 2E_{\theta}(2\pi_{A}\Lambda t_{k}^{\theta})G_{k} = F_{k}G_{k}. \end{eqnarray*} $

    To sum up, the proof of (4.22) is complete.

    Next, we carefully estimate $ |\bar r_{i}(\Delta t)| $. According to (4.17), we have

    $ \begin{eqnarray} |\bar r_{k}(\Delta t)|\leq { } |r_{k}(\Delta t)|+L\sum\limits_{j = 1}^{2}\rho^{k-j}|\bar e_{j}|+(\bar A_{k-1}^{k}+\bar A_{k-2}^{k})|\bar e_{1}|+\bar A_{k-2}^{k}|\bar e_{2}|. \end{eqnarray} $ (4.23)

    Next, we estimate the upper bounds of $ \bar A_{k-1}^{(k)} $ and $ \bar A_{k-2}^{(k)} $. According to (2.37), Lemma 2.1 and (4) in Lemma A.1, we can obtain

    $ \bar A_{k-2}^{k} \\ = \sum\limits_{j = 2}^{k-2}A_{k-j}^{k}\rho^{j-2}+\rho^{k-3}\bar A_{1}^{k} \leq A_{2}^{k}\sum\limits_{j = 2}^{k-2}\rho^{j-2}+\rho^{k-3}\bar A_{1}^{k} \leq 3A_{2}^{k}+\frac{1}{\Delta t^{\theta}\Gamma(3-\theta)}[\frac{\theta}{4}-1+(3-\frac{\theta}{2})2^{-\theta}]\\ = \frac{1}{\Delta t^{\theta}\Gamma(3-\theta)}\Big[\frac{5}{4}(4-\theta)+\frac{9}{2}(8-\theta)3^{-\theta} +\frac{11}{2}(-6+\theta)\cdot2^{-\theta}\Big]\\ \leq\frac{1}{\Delta t^{\theta}\Gamma(3-\theta)}\Big[5+\frac{9}{2}\cdot 8+\frac{11}{2}(-6+1)\cdot\frac{1}{2}\Big] = \frac{1}{\Delta t^{\theta}\Gamma(3-\theta)}\frac{109}{4}. $

    Therefore, $ \bar A_{k-2}^{k}\leq \frac{109}{4\Delta t^{\theta}\Gamma(3-\theta)} $. According to Lemma 2.2, we can get $ \bar A_{k-1}^{k} < \bar{A}_{k-2}^{k}\leq \frac{109}{4\Delta t^{\theta}\Gamma(3-\theta)} $. Therefore, we can obtain from (4.23),

    $ \begin{eqnarray*} |\bar r_{i}(\Delta t)| &\leq& C\Delta t^{3-\theta}+5LC\Delta t^{3}+\frac{109}{2\Gamma(3-\theta)}\Delta t^{3-\theta}+\frac{545}{12\Gamma(3-\theta)}C\Delta t^{3-\theta}\\ &\leq& \Big[C+5LC\Delta t^{\theta}+\frac{100}{\Gamma(3-\theta)}C\Big]\Delta t^{3-\theta}. \end{eqnarray*} $

    In the expression on the right side of (4.22),

    $ \begin{eqnarray} \begin{array}{lll}{ } \sum\limits_{i = 3}^{k}P_{j-i}^{j}|\bar r_{i}(\Delta t)| = \sum\limits_{i = 3}^{k}P_{j-i}^{j}\omega_{1-\theta}~~(t_{i})\cdot \max\limits_{3\leq i\leq k}\frac{|\bar r_{i}(\Delta t)|}{\omega_{1-\theta}~~(t_{i})}, \end{array} \end{eqnarray} $ (4.24)

    according to (4.5) in Lemma 4.1, we can obtain that

    $ \begin{eqnarray*} \begin{array}{lll}{ } \sum\limits_{i = 3}^{k}P_{j-i}^{j}\omega_{1-\theta}~~(t_{i})\leq \sum\limits_{i = 1}^{k}P_{j-i}^{j}\omega_{1-\theta}~~(t_{i})\leq \pi_{A}, \quad 1\leq k \leq K. \end{array} \end{eqnarray*} $

    Because of $ \frac{1}{\omega_{1-\theta}~~(t_{i})} = \Gamma(1-\theta)t_{i}^{\theta} $, therefore (4.24) becomes

    $ \sum\limits_{i = 3}^{k}P_{j-i}^{j}|\bar r_{i}(\Delta t)|\leq \pi_{A}\max\limits_{3\leq i\leq k}\frac{|\bar r_{i}(\Delta t)}{\omega_{1-\theta}~~(t_{i})} \\\leq { } \pi_{A}\Big[C+5LC\Delta t^{\theta}+\frac{100}{\Gamma(3-\theta)}C\Big]\Delta t^{3-\theta}\max\limits_{3\leq i\leq k}\Gamma(1-\theta)t_{i}^{\theta}. $ (4.25)

    Based on (4.13), (4.25) and (4.22), we obtain

    $ \begin{eqnarray*} \begin{array}{lll}{ } |\bar e_{k}|\leq 2E_{\theta}(2\pi_{A}\Lambda t_{k}^{\theta})\Big\{\frac{5}{3}C\Delta t^{\theta}+2\pi_{A}\Big[C+5LC\Delta t^{\theta}+\frac{100}{\Gamma(3-\theta)}C\Big]\Gamma(1-\theta)t_{k}^{\theta}\Big\}\Delta t^{3-\theta}. \end{array} \end{eqnarray*} $

    According to $ e_{k} = \bar e_{k}-\rho e_{k-1} = \sum_{n = 0}^{k}\rho^{k-n}\bar e_{n} $, we have $ |e_{k}|\leq 3 \max_{0\leq n \leq k } |\bar e_{n}| $. Then the proof is completed.

    In this section, two examples are presented to verify the effectiveness of our numerical method (2.10).

    Example 5.1. we consider the problem (2.1) with $ u(0) = 0 $, and

    $ \begin{eqnarray} &&f(t, u(t)) = \frac{\Gamma(4+\theta)}{6}t^{3}+t^{3+\theta}-u(t), \end{eqnarray} $ (5.1)
    $ \begin{eqnarray} &&f(t, u(t)) = \frac{\Gamma(4+\theta)}{6}t^{3}+t^{6+2\theta}-u^{2}(t). \end{eqnarray} $ (5.2)

    The exact solution of Eq (2.1) is $ u(t) = t^{3+\theta} $. We take $ T = 1 $ and choose the step size to be $ \Delta t = 2^{-l}, l = 7, 8, \ldots, 11 $. The error we will display is defined by $ e_{\Delta t} = { }\max_{k = 1, 2, \cdots, K}|u(t_{k})-u_{k}|, K = T/\Delta t. $

    In (5.1), $ f $ is a linear case of $ u $. From Table 1, the convergence order is computed by $ \log_2(e_{2\Delta t}/e_{\Delta t}) $. it is observed that for $ \theta = 0.3, 0.6 $ and $ 0.9 $, the convergence rates are close to $ 2.7, 2.4 $ and $ 2.1 $, respectively. This is in a good agreement with the theoretical prediction. In Table 2, we can take $ \theta = 0.01 $ and $ 0.99 $ and obtain that the convergence rates are close to $ 2.99 $ and $ 2.01 $. That tells us that as $ \theta\rightarrow0 $ or $ 1 $, the convergence rate still $ 3-\theta $. In (5.2), $ f $ is the nonlinear case of $ u $. From Tables 3 and 4, once again these results confirm that the convergence of the numerical solution is close to of order $ 3-\theta $ for $ 0 < \theta < 1 $.

    Table 1.  Maximum errors $ e_{\Delta t} $ and decay rate as functions of $ \Delta t $ with the right hand side (5.1).
    $ \Delta t $ $ \theta=0.3 $ Rate $ \theta=0.6 $ Rate $ \theta=0.9 $ Rate
    $ \frac{1}{128} $ 5.1545E-6 - 5.3113E-5 - 3.8546E-4 -
    $ \frac{1}{256} $ 8.1757E-7 2.6564 1.0192E-5 2.3815 9.0841E-5 2.0851
    $ \frac{1}{512} $ 1.2874E-7 2.6668 1.9457E-6 2.3891 2.1297E-5 2.0926
    $ \frac{1}{1024} $ 2.0164E-8 2.6746 3.7032E-7 2.3934 4.9804E-6 2.0963
    $ \frac{1}{2048} $ 3.1714E-9 2.6686 7.0366E-8 2.3958 1.1632E-6 2.0981

     | Show Table
    DownLoad: CSV
    Table 2.  Maximum errors $ e_{\Delta t} $ and decay rate as $ \Delta t = 0.01, 0.99 $ with the right hand side (5.1).
    $ \Delta t $ $ \theta=0.01 $ Rate $ \theta=0.99 $ Rate
    $ \frac{1}{128} $ 3.7469E-8 - 6.6342E-4 -
    $ \frac{1}{256} $ 5.1473E-9 2.8638 1.6645E-4 1.9947
    $ \frac{1}{512} $ 7.0275E-10 2.8727 4.1540E-5 2.0025
    $ \frac{1}{1024} $ 8.9656E-11 2.9705 1.0339E-5 2.0063
    $ \frac{1}{2048} $ 1.1231E-11 2.9968 2.5703E-6 2.0081

     | Show Table
    DownLoad: CSV
    Table 3.  Maximum errors $ e_{\Delta t} $ and decay rate as functions of $ \Delta t $ with the right hand side (5.2).
    $ \Delta t $ $ \theta=0.3 $ Rate $ \theta=0.6 $ Rate $ \theta=0.9 $ Rate
    $ \frac{1}{128} $ 1.0154E-6 - 1.0167E-5 - 9.1822E-5 -
    $ \frac{1}{256} $ 1.4941E-7 2.7647 1.9494E-6 2.3828 2.1549E-5 2.0911
    $ \frac{1}{512} $ 2.3628E-8 2.6607 3.7176E-7 2.3906 5.0416E-6 2.0957
    $ \frac{1}{1024} $ 3.7049E-9 2.6729 7.0707E-8 2.3944 1.1777E-6 2.0978
    $ \frac{1}{2048} $ 5.6279E-10 2.7187 1.3497E-8 2.3891 2.7492E-7 2.0989

     | Show Table
    DownLoad: CSV
    Table 4.  Maximum errors $ e_{\Delta t} $ and decay rate as $ \Delta t = 0.01, 0.99 $ with the right hand side (5.2).
    $ \Delta t $ $ \theta=0.01 $ Rate $ \theta=0.99 $ Rate
    $ \frac{1}{128} $ 3.2116E-6 - 1.7072E-4 -
    $ \frac{1}{256} $ 3.9867E-7 3.0099 4.2645E-5 2.0012
    $ \frac{1}{512} $ 4.9490E-8 3.0099 1.0618E-5 2.0058
    $ \frac{1}{1024} $ 6.1435E-9 3.0099 2.6400E-6 2.0079
    $ \frac{1}{2048} $ 7.6264E-10 3.0099 6.5589E-7 2.0090

     | Show Table
    DownLoad: CSV

    Example 5.2. we consider the problem (2.1) and (2.2) with the following right hand side function

    $ \begin{eqnarray} &&f(t, u(t)) = t^{-\theta} Sin_{1, 1-\alpha}(t)+\sin(t)-u(t), \end{eqnarray} $ (5.3)
    $ \begin{eqnarray} &&f(t, u(t)) = t^{-\theta} Sin_{1, 1-\alpha}(t)+\sin^2(t)-u^2(t). \end{eqnarray} $ (5.4)

    The corresponding exact solution is $ u(t) = \sin(t) $, and $ Sin_{\alpha, \beta}(t) = \sum_{k = 1}^\infty (-1)^{k+1}\frac{t^{2k-1}}{\Gamma(\alpha(2k-1)+\beta)} $. $ f $ is a linear and nonlinear case of $ u $ in (5.3) and (5.4), respectively.

    We repeat the same calculation as in Example 5.1 using the proposed numerical scheme. Tables 5 and 6 show the maximum errors and decay rates of the step size for several a ranging from 0.3 to 0.9. This is consistent with the theoretical prediction. The convergence rate is close to $ 3-\theta $ for $ 0 < \theta < 1 $.

    Table 5.  Maximum errors $ e_{\Delta t} $ and decay rate as functions of $ \Delta t $ with the right hand side (5.3).
    $ \Delta t $ $ \theta=0.3 $ Rate $ \theta=0.6 $ Rate $ \theta=0.9 $ Rate
    $ \frac{1}{128} $ 4.4720E-7 - 3.3763E-6 - 2.1961E-5 -
    $ \frac{1}{256} $ 7.1175E-8 2.6515 6.4755E-7 2.3823 5.1721E-6 2.0861
    $ \frac{1}{512} $ 1.1232E-8 2.6636 1.2353E-7 2.3901 1.2121E-6 2.0931
    $ \frac{1}{1024} $ 1.7643E-9 2.6704 2.3497E-8 2.3942 2.8338E-7 2.0967
    $ \frac{1}{2048} $ 2.6806E-10 2.7185 4.4390E-9 2.4041 6.6105E-8 2.0999

     | Show Table
    DownLoad: CSV
    Table 6.  Maximum errors $ e_{\Delta t} $ and decay rate as functions of $ \Delta t $ with the right hand side (5.4).
    $ \Delta t $ $ \theta=0.3 $ Rate $ \theta=0.6 $ Rate $ \theta=0.9 $ Rate
    $ \frac{1}{128} $ 5.2408E-7 - 3.5338E-6 - 2.0939E-5 -
    $ \frac{1}{256} $ 8.5515E-8 2.6155 6.8794E-7 2.3608 4.9822E-6 2.0713
    $ \frac{1}{512} $ 1.3708E-8 2.6411 1.3230E-7 2.3784 1.1738E-6 2.0855
    $ \frac{1}{1024} $ 2.1730E-9 2.6573 2.5279E-8 2.3878 2.7517E-7 2.0928
    $ \frac{1}{2048} $ 3.4105E-10 2.6716 4.8110E-9 2.3935 6.4316E-8 2.0970

     | Show Table
    DownLoad: CSV

    In this paper, we presented a high order numerical method for solving Caputo nonlinear fractional ordinary differential equations. The numerical method was constructed by using the Quadratic Lagrange interpolation. By careful error estimation, the proposed scheme is of order $ 3-\theta $ for $ 0 < \theta < 1 $. Finally, numerical experiments are carried out to verify the theoretical prediction. In the future, we plan to apply this kind of methods to 3D fractional partial differential equations with time derivatives based the idea of [21] and [22].

    This research was supported by National Natural Science Foundation of China (Grant No. 11901135, 11961009), Foundation of Guizhou Science and Technology Department (Grant No. [2020]1Y015, [2017]1086), Foundation for graduate students of Guizhou Provincial Department of Education(Grant No.YJSCXJH[2020]136). The authors thank the anonymous referees for their valuable suggestions to improve the quality of this work significantly.

    The authors declare that there is no conflict of interests regarding the publication of this article.

    Lemma A.1.

    $ (1)\; F_{1} = { } -\frac{3}{2}(2-\theta)(k-2)^{1-\theta}+\frac{1}{2}(2-\theta)(k-3)^{1-\theta}\\-2(2-\theta)k^{1-\theta} + { } (k-3)^{2-\theta}-3(k-2)^{2-\theta}+2k^{2-\theta} > 0,\\ \; F_{2} = { } \frac{1}{2}(2-\theta)k^{1-\theta}+\frac{3}{2}(2-\theta)(k-2)^{1-\theta}-\frac{3}{2}(2-\theta)(k-3)^{1-\theta} +\frac{1}{2}(2-\theta)(k-4)^{1-\theta}\\ \; - { } k^{2-\theta}+3(k-2)^{2-\theta}-3(k-3)^{2-\theta}+(k-4)^{2-\theta} > 0,\\ (2)\; \frac{3}{2}(4-\theta)-(4+\theta)3^{1-\theta}+(6-\theta)2^{-\theta} > 0,\\ (3)\; -\frac{3}{4}+\frac{5\theta-4}{2(4-\theta)}\cdot3^{1-\theta} +\frac{(4+\theta)(6-\theta)}{(4-\theta)^2}\cdot3^{1-\theta}\cdot2^{-\theta} -\frac{(6-\theta)^2}{(4-\theta)^2}(2^{-\theta})^2 > 0,\\ (4)\; 0 < \rho = \frac{1}{2}(3+\frac{\theta-6}{4-\theta}\cdot2^{1-\theta}) < \frac{2}{3},\\ (5)\; \tilde f(\theta) = -3(4-\theta)^2+6(4-\theta)(6-\theta)2^{1-\theta}-4(4-\theta)(8-\theta)3^{1-\theta} +(6-\theta)^2\cdot4^{1-\theta} > 0, $
    $ (1)\; F_{1} = { } -\frac{3}{2}(2-\theta)(k-2)^{1-\theta}+\frac{1}{2}(2-\theta)(k-3)^{1-\theta}\\-2(2-\theta)k^{1-\theta} + { } (k-3)^{2-\theta}-3(k-2)^{2-\theta}+2k^{2-\theta} > 0,\\ \; F_{2} = { } \frac{1}{2}(2-\theta)k^{1-\theta}+\frac{3}{2}(2-\theta)(k-2)^{1-\theta}-\frac{3}{2}(2-\theta)(k-3)^{1-\theta} +\frac{1}{2}(2-\theta)(k-4)^{1-\theta}\\ \; - { } k^{2-\theta}+3(k-2)^{2-\theta}-3(k-3)^{2-\theta}+(k-4)^{2-\theta} > 0,\\ (2)\; \frac{3}{2}(4-\theta)-(4+\theta)3^{1-\theta}+(6-\theta)2^{-\theta} > 0,\\ (3)\; -\frac{3}{4}+\frac{5\theta-4}{2(4-\theta)}\cdot3^{1-\theta} +\frac{(4+\theta)(6-\theta)}{(4-\theta)^2}\cdot3^{1-\theta}\cdot2^{-\theta} -\frac{(6-\theta)^2}{(4-\theta)^2}(2^{-\theta})^2 > 0,\\ (4)\; 0 < \rho = \frac{1}{2}(3+\frac{\theta-6}{4-\theta}\cdot2^{1-\theta}) < \frac{2}{3},\\ (5)\; \tilde f(\theta) = -3(4-\theta)^2+6(4-\theta)(6-\theta)2^{1-\theta}-4(4-\theta)(8-\theta)3^{1-\theta} +(6-\theta)^2\cdot4^{1-\theta} > 0, $

    Proof. (1) Firstly, we will prove $ F_{1} > 0 $. let $ k-2 = x $, Taylor formula is used to obtain the following results

    $ \begin{eqnarray*} \begin{array}{llll}{ } F_{1} = { } (2-\theta)(1-\theta)x^{-\theta-1}\sum\limits_{n = 0}^{+\infty}\prod\limits_{i = 0}^{n}(-\theta-i)(\frac{1}{x})^{n}\cdot a_{n}, \end{array} \end{eqnarray*} $

    where $ a_{n} = \frac{\frac{1}{2}(n+1)\cdot(-1)^{n}-8(n+1)\cdot2^{n}}{(n+3)!} = \frac{\frac{1}{2}(n+1)[(-1)^{n}-16\cdot2^{n}]}{(n+3)!} < 0, $ so $ \sum_{n = 0}^{+\infty}\prod_{i = 0}^{n}(-\theta-i)(\frac{1}{x})^{n}\cdot a_{n} $ is an alternating series with positive first term, so satisfies $ \sum_{n = 0}^{+\infty}\prod_{i = 0}^{n}(-\theta-i)(\frac{1}{x})^{n}\cdot a_{n} > 0, $ so $ F_{1} > 0. $

    Next, we will prove $ F_2 > 0 $. Let $ k-2 = \bar{x} $, Taylor formula is used to obtain the following results

    $ \begin{eqnarray*} F_{2} = (2-\theta)(1-\theta)\bar{x}^{-\theta-1}\sum\limits_{n = 0}^{+\infty}\prod\limits_{i = 0}^{n}(-\theta-i) (\frac{1}{\bar{x}})^{n}\frac{1}{(n+3)!}b_{n}, \end{eqnarray*} $

    where $ b_{n} = \frac{3}{2}(n+1)(-1)^{n+1}+2(n-1)\cdot2^{n}[1+(-1)^{n}], b_{0} = -\frac{11}{2}, b_{1} = 3, $ when $ n\geq 2, $ $ n $ is odd, $ b_{n} > 0 $; $ n $ is even, $ b_{n} = (n-1)[4\cdot2^{n}-\frac{3}{2}]-3 > [8-\frac{3}{2}]-3 > 0 $, so $ \sum_{n = 1}^{+\infty}\prod_{i = 0}^{n}(-\theta-i)(\frac{1}{\bar{x}})^{n}\frac{1}{(n+3)!}b_{n} $ is an alternating series with positive first term. So $ \sum_{n = 0}^{+\infty}\prod_{i = 0}^{n}(-\theta-i)(\frac{1}{\bar{x}})^{n}\frac{1}{(n+3)!}b_{n} > (-\theta)\frac{1}{3!}b_{0}+0 > 0. $ We get $ F_2 > 0 $.

    (2) Let $ f(\theta) = \frac{3}{2}(4-\theta)-(4+\theta)3^{1-\theta}+(6-\theta)2^{-\theta}, $ through careful calculation, we get

    $ f^{\prime}(\theta) = -\frac{3}{2}-3^{1-\theta}[1+(4+\theta)(-\ln3)]+2^{-\theta}[-1+(6-\theta)(-\ln2)], $

    $ f^{\prime\prime}(\theta) = 3^{-\theta}\cdot g(\theta), $ where $ g(\theta) = 3(\ln3)[2-(4+\theta)\ln3]+(\frac{3}{2})^{\theta}(\ln2)[2+(6-\theta)\ln2], $ because

    $ \begin{eqnarray*} g^{\prime}(\theta)&\!\!\! = &\!\!\!-3(\ln3)^2+(\frac{3}{2})^{\theta}(\ln2)\{[2+(6-\theta)(\ln2)]\ln({\frac{3}{2}})-\ln2\},\\ g^{\prime\prime}(\theta)&\!\!\! = &\!\!\!(\frac{3}{2})^{\theta}(\ln2)\ln(\frac{3}{2}) \{[2+(6-\theta)(\ln2)]\ln(\frac{3}{2})-2\ln2\}\doteq \{\frac{3}{2}\}^{\theta}(\ln2)\ln(\frac{3}{2})H(\theta), \end{eqnarray*} $

    We can get $ H^{\prime}(\theta) = -\ln2\cdot \ln(\frac{3}{2}) < 0, $ so we get $ H(\theta) > H(1) > 0 $, therefore $ g^{\prime}(\theta) < g^{\prime}(1) < 0, $ $ g(\theta) $ monotone decreasing, $ g(1) < g(\theta) < g(0) = -3.6227 < 0 $, that is $ f^{\prime}(\theta) $ monotone decreasing, $ 0 < f^{\prime}(1) < f^{\prime}(\theta) < f^{\prime}(0) $, where $ f^{\prime}(1) = -3+5\ln3-\frac{5}{2}\ln2 > 0 $, that is $ f(\theta) $ monotone increasing, $ f(0) < f(\theta) < f(1) $, where $ f(0) = 0 $, to sum up, we can get $ f(\theta) > 0 $.

    (3) Let $ f_{1}(\theta) = -\frac{3}{4}+\frac{5\theta-4}{2(4-\theta)}\cdot3^{1-\theta} $+$\frac{(4+\theta)(6-\theta)}{(4-\theta)^2}\cdot3^{1-\theta}\cdot2^{-\theta} -\frac{(6-\theta)^2}{(4-\theta)^2}(2^{-\theta})^2 \doteq $-$\frac{3}{4}+a_{1}\cdot3^{1-\theta}+a_{2}\cdot3^{1-\theta}2^{-\theta}+a_{3}\cdot(2^{-\theta})^{2}, $ where

    $ a_{1} = \frac{5\theta-4}{2(4-\theta)},a_{2}\\ = \frac{(4+\theta)(6-\theta)}{(4-\theta)^2},a_{3} = -\frac{(6-\theta)^2}{(4-\theta)^2}. $

    Next, we just need to prove that $ f_{1}(\theta) > 0, $ using a Taylor expansion yields

    $ \begin{array}{lll}{ } f_{1}(\theta) = { } -\frac{3}{4}+[a_{1}\cdot2^{1-\theta}+a_{2}\cdot2^{1-2\theta}](1+\frac{1}{2})^{1-\theta}+a_{3}\cdot(2^{-\theta})^{2} =\\ { } -\frac{3}{4}+a_{1}\cdot2^{1-\theta}+a_{2}\cdot2^{1-2\theta}+a_{3}\cdot2^{-2\theta}\\ { }+[a_{1}\cdot2^{1-\theta}+a_{2}\cdot2^{1-2\theta}][\frac{1-\theta}{1!}\frac{1}{2}+\frac{(1-\theta)(-\theta)}{2!}(\frac{1}{2})^{2}+\frac{(1-\theta)(-\theta)(-\theta-1)}{3!}(\frac{1}{2})^{3}+\cdots], \end{array} $

    where

    $ \begin{eqnarray*} a_{1}2^{1-\theta}+a_{2}2^{1-2\theta}& = & 2^{-\theta}\cdot\frac{1}{(4-\theta)^{2}}[(5\theta-4)(4-\theta)+2(4+\theta)(6-\theta)2^{-\theta}]\\ &\geq&2^{-\theta}\cdot\frac{1}{(4-\theta)^{2}}[(5\theta-4)(4-\theta)+(4+\theta)(6-\theta)] \geq0. \end{eqnarray*} $

    Because of $ \frac{1-\theta}{1!}\cdot\frac{1}{2}+\frac{(1-\theta)(-\theta)}{2!}\cdot(\frac{1}{2})^{2} +\frac{(1-\theta)(-\theta)(-\theta-1)}{3!}(\frac{1}{2})^{3}+\ldots\doteq\sum_{k = 0}^{+\infty}a_{k} $ is an alternating series with positive first term, and $ \sum_{k = 0}^{+\infty}a_{k} = a_{0}+a_{1}+\sum_{k = 2}^{+\infty}a_{k} $, where $ \sum_{k = 2}^{+\infty}a_{k} $ is an alternating series with positive first term, so $ 0 < \sum_{k = 2}^{+\infty}a_{k} < a_{2} $, we have

    $ \begin{eqnarray*} \begin{array}{lll}{ } &f_{1}(\theta) > { } -\frac{3}{4}+a_{3}\cdot2^{-2\theta}+[a_{1}\cdot2^{1-\theta}+a_{2}\cdot2^{1-2\theta}][1+\frac{1-\theta}{1!}\cdot\frac{1}{2}+\frac{(1-\theta)(-\theta)}{2!}(\frac{1}{2})^{2}]\\ & = { } -\frac{3}{4}+\frac{2^{-\theta}}{8(4-\theta)^{2}}[-5\theta^4+49\theta^3-196\theta^2+368\theta-192+(-\theta^4+7\theta^3-2\theta^2-48\theta+144)2^{1-\theta}]\\ &\doteq { } -\frac{3}{4}+\frac{2^{-\theta}}{8(4-\theta)^{2}}[f_{2}(\theta)+f_{3}(\theta)]. \end{array} \end{eqnarray*} $

    We wish prove $ f_{1}(\theta) > 0 $, only need $ -\frac{3}{4}+\frac{2^{-\theta}}{8(4-\theta)^{2}}[f_{2}(\theta)+f_{3}(\theta)] > 0\Longleftrightarrow f_{2}(\theta)+f_{3}(\theta) > \frac{3}{4}\cdot8(4-\theta)^{2}2^{\theta} = 6(4-\theta)^{2}2^{\theta} $, that is $ f_{2}(\theta)+f_{3}(\theta) > 6(4-\theta)^{2}2^{\theta}\doteq6f_{4}(\theta) $, so to prove $ f_{1}(\theta) > 0 $, just prove $ f_{2}(\theta)+f_{3}(\theta)-6f_{4}(\theta) > 0 $, let's remember $ \bar{f}(\theta) = f_{2}(\theta)+f_{3}(\theta)-6f_{4}(\theta) $, since $ \bar{f}(\theta) $ first increases and then decreases, and the two endpoints are $ \bar{f}(0) = 0, \bar{f}(1) = 16 > 0 $, $ \bar{f}(\theta) > 0 $ is always true, so $ f_{1}(\theta) > 0 $.

    (4) Firstly, we will prove $ \rho > 0 $. Because $ \rho = \frac{3(4-\theta)+(\theta-6)2^{1-\theta}}{2(4-\theta)}, $ let $ \bar{g}(\theta) = 3(4-\theta)+(\theta-6)2^{1-\theta} $, by calculation, we can get $ \bar{g}(\theta) $ is monotonically increasing function on $ \theta $, that is $ \bar{g}(\theta) > \bar{g}(0) = 0 $. therefore, we have $ \rho > 0. $

    In addition, $ \rho-\frac{2}{3} = \frac{5(4-\theta)+3(\theta-6)2^{1-\theta}}{6(4-\theta)}\doteq\frac{\bar{g}_{1}(\theta)}{6(4-\theta)}. $ we can directly find $ \bar{g}_{1}(\theta) < \bar{g}_{1}(1) = 0 $, so $ 0 < \rho < \frac{2}{3} $.

    (5) We use Lagrange's mean value theorem $ 4^{1-\theta} > \frac{4}{3+\theta}\cdot 3^{1-\theta} $, and we have

    $ \begin{eqnarray} \tilde f(\theta) > { } -3(4-\theta)^{2}+6(4-\theta)(6-\theta)2^{1-\theta} +[-4(4-\theta)(8-\theta)+\frac{4(6-\theta)^{2}}{3+\theta}] 3^{1-\theta}. \end{eqnarray} $ (A.1)

    Let $ a_{1} = -3(4-\theta)^{2}, a_{2} = 6(4-\theta)(6-\theta), a_{3} = \frac{4}{3+\theta}[-(4-\theta)(8-\theta)(3+\theta)$+$(6-\theta)^{2}], a_{4} = 1+\frac{1-\theta}{1!}\frac{1}{2}+\frac{(1-\theta)(-\theta)}{2}(\frac{1}{2})^{2} $. (A.1) is becomes

    $ \begin{eqnarray*} \tilde f(\theta)& > & a_{1}+a_{2}\cdot 2^{1-\theta}+a_{3}\cdot 3^{1-\theta} = a_{1}+2^{1-\theta}[a_{2}+a_{3}(1+\frac{1}{2})^{1-\theta}]\\ & = & a_{1}+2^{1-\theta}\{a_{2}+a_{3}[1+\frac{1-\theta}{1!}\frac{1}{2}+\frac{(1-\theta)(-\theta)}{2}(\frac{1}{2})^{2}]\\ &&+ a_{3}\cdot[\frac{(1-\theta)(-\theta)(-\theta-1)}{3!}(\frac{1}{2})^{3} +\frac{(1-\theta)(-\theta)(-\theta-1)(-\theta-2)}{4!}(\frac{1}{2})^{4}+\ldots]\}\\ & = & a_{1}+2^{1-\theta}\{a_{2}+a_{3}\cdot a_{4}+a_{3}(1-\theta)\theta\sum\limits_{k = 0}^{+\infty}\Pi_{i = 0}^{k}(-\theta-1-i)\cdot \frac{-1}{(k+3)!}(\frac{1}{2})^{k+3}\}\\ &\doteq & a_{1}+2^{1-\theta}\{a_{2}+a_{3}\cdot a_{4}+a_{3}(1-\theta)\theta\sum\limits_{k = 0}^{+\infty}b_{k}\}, \end{eqnarray*} $

    where $ b_{k} = \Pi_{i = 0}^{k}(-\theta-1-i)\cdot \frac{-1}{(k+3)!}(\frac{1}{2})^{k+3} $, and $ b_{0} = \frac{-(-\theta-1)}{3!}(\frac{1}{2})^{3} > 0, $ $ |\frac{b_{k+1}}{b_{k}}| = \frac{\theta+2+k}{2(k+4)} < 1, $ so $ \sum_{k = 0}^{+\infty}b_{k} $ is a convergent alternating series, that is $ 0 < \sum_{k = 0}^{+\infty}b_{k} < b_{0}. $ Because of $ a_3 < 0 $, so we get

    $ \begin{eqnarray*} \tilde f(\theta)& > & a_{1}+2^{1-\theta}\{a_{2}+a_{3}\cdot a_{4}+a_{3}(1-\theta)\theta b_{0}\} = a_{1}+2^{1-\theta}\{a_{2}+a_{3}[a_{4}+(1-\theta)\theta\cdot \frac{-(-\theta-1)}{3!}(\frac{1}{2})^{3}]\}\\ &\doteq& a_{1}+2^{1-\theta}\{a_{2}+a_{3}\cdot a_{5}\} \doteq \tilde f_{1}(\theta), \end{eqnarray*} $

    where $ a_{5} = a_{4}+(1-\theta)\theta\cdot \frac{-(-\theta-1)}{3!}(\frac{1}{2})^{3} = \frac{48+24(1-\theta)-6(\theta-\theta^{2})+(\theta-\theta^{3})}{48}, $ by careful calculation, we can get

    $ \begin{eqnarray*} &\!\!\!\!\!\!&\!\!\!\!\!\!\tilde f_{1}(\theta) = \frac{-36}{12(3+\theta)}[\theta^{3}-5\theta^{2}-8\theta+48]\\ &\!\!\!\!\!\!&\!\!\!\!\!\!+ 2^{1-\theta}\frac{1}{12(3+\theta)}[\theta^{6}-16\theta^{5}+97\theta^{4}-278\theta^{3}+88\theta^{2}+732\theta+864]\\ &\!\!\!\!\!\!&\!\!\!\!\!\! = \frac{1}{12(3+\theta)}\{-36(\theta^{3}-5\theta^{2}-8\theta+48) +2^{1-\theta}(\theta^{6}-16\theta^{5}+97\theta^{4}-278\theta^{3}+88\theta^{2}+732\theta+864)\}\\ &\!\!\!\!\!\!&\!\!\!\!\!\!\doteq \frac{1}{12(3+\theta)}\tilde {f}_{2}(\theta), \end{eqnarray*} $

    because $ \theta\in(0, 1), $ so $ \theta^{3} < \theta^{2}, \theta^{6} > 0. $

    $ \begin{eqnarray*} &\!\!\!&\!\!\!\tilde {f}_{2}(\theta) > -36(\theta^{2}-5\theta^{2}-8\theta+48)+2^{1-\theta}(0-16\theta^{5}+97\theta^{4} -278\theta^{3}+88\theta^{2}+732\theta+864)\\ &\!\!\!&\!\!\! = 144(\theta^{2}+2\theta-12)+2^{1-\theta}(-16\theta^{5} +97\theta^{4}-278\theta^{3}+88\theta^{2}+732\theta+864)\\ &\!\!\!&\!\!\! = 144(\theta^{2}+2\theta-12)+2^{1-\theta}\tilde f_{4}(\theta) \doteq \tilde f_{3}(\theta), \end{eqnarray*} $

    where $ \tilde f_{4}(\theta) = -16\theta^{5}+97\theta^{4}-278\theta^{3}+88\theta^{2}+732\theta+864, $ by careful calculation, we can get $ \tilde f^{\prime\prime}_{3}(\theta) < 0 $, that is $ \tilde f^{\prime}_{3}(\theta) $ monotone decreasing, so $ \tilde f^{\prime}_{3}(1) < \tilde f^{\prime}_{3}(\theta) < \tilde f^{\prime}_{3}(0) $, by direct calculation, we can get $ \tilde f^{\prime}_{3}(\theta) = 144(2\theta+2)+2^{1-\theta}[\tilde f_{4}(\theta)(-\ln2)+\tilde f^{\prime}_{4}(\theta)], \tilde f^{\prime}_{3}(0) > 0, \tilde f^{\prime}_{3}(0) < 0, $ so $ \tilde f^{\prime}_{3}(0) $ changes from positive to negative, $ \tilde f_{3}(0) $ increases first and then decreases, $ \tilde f_{3}(0) = 0, \tilde f_{3}(1) = 223 > 0, $ that is $ \tilde f_{3}(\theta) > 0 $ established, so $ \tilde f(\theta) > 0 $.



    [1] C. W. Lv, C. J. Xu, Error analysis of a high order method for time-fractional diffusion equations, SIAM J. Sci. Comput., 38 (2016), A2699–A2724. doi: 10.1137/15M102664X
    [2] J. Y. Cao, C. J. Xu, Z. Q. Wang, A high order finite difference/spectral approximations to the time fractional diffusion equations, Adv. Mater. Res., 875 (2014), 781–785.
    [3] J. Y. Cao, C. J. Xu, A high order schema for the nmerical solution of the fractional ordinary differential equations, J. Comput. Phys., 238 (2013), 154–168. doi: 10.1016/j.jcp.2012.12.013
    [4] H. L. Liao, W. McLean, J. W. Zhang, A discrete gronwall inequality with applications to numerical schemes for subdiffusion problems, SIAM J. Numer. Anal., 57 (2019), 218–237. doi: 10.1137/16M1175742
    [5] W. P. Bu, L. Ji, Y. F. Tang, J. Zhou, Space-time finite element method for the distributed-order time fractional reaction diffusion equations, Appl. Numer. Math., 152 (2020), 446–465. doi: 10.1016/j.apnum.2019.11.010
    [6] G. H. Gao, Z. Z. Sun, H. W. Zhang, A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications, J. Comput. Phys., 259 (2014), 33–50. doi: 10.1016/j.jcp.2013.11.017
    [7] C. P. Xie, S. M. Fang, Finite difference scheme for time fractional diffusion equation with fractional boundary conditions, Math. Method. Appl. Sci., 43 (2020), 3473–3487. doi: 10.1002/mma.6132
    [8] C. P. Li, M. Cai, High-order approximation to Caputo derivatives and Caputo-type advection-diffusion equations: revisited, Numer. Funct. Anal. Optim., 38 (2017), 861–890. doi: 10.1080/01630563.2017.1291521
    [9] J. Alessandra, S. M. Paola, On the numerical solutions of coupled nonlinear time-fractional reaction-diffusion equations, AIMS Mathematics, 6 (2021), 9109–9125. doi: 10.3934/math.2021529
    [10] Y. Zhang, X. B. Bao, L. B. Liu, Analysis of a finite difference scheme for a nonlinear Caputo fractional differential equation on an adaptive grid, AIMS Mathematics, 6 (2021), 8611–8624. doi: 10.3934/math.2021500
    [11] Z. J. Meng, M. X. Yi, J. Huang, L. Song, Numerical solutions of nonlinear fractional differential equations by alternative Legendre polynomials, Appl. Math. Comput., 336 (2018), 454–464.
    [12] S. Abbas, D. Mehdi, A new operational matrix for solving fractional-order differential equations, Comput. Math. Appl., 59 (2010), 1326–1336. doi: 10.1016/j.camwa.2009.07.006
    [13] M. R. Eslahchi, M. Dehghan, M. Parvizi, Application of the collocation method for solving nonlinear fractional integro-differential equations, J. Comput. Appl. Math., 257 (2014), 105–128. doi: 10.1016/j.cam.2013.07.044
    [14] Y. N. Zhang, Z. Z. Sun, X. Zhao, Compact alternating direction implicit scheme for the two-dimensional fractional diffusion-wave equation, SIAM J. Numer. Anal., 50 (2012), 1535–1555. doi: 10.1137/110840959
    [15] W. H. Luo, C. P. Li, T. Z. Huang, X. M. Gu, G. C. Wu, A high-order accurate numerical scheme for the Caputo derivative with applications to fractional diffusion problems, Numer. Funct. Anal. Optim., 39 (2018), 600–622. doi: 10.1080/01630563.2017.1402346
    [16] S. Lee, H. Kim, B. Jang, A fast and high-order numerical method for nonlinear fractional-order differential equations with non-singular kernel, Appl. Numer. Math., 163 (2021), 57–76. doi: 10.1016/j.apnum.2021.01.013
    [17] N. Khadijeh, D. Raziyeh, Galerkin finite element method for nonlinear fractional differential equations, Numer. Algorithms, 88 (2021), 113–141. doi: 10.1007/s11075-020-01032-2
    [18] Y. L. Guo, Z. Q. Wang, An hp-version Chebyshev collocation method for nonlinear fractional differential equations, Appl. Numer. Math., 158 (2020), 194–211. doi: 10.1016/j.apnum.2020.08.003
    [19] Z. D. Gu, Spectral collocation method for nonlinear Riemann-Liouville fractional differential equations, Appl. Numer. Math., 157 (2020), 654–669. doi: 10.1016/j.apnum.2020.07.003
    [20] I. Podlubny, Fractional differential equations, New York: Academic Press, 1999.
    [21] H. Xi, Y. Gu, Generalized finite difference method for electroelastic analysis of three-dimensional piezoelectric structures, Appl. Math. Lett., 117 (2021), 107084. doi: 10.1016/j.aml.2021.107084
    [22] Y. Gu, C. M. Fan, Z. J. Fu, Localized method of fundamental solutions for three-dimensional elasticity problems: theory, Adv. Appl. Math. Mech., 13 (2021), 1520–1534. doi: 10.4208/aamm.OA-2020-0134
  • This article has been cited by:

    1. Xiaopeng Yi, Chongyang Liu, Huey Tyng Cheong, Kok Lay Teo, Song Wang, A third-order numerical method for solving fractional ordinary differential equations, 2024, 9, 2473-6988, 21125, 10.3934/math.20241026
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2368) PDF downloads(132) Cited by(1)

Figures and Tables

Tables(6)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog