Citation: José Luis Alonso, Wolfgang H. Goldmann. Cellular mechanotransduction[J]. AIMS Biophysics, 2016, 3(1): 50-62. doi: 10.3934/biophy.2016.1.50
[1] | Tianyuan Xu, Shanming Ji, Chunhua Jin, Ming Mei, Jingxue Yin . EARLY AND LATE STAGE PROFILES FOR A CHEMOTAXIS MODEL WITH DENSITY-DEPENDENT JUMP PROBABILITY. Mathematical Biosciences and Engineering, 2018, 15(6): 1345-1385. doi: 10.3934/mbe.2018062 |
[2] | Wenjie Zhang, Lu Xu, Qiao Xin . Global boundedness of a higher-dimensional chemotaxis system on alopecia areata. Mathematical Biosciences and Engineering, 2023, 20(5): 7922-7942. doi: 10.3934/mbe.2023343 |
[3] | Sunwoo Hwang, Seongwon Lee, Hyung Ju Hwang . Neural network approach to data-driven estimation of chemotactic sensitivity in the Keller-Segel model. Mathematical Biosciences and Engineering, 2021, 18(6): 8524-8534. doi: 10.3934/mbe.2021421 |
[4] | Qianhong Zhang, Fubiao Lin, Xiaoying Zhong . On discrete time Beverton-Holt population model with fuzzy environment. Mathematical Biosciences and Engineering, 2019, 16(3): 1471-1488. doi: 10.3934/mbe.2019071 |
[5] | Chichia Chiu, Jui-Ling Yu . An optimal adaptive time-stepping scheme for solving reaction-diffusion-chemotaxis systems. Mathematical Biosciences and Engineering, 2007, 4(2): 187-203. doi: 10.3934/mbe.2007.4.187 |
[6] | Xu Song, Jingyu Li . Asymptotic stability of spiky steady states for a singular chemotaxis model with signal-suppressed motility. Mathematical Biosciences and Engineering, 2022, 19(12): 13988-14028. doi: 10.3934/mbe.2022652 |
[7] | Tingting Yu, Sanling Yuan . Dynamics of a stochastic turbidostat model with sampled and delayed measurements. Mathematical Biosciences and Engineering, 2023, 20(4): 6215-6236. doi: 10.3934/mbe.2023268 |
[8] | Lin Zhang, Yongbin Ge, Zhi Wang . Positivity-preserving high-order compact difference method for the Keller-Segel chemotaxis model. Mathematical Biosciences and Engineering, 2022, 19(7): 6764-6794. doi: 10.3934/mbe.2022319 |
[9] | Changwook Yoon, Sewoong Kim, Hyung Ju Hwang . Global well-posedness and pattern formations of the immune system induced by chemotaxis. Mathematical Biosciences and Engineering, 2020, 17(4): 3426-3449. doi: 10.3934/mbe.2020194 |
[10] | Marcin Choiński, Mariusz Bodzioch, Urszula Foryś . A non-standard discretized SIS model of epidemics. Mathematical Biosciences and Engineering, 2022, 19(1): 115-133. doi: 10.3934/mbe.2022006 |
Baló's concentric sclerosis (BCS) was first described by Marburg [1] in 1906, but became more widely known until 1928 when the Hungarian neuropathologist Josef Baló published a report of a 23-year-old student with right hemiparesis, aphasia, and papilledema, who at autopsy had several lesions of the cerebral white matter, with an unusual concentric pattern of demyelination [2]. Traditionally, BCS is often regarded as a rare variant of multiple sclerosis (MS). Clinically, BCS is most often characterized by an acute onset with steady progression to major disability and death with months, thus resembling Marburg's acute MS [3,4]. Its pathological hallmarks are oligodendrocyte loss and large demyelinated lesions characterized by the annual ring-like alternating pattern of demyelinating and myelin-preserved regions. In [5], the authors found that tissue preconditioning might explain why Baló lesions develop a concentric pattern. According to the tissue preconditioning theory and the analogies between Baló's sclerosis and the Liesegang periodic precipitation phenomenon, Khonsari and Calvez [6] established the following chemotaxis model
$ ˜uτ=DΔX˜u⏟diffusion ofactivated macrophages−∇X⋅(˜χ˜u(ˉu−˜u)∇˜v)⏟chemoattractant attractssurrounding activated macrophages+μ˜u(ˉu−˜u)⏟production of activated macrophages,−˜ϵΔX˜v⏟diffusion of chemoattractant=−˜α˜v+˜β˜w⏟degradation∖production of chemoattractant,˜wτ=κ˜uˉu+˜u˜u(ˉw−˜w)⏟destruction of oligodendrocytes, $
|
(1.1) |
where $ \tilde{u} $, $ \tilde{v} $ and $ \tilde{w} $ are, respectively, the density of activated macrophages, the concentration of chemoattractants and density of destroyed oligodendrocytes. $ \bar{u} $ and $ \bar{w} $ represent the characteristic densities of macrophages and oligodendrocytes respectively.
By numerical simulation, the authors in [6,7] indicated that model (1.1) only produces heterogeneous concentric demyelination and homogeneous demyelinated plaques as $ \chi $ value gradually increases. In addition to the chemoattractant produced by destroyed oligodendrocytes, "classically activated'' M1 microglia also can release cytotoxicity [8]. Therefore we introduce a linear production term into the second equation of model (1.1), and establish the following BCS chemotaxis model with linear production term
$ {˜uτ=DΔX˜u−∇X⋅(˜χ˜u(ˉu−˜u)∇˜v)+μ˜u(ˉu−˜u),−˜ϵΔX˜v+˜α˜v=˜β˜w+˜γ˜u,˜wτ=κ˜uˉu+˜u˜u(ˉw−˜w). $
|
(1.2) |
Before going to details, let us simplify model (1.2) with the following scaling
$ u=˜uˉu,v=μˉu˜ϵD˜v,w=˜wˉw,t=μˉuτ,x=√μˉuDX,χ=˜χ˜ϵμ,α=D˜α˜ϵμˉu,β=˜βˉw,γ=˜γˉu,δ=κμ, $
|
then model (1.2) takes the form
$ {ut=Δu−∇⋅(χu(1−u)∇v)+u(1−u),x∈Ω,t>0,−Δv+αv=βw+γu,x∈Ω,t>0,wt=δu1+uu(1−w),x∈Ω,t>0,∂ηu=∂ηv=0,x∈∂Ω,t>0,u(x,0)=u0(x),w(x,0)=w0(x),x∈Ω, $
|
(1.3) |
where $ \Omega\subset \mathbb{R}^{n}\; (n\geq 1) $ is a smooth bounded domain, $ \eta $ is the outward normal vector to $ \partial \Omega $, $ \partial_{\eta} = \partial/\partial \eta $, $ \delta $ balances the speed of the front and the intensity of the macrophages in damaging the myelin. The parameters $ \chi, \; \alpha $ and $ \delta $ are positive constants as well as $ \beta, \; \gamma $ are nonnegative constants.
If $ \delta = 0 $, then model (1.3) is a parabolic-elliptic chemotaxis system with volume-filling effect and logistic source. In order to be more line with biologically realistic mechanisms, Hillen and Painter [9,10] considered the finite size of individual cells-"volume-filling'' and derived volume-filling models
$ {ut=∇⋅(Du(q(u)−q′(u)u)∇u−q(u)uχ(v)∇v)+f(u,v),vt=DvΔv+g(u,v). $
|
(1.4) |
$ q(u) $ is the probability of the cell finding space at its neighbouring location. It is also called the squeezing probability, which reflects the elastic properties of cells. For the linear choice of $ q(u) = 1-u $, global existence of solutions to model (1.4) in any space dimension are investigated in [9]. Wang and Thomas [11] established the global existence of classical solutions and given necessary and sufficient conditions for spatial pattern formation to a generalized volume-filling chemotaxis model. For a chemotaxis system with generalized volume-filling effect and logistic source, the global boundedness and finite time blow-up of solutions are obtained in [12]. Furthermore, the pattern formation of the volume-filling chemotaxis systems with logistic source and both linear diffusion and nonlinear diffusion are shown in [13,14,15] by the weakly nonlinear analysis. For parabolic-elliptic Keller-Segel volume-filling chemotaxis model with linear squeezing probability, asymptotic behavior of solutions is studied both in the whole space $ \mathbb{R}^{n} $ [16] and on bounded domains [17]. Moreover, the boundedness and singularity formation in parabolic-elliptic Keller-Segel volume-filling chemotaxis model with nonlinear squeezing probability are discussed in [18,19].
Very recently, we [20] investigated the uniform boundedness and global asymptotic stability for the following chemotaxis model of multiple sclerosis
$ \left\{ut=Δu−∇⋅(χ(u)∇v)+u(1−u),χ(u)=χu1+u,x∈Ω,t>0,τvt=Δv−βv+αw+γu,x∈Ω,t>0,wt=δu1+uu(1−w),x∈Ω,t>0, \right. $
|
subject to the homogeneous Neumann boundary conditions.
In this paper, we are first devoted to studying the local existence and uniform boundedness of the unique classical solution to system (1.3) by using Neumann heat semigroup arguments, Banach fixed point theorem, parabolic Schauder estimate and elliptic regularity theory. Then we discuss that exponential asymptotic stability of the positive equilibrium point to system (1.3) by constructing Lyapunov function.
Although, in the pathological mechanism of BCS, the initial data in model (1.3) satisfy $ 0 < u_{0}(x)\leq\; 1, w_{0}(x) = 0 $, we mathematically assume that
$ {u0(x)∈C0(ˉΩ)with0≤,≢u0(x)≤1inΩ,w0(x)∈C2+ν(ˉΩ)with0<ν<1and0≤w0(x)≤1inΩ. $
|
(1.5) |
It is because the condition (1.5) implies $ u(x, t_0) > 0 $ for any $ t_0 > 0 $ by the strong maximum principle.
The following theorems give the main results of this paper.
Theorem 1.1. Assume that the initial data $ (u_{0}(x), w_{0}(x)) $ satisfy the condition (1.5). Then model (1.3) possesses a unique global solution $ (u(x, t), v(x, t), w(x, t)) $ satisfying
$ u(x,t)∈C0(ˉΩ×[0,∞))∩C2,1(ˉΩ×(0,∞)),v(x,t)∈C0((0,∞),C2(ˉΩ)),w(x,t)∈C2,1(ˉΩ×[0,∞)), $
|
(1.6) |
and
$ 0 \lt u(x, t)\leq 1, \; \; 0\leq v(x, t)\leq \frac{\beta+\gamma}{\alpha}, \; \; w_{0}(x)\leq w(x, t)\leq 1, \; \; \mathrm{in}\; \bar{\Omega}\times(0, \infty). $ |
Moreover, there exist a $ \nu\in(0, 1) $ and $ M > 0 $ such that
$ ‖u‖C2+ν,1+ν/2(ˉΩ×[1,∞))+‖v‖C0([1,∞),C2+ν(ˉΩ))+‖w‖Cν,1+ν/2(ˉΩ×[1,∞))≤M. $
|
(1.7) |
Theorem 1.2. Assume that $ \beta \geq 0, \; \gamma\geq 0, \; \beta+\gamma > 0 $ and
$ χ<{min{2√2αβ,2√2αγ},β>0,γ>0,2√2αβ,β>0,γ=0,2√2αγ,β=0,γ>0. $
|
(1.8) |
Let $ (u, v, w) $ be a positive classical solution of the problem (1.3), (1.5). Then
$ ‖u(⋅,t)−u∗‖L∞(Ω)+‖v(⋅,t)−v∗‖L∞(Ω)+‖w(⋅,t)−w∗‖L∞(Ω)→0,ast→∞. $
|
(1.9) |
Furthermore, there exist positive constants $ \lambda = \lambda(\chi, \alpha, \gamma, \delta, n) $ and $ C = C(|\Omega|, \chi, \alpha, \beta, \gamma, \delta) $ such that
$ ‖u−u∗‖L∞(Ω)≤Ce−λt,‖v−v∗‖L∞(Ω)≤Ce−λt,‖w−w∗‖L∞(Ω)≤Ce−λt,t>0, $
|
(1.10) |
where $ (u^{\ast}, v^{\ast}, w^{\ast}) = (1, \frac{\beta+\gamma}{\alpha}, 1) $ is the unique positive equilibrium point of the model (1.3).
The paper is organized as follows. In section 2, we prove the local existence, the boundedness and global existence of a unique classical solution. In section 3, we firstly establish the uniform convergence of the positive global classical solution, then discuss the exponential asymptotic stability of positive equilibrium point in the case of weak chemotactic sensitivity. The paper ends with a brief concluding remarks.
The aim of this section is to develop the existence and boundedness of a global classical solution by employing Neumann heat semigroup arguments, Banach fixed point theorem, parabolic Schauder estimate and elliptic regularity theory.
Proof of Theorem 1.1 (ⅰ) Existence. For $ p\in (1, \infty) $, let $ A $ denote the sectorial operator defined by
$ Au: = -\Delta u \; \mathrm{for}\; u\in D(A): = \Big\{\varphi\in W^{2, p}(\Omega)\Big|\frac{\partial}{\partial \eta}\varphi\Big|_{\partial\Omega} = 0\Big\}. $ |
$ \lambda_{1} > 0 $ denote the first nonzero eigenvalue of $ -\Delta $ in $ \Omega $ with zero-flux boundary condition. Let $ A_{1} = -\Delta+\alpha $ and $ X^{l} $ be the domains of fractional powers operator $ A^{l}, \; l\geq 0 $. From the Theorem 1.6.1 in [21], we know that for any $ p > n $ and $ l\in(\frac{n}{2p}, \frac{1}{2}) $,
$ ‖z‖L∞(Ω)≤C‖Al1z‖Lp(Ω)forallz∈Xl. $
|
(2.1) |
We introduce the closed subset
$ S: = \left\{u\in X\big| \|u\|_{L^{\infty}((0, T);L^{\infty}(\Omega))}\leq R+1\right\} $ |
in the space $ X: = C^{0}([0, T];C^{0}(\bar{\Omega})) $, where $ R $ is a any positive number satisfying
$ \|u_{0}(x)\|_{L^{\infty}(\Omega)}\leq R $ |
and $ T > 0 $ will be specified later. Note $ F(u) = \frac{u}{1+u} $, we consider an auxiliary problem with $ F(u) $ replaced by its extension $ \tilde{F}(u) $ defined by
$ \tilde{F}(u) = {F(u)uifu≥0,−F(−u)(−u)ifu<0. $
|
Notice that $ \tilde{F}(u) $ is a smooth globally Lipshitz function. Given $ \hat{u}\in S $, we define $ \Psi\hat{u} = u $ by first writing
$ w(x,t)=(w0(x)−1)e−δ∫t0˜F(ˆu)ˆuds+1,x∈Ω,t>0, $
|
(2.2) |
and
$ w_{0}\leq w(x, t)\leq 1, \; \; x\in\Omega, \; t \gt 0, $ |
then letting $ v $ solve
$ {−Δv+αv=βw+γˆu,x∈Ω,t∈(0,T),∂ηv=0,x∈∂Ω,t∈(0,T), $
|
(2.3) |
and finally taking $ u $ to be the solution of the linear parabolic problem
$ \left\{ut=Δu−χ∇⋅(ˆu(1−ˆu)∇v)+ˆu(1−ˆu),x∈Ω,t∈(0,T),∂ηu=0,x∈∂Ω,t∈(0,T),u(x,0)=u0(x),x∈Ω. \right. $
|
Applying Agmon-Douglas-Nirenberg Theorem [22,23] for the problem (2.3), there exists a constant $ C $ such that
$ ‖v‖W2p(Ω)≤C(β‖w‖Lp(Ω)+γ‖ˆu‖Lp(Ω))≤C(β|Ω|1p+γ(R+1)) $
|
(2.4) |
for all $ t\in(0, T) $. From a variation-of-constants formula, we define
$ \Psi(\hat{u}) = e^{t\Delta}u_{0}-\chi\int^{t}_{0}e^{(t-s)\Delta}\nabla\cdot\left(\hat{u}(1-\hat{u})\nabla v(s)\right)ds+\int^{t}_{0}e^{(t-s)\Delta}\hat{u}(s)(1-\hat{u}(s))ds. $ |
First we shall show that for $ T $ small enough
$ \|\Psi(\hat{u})\|_{L^{\infty}((0, T);L^{\infty}(\Omega))}\leq R+1 $ |
for any $ \hat{u}\in S $. From the maximum principle, we can give
$ ‖etΔu0‖L∞(Ω)≤‖u0‖L∞(Ω), $
|
(2.5) |
and
$ ∫t0‖etΔˆu(s)(1−ˆu(s))‖L∞(Ω)ds≤∫t0‖ˆu(s)(1−ˆu(s))‖L∞(Ω)ds≤(R+1)(R+2)T $
|
(2.6) |
for all $ t\in(0, T) $. We use inequalities (2.1) and (2.4) to estimate
$ χ∫t0‖e(t−s)Δ∇⋅(ˆu(1−ˆu)∇v(s))‖L∞(Ω)ds≤C∫t0(t−s)−l‖et−s2Δ∇⋅(ˆu(1−ˆu)∇v(s))‖Lp(Ω)ds≤C∫t0(t−s)−l−12‖(ˆu(1−ˆu)∇v(s)‖Lp(Ω)ds≤CT12−l(R+1)(R+2)(β|Ω|1p+γ(R+1)) $
|
(2.7) |
for all $ t\in(0, T) $. This estimate is attributed to $ T < 1 $ and the inequality in [24], Lemma 1.3 iv]
$ \| e^{t\Delta}\nabla z\|_{L^{p}(\Omega)}\leq C_{1}(1+t^{-\frac{1}{2}})e^{-\lambda_{1}t}\| z\|_{L^{p}(\Omega)}\; \mathrm{for\; all}\; \; z\in C^{\infty}_{c}(\Omega). $ |
From inequalities (2.5), (2.6) and (2.7) we can deduce that $ \Psi $ maps $ S $ into itself for $ T $ small enough.
Next we prove that the map $ \Psi $ is a contractive on $ S $. For $ \hat{u}_{1}, \hat{u}_{2}\in S $, we estimate
$ ‖Ψ(ˆu1)−Ψ(ˆu2)‖L∞(Ω)≤χ∫t0(t−s)−l−12‖[ˆu2(s)(1−ˆu2(s))−ˆu1(s)(1−ˆu1(s))]∇v2(s)‖Lp(Ω)ds+χ∫t0‖ˆu1(s)(1−ˆu1(s))(∇v1(s)−∇v2(s))‖Lp(Ω)ds+∫t0‖e(t−s)Δ[ˆu1(s)(1−ˆu1(s))−ˆu2(s)(1−ˆu2(s))]‖L∞(Ω)ds≤χ∫t0(t−s)−l−12(2R+1)‖ˆu1(s)−ˆu2(s)‖X‖∇v2(s)‖Lp(Ω)ds+χ∫t0(R+1)(R+2)(β‖w1(s)−w2(s)‖Lp(Ω)+γ‖ˆu1(s)−ˆu2(s)‖Lp(Ω))ds+∫t0(2R+1)‖ˆu1(s)−ˆu2(s)‖Xds≤χ∫t0(t−s)−l−12(2R+1)‖ˆu1(s)−ˆu2(s)‖X‖∇v2(s)‖Lp(Ω)ds+2βδχ∫t0(R+1)(R+2)t‖ˆu1(s)−ˆu2(s)‖Lp(Ω)+γ‖ˆu1(s)−ˆu2(s)‖Lp(Ω)ds+∫t0(2R+1)‖ˆu1(s)−ˆu2(s)‖Xds≤(CχT12−l(2R+1)(β|Ω|1p+γ(R+1))+2βδχT(R2+3R+γ+2)+T(2R+1))‖ˆu1(s)−ˆu2(s)‖X. $
|
Fixing $ T\in(0, 1) $ small enough such that
$ \left(C\chi T^{\frac{1}{2}-l}(2R+1)(\beta|\Omega|^{\frac{1}{p}}+\gamma (R+1))+2\beta\delta \chi T(R^{2}+3R+\gamma+2)+T(2R+1)\right)\leq \frac{1}{2}. $ |
It follows from the Banach fixed point theorem that there exists a unique fixed point of $ \Psi $.
(ⅱ) Regularity. Since the above of $ T $ depends on $ \|u_{0}\|_{L^{\infty}(\Omega)} $ and $ \|w_{0}\|_{L^{\infty}(\Omega)} $ only, it is clear that $ (u, v, w) $ can be extended up to some maximal $ T_{\max}\in(0, \infty] $. Let $ Q_{T} = \Omega \times (0, T] $ for all $ T\in (0, T_{\max}) $. From $ u\in C^{0}(\bar{Q}_{T}) $, we know that $ w\in C^{0, 1}(\bar{Q}_{T}) $ by the expression (2.2) and $ v\in C^{0}([0, T], W_{p}^{2}(\Omega)) $ by Agmon-Douglas-Nirenberg Theorem [22,23]. From parabolic $ L^{p} $-estimate and the embedding relation $ W_{p}^{1}(\Omega)\hookrightarrow C^{\nu}(\bar{\Omega}), \; p > n $, we can get $ u\in W^{2, 1}_{p}(Q_{T}) $. By applying the following embedding relation
$ W2,1p(QT)↪Cν,ν/2(ˉQT),p>n+22, $
|
(2.8) |
we can derive $ u(x, t)\in C^{\nu, \nu/2}(\bar{Q}_{T}) $ with $ 0 < \nu\leq 2-\frac{n+2}{p} $. The conclusion $ w\in C^{\nu, 1+\nu/2}(\bar{Q}_{T}) $ can be obtained by substituting $ u\in C^{\nu, \nu/2}(\bar{Q}_{T}) $ into the formulation (2.2). The regularity $ u\in C^{2+\nu, 1+\nu/2}(\bar{Q}_{T}) $ can be deduced by using further bootstrap argument and the parabolic Schauder estimate. Similarly, we can get $ v\in C^{0}((0, T), C^{2+\nu}(\bar{\Omega})) $ by using Agmon-Douglas-Nirenberg Theorem [22,23]. From the regularity of $ u $ we have $ w\in C^{2+\nu, 1+\nu/2}(\bar{Q}_{T}) $.
Moreover, the maximal principle entails that $ 0 < u(x, t)\leq 1 $, $ 0\leq v(x, t)\leq\frac{\beta+\gamma}{\alpha} $. It follows from the positivity of $ u $ that $ \tilde{F}(u) = F(u) $ and because of the uniqueness of solution we infer the existence of the solution to the original problem.
(ⅲ) Uniqueness. Suppose $ (u_{1}, v_{1}, w_{1}) $ and $ (u_{2}, v_{2}, w_{2}) $ are two deferent solutions of model $ (1.3) $ in $ \Omega\times [0, T] $. Let $ U = u_{1}-u_{2} $, $ V = v_{1}-v_{2} $, $ W = w_{1}-w_{2} $ for $ t\in (0, T) $. Then
$ 12ddt∫ΩU2dx+∫Ω|∇U|2dx≤χ∫Ω|u1(1−u1)−u2(1−u2)|∇v1||∇U|+u2(1−u2)|∇V||∇U|dx+∫Ω|u1(1−u1)−u2(1−u2)||U|dx≤χ∫Ω|U||∇v1||∇U|+14|∇V||∇U|dx+∫Ω|U|2dx≤∫Ω|∇U|2dx+χ232∫Ω|∇V|2dx+χ2K2+22∫Ω|U|2dx, $
|
(2.9) |
where we have used that $ |\nabla v_{1}|\leq K $ results from $ \nabla v_{1}\in C^{0}([0, T], C^{0}(\bar{\Omega})). $
Similarly, by Young inequality and $ w_{0}\leq w_{1}\leq 1 $, we can estimate
$ ∫Ω|∇V|2dx+α2∫Ω|V|2dx≤β2α∫Ω|W|2dx+γ2α∫Ω|U|2dx, $
|
(2.10) |
and
$ ddt∫ΩW2dx≤δ∫Ω|U|2+|W|2dx. $
|
(2.11) |
Finally, adding to the inequalities (2.9)–(2.11) yields
$ \frac{d}{dt}\left(\int_{\Omega}U^{2}dx+\int_{\Omega}W^{2}dx\right)\leq C\left(\int_{\Omega}U^{2}dx+\int_{\Omega}W^{2}dx\right)\; \mathrm{for\; all}\; t \in (0, T). $ |
The results $ U\equiv 0 $, $ W\equiv0 $ in $ \Omega\times(0, T) $ are obtained by Gronwall's lemma. From the inequality (2.10), we have $ V\equiv 0 $. Hence $ (u_{1}, v_{1}, w_{1}) = (u_{2}, v_{2}, w_{2}) $ in $ \Omega\times(0, T) $.
(ⅳ) Uniform estimates. We use the Agmon-Douglas-Nirenberg Theorem [22,23] for the second equation of the model (1.3) to get
$ ‖v‖C0([t,t+1],W2p(Ω))≤C(‖u‖Lp(Ω×[t,t+1])+‖w‖Lp(Ω×[t,t+1]))≤C2 $
|
(2.12) |
for all $ t\geq 1 $ and $ C_{2} $ is independent of $ t $. From the embedded relationship $ W_{p}^{1}(\Omega)\hookrightarrow C^{0}({\bar{\Omega}}), \; p > n $, the parabolic $ L^{p} $-estimate and the estimation (2.12), we have
$ \|u\|_{W_{p}^{2, 1}(\Omega\times[t, t+1])}\leq C_{3} $ |
for all $ t\geq 1 $. The estimate $ \|u\|_{C^{\nu, \frac{\nu}{2}}(\bar{\Omega}\times [t, t+1])}\leq C_{4} $ for all $ t\geq 1 $ obtained by the embedded relationship (2.8). We can immediately compute $ \|w\|_{C^{\nu, 1+\frac{\nu}{2}}(\bar{\Omega}\times [t, t+1])}\leq C_{5} $ for all $ t\geq 1 $ according to the regularity of $ u $ and the specific expression of $ w $. Further, bootstrapping argument leads to $ \|v\|_{C^{0}([t, t+1], C^{2+\nu}(\bar{\Omega}))}\leq C_{6} $ and $ \|u\|_{C^{2+\nu, 1+\frac{\nu}{2}}(\bar{\Omega}\times [t, t+1])}\leq C_{7} $ for all $ t\geq 1 $. Thus the uniform estimation (1.7) is proved.
Remark 2.1. Assume the initial data $ 0 < u_{0}(x)\leq 1 $ and $ w_{0}(x) = 0 $. Then the BCS model (1.3) has a unique classical solution.
In this section we investigate the global asymptotic stability of the unique positive equilibrium point $ (1, \frac{\beta+\gamma}{\alpha}, 1) $ to model (1.3). To this end, we first introduce following auxiliary problem
$ {uϵt=Δuϵ−∇⋅(uϵ(1−uϵ)∇vϵ)+uϵ(1−uϵ),x∈Ω,t>0,−Δvϵ+αvϵ=βwϵ+γuϵ,x∈Ω,t>0,wϵt=δu2ϵ+ϵ1+uϵ(1−wϵ),x∈Ω,t>0,∂ηuϵ=∂ηvϵ=0,x∈∂Ω,t>0,uϵ(x,0)=u0(x),wϵ(x,0)=w0(x),x∈Ω. $
|
(3.1) |
By a similar proof of Theorem 1.1, we get that the problem (3.1) has a unique global classical solution $ (u_{\epsilon}, v_{\epsilon}, w_{\epsilon}) $, and there exist a $ \nu\in(0, 1) $ and $ M_{1} > 0 $ which is independent of $ \epsilon $ such that
$ ‖uϵ‖C2+ν,1+ν/2(ˉΩ×[1,∞))+‖vϵ‖C2+ν,1+ν/2(ˉΩ×[1,∞))+‖wϵ‖Cν,1+ν/2(ˉΩ×[1,∞))≤M1. $
|
(3.2) |
Then, motivated by some ideas from [25,26], we construct a Lyapunov function to study the uniform convergence of homogeneous steady state for the problem (3.1).
Let us give following lemma which is used in the proof of Lemma 3.2.
Lemma 3.1. Suppose that a nonnegative function $ f $ on $ (1, \infty) $ is uniformly continuous and $ \int_{1}^{\infty}f(t)dt < \; \infty $. Then $ f(t)\rightarrow 0 $ as $ t\rightarrow \infty. $
Lemma 3.2. Assume that the condition (1.8) is satisfied. Then
$ ‖uϵ(⋅,t)−1‖L2(Ω)+‖vϵ(⋅,t)−v∗‖L2(Ω)+‖wϵ(⋅,t)−1‖L2(Ω)→0,t→∞, $
|
(3.3) |
where $ v^{\ast} = \frac{\beta+\gamma}{\alpha} $.
Proof We construct a positive function
$ E(t): = \int_{\Omega}(u_{\varepsilon}-1-\ln u_{\epsilon}) +\frac{1}{2\delta\epsilon}\int_{\Omega}(w_{\epsilon}-1)^{2}, \; \; t \gt 0. $ |
From the problem (3.1) and Young's inequality, we can compute
$ ddtE(t)≤χ24∫Ω|∇vϵ|2dx−∫Ω(uϵ−1)2dx−∫Ω(wϵ−1)2dx,t>0. $
|
(3.4) |
We multiply the second equations in system (3.1) by $ v_{\epsilon}-v^{\ast} $, integrate by parts over $ \Omega $ and use Young's inequality to obtain
$ ∫Ω|∇vϵ|2dx≤γ22α∫Ω(uϵ−1)2dx+β22α∫Ω(wϵ−1)2dx,t>0, $
|
(3.5) |
and
$ ∫Ω(vϵ−v∗)2dx≤2γ2α2∫Ω(uϵ−1)2dx+2β2α2∫Ω(wϵ−1)2dx,t>0. $
|
(3.6) |
Substituting inequality (3.5) into inequality (3.4) to get
$ ddtE(t)≤−C8(∫Ω(uϵ−1)2dx+∫Ω(wϵ−1)2dx),t>0, $
|
where $ C_{8} = \min\left\{1-\frac{\chi^{2}\beta^{2}}{8\alpha}, 1-\frac{\chi^{2}\gamma^{2}}{8\alpha}\right\} > 0. $
Let $ f(t): = \int_{\Omega}(u_{\epsilon}-1)^{2}+(w_{\epsilon}-1)^{2}dx $. Then
$ \int_{1}^{\infty}f(t)dt\leq \frac{E(1)}{C_{8}} \lt \infty, \; \; t \gt 1. $ |
It follows from the uniform estimation $ (3.2) $ and the Arzela-Ascoli theorem that $ f(t) $ is uniformly continuous in $ (1, \infty) $. Applying Lemma 3.1, we have
$ ∫Ω(uϵ(⋅,t)−1)2+(wϵ(⋅,t)−1)2dx→0,t→∞. $
|
(3.7) |
Combining inequality (3.6) and the limit (3.7) to obtain
$ \int_{\Omega}(v_{\epsilon}(\cdot, t)-v^{\ast})^{2}dx \rightarrow 0, \; \; t\rightarrow \infty. $ |
Proof of Theorem 1.2 As we all known, each bounded sequence in $ C^{2+\nu, 1+\frac{\nu}{2}}(\bar{\Omega}\times[1, \infty)) $ is precompact in $ C^{2, 1}(\bar{\Omega}\times[1, \infty)) $. Hence there exists some subsequence $ \{u_{\epsilon_{n}}\}_{n = 1}^{\infty} $ satisfying $ \epsilon_{n}\rightarrow0 $ as $ n\rightarrow \infty $ such that
$ \lim\limits_{n\rightarrow \infty}\|u_{\epsilon_{n}}-u_{\ast}\|_{C^{2, 1}(\bar{\Omega}\times[1, \infty))} = 0. $ |
Similarly, we can get
$ \lim\limits_{n\rightarrow \infty}\|v_{\epsilon_{n}}-v_{\ast}\|_{C^{2}(\bar{\Omega})} = 0, $ |
and
$ \lim\limits_{n\rightarrow \infty}\|w_{\epsilon_{n}}-w_{\ast}\|_{C^{0, 1}(\bar{\Omega}\times[1, \infty))} = 0. $ |
Combining above limiting relations yields that $ (u_{\ast}, v_{\ast}, w_{\ast}) $ satisfies model (1.3). The conclusion $ (u_{\ast}, v_{\ast}, w_{\ast}) = (u, v, w) $ is directly attributed to the uniqueness of the classical solution of the model (1.3). Furthermore, according to the conclusion, the strong convergence (3.3) and Diagonal line method, we can deduce
$ ‖u(⋅,t)−1‖L2(Ω)+‖v(⋅,t)−v∗‖L2(Ω)+‖w(⋅,t)−1‖L2(Ω)→0,t→∞. $
|
(3.8) |
By applying Gagliardo-Nirenberg inequality
$ ‖z‖L∞≤C‖z‖2/(n+2)L2(Ω)‖z‖n/(n+2)W1,∞(Ω),z∈W1,∞(Ω), $
|
(3.9) |
comparison principle of ODE and the convergence (3.8), the uniform convergence (1.9) is obtained immediately.
Since $ \lim_{t\rightarrow \infty}\|u(\cdot, t)-1\|_{L^{\infty}(\Omega)} = 0 $, so there exists a $ t_{1} > 0 $ such that
$ u(x,t)≥12forallx∈Ω,t>t1. $
|
(3.10) |
Using the explicit representation formula of $ w $
$ w(x, t) = (w_{0}(x)-1)e^{-\delta\int_{0}^{t}F(u)uds}+1, \; \; x\in\Omega, \; t \gt 0 $ |
and the inequality (3.10), we have
$ ‖w(⋅,t)−1‖L∞(Ω)≤e−δ6(t−t1),t>t1. $
|
(3.11) |
Multiply the first two equations in model (1.3) by $ u-1 $ and $ v-v^{\ast} $, respectively, integrate over $ \Omega $ and apply Cauchy's inequality, Young's inequality and the inequality (3.10), to find
$ ddt∫Ω(u−1)2dx≤χ232∫Ω|∇v|2dx−∫Ω(u−1)2dx,t>t1. $
|
(3.12) |
$ ∫Ω|∇v|2dx+α2∫Ω(v−v∗)2dx≤β2α∫Ω(w−1)2dx+γ2α∫Ω(u−1)2dx,t>0. $
|
(3.13) |
Combining the estimations (3.11)–(3.13) leads us to the estimate
$ ddt∫Ω(u−1)2dx≤(χ2γ232α−1)∫Ω(u−1)2dx+χ2β232αe−δ3(t−t1),t>t1. $
|
Let $ y(t) = \int_{\Omega}(u-1)^{2}dx $. Then
$ y'(t)\leq \left(\frac{\chi^{2}\gamma^{2}}{32\alpha}-1\right)y(t) +\frac{\chi^{2}\beta^{2}}{32\alpha}e^{-{\frac{\delta}{3}(t-t_{1})}}, \; \; t \gt t_{1}. $ |
From comparison principle of ODE, we get
$ y(t)\leq \left(y(t_{1})-\frac{3\chi^{2}\beta^{2}}{32\alpha(3-\delta)-\chi^{2}\gamma^{2}}\right) e^{-\left(1-\frac{\chi^{2}\gamma^{2}}{32\alpha}\right)(t-t_{1})} +\frac{3\chi^{2}\beta^{2}}{32\alpha(3-\delta)-\chi^{2}\gamma^{2}}e^{-\frac{\delta}{3}(t-t_{1})}, \; \; t \gt t_{1}. $ |
This yields
$ ∫Ω(u−1)2dx≤C9e−λ2(t−t1),t>t1, $
|
(3.14) |
where $ \lambda_{2} = \min\{1-\frac{\chi^{2}\gamma^{2}}{32\alpha}, \frac{\delta}{3}\} $ and $ C_{9} = \max\left\{|\Omega|-\frac{3\chi^{2}\beta^{2}}{32\alpha(3-\delta)-\chi^{2}\gamma^{2}}, \frac{3\chi^{2}\beta^{2}}{32\alpha(3-\delta)-\chi^{2}\gamma^{2}}\right\} $.
From the inequalities (3.11), (3.13) and (3.14), we derive
$ ∫Ω(v−β+γα)2dx≤C10e−λ2(t−t1),t>t1, $
|
(3.15) |
where $ C_{10} = \max\left\{\frac{2\gamma^{2}}{\alpha^{2}}C_{9}, \frac{2\beta^{2}}{\alpha^{2}}\right\} $. By employing the uniform estimation (1.7), the inequalities (3.9), (3.14) and (3.15), the exponential decay estimation (1.10) can be obtained.
The proof is complete.
In this paper, we mainly study the uniform boundedness of classical solutions and exponential asymptotic stability of the unique positive equilibrium point to the chemotactic cellular model (1.3) for Baló's concentric sclerosis (BCS). For model (1.1), by numerical simulation, Calveza and Khonsarib in [7] shown that demyelination patterns of concentric rings will occur with increasing of chemotactic sensitivity. By the Theorem 1.1 we know that systems (1.1) and (1.2) are {uniformly} bounded and dissipative. By the Theorem 1.2 we also find that the constant equilibrium point of model (1.1) is exponentially asymptotically stable if
$ \tilde{\chi} \lt \frac{2}{\bar{w}\tilde{\beta}} \sqrt{\frac{2D\mu\tilde{\alpha}\tilde{\epsilon}}{\bar{u}}}, $ |
and the constant equilibrium point of the model (1.2) is exponentially asymptotically stable if
$ \tilde{\chi} \lt 2\sqrt{\frac{2D\mu\tilde{\alpha}\tilde{\epsilon}}{\bar{u}}}\min \left\{\frac{1}{\bar{w}\tilde{\beta}}, \frac{1}{\bar{u}\tilde{\gamma}}\right\}. $ |
According to a pathological viewpoint of BCS, the above stability results mean that if chemoattractive effect is weak, then the destroyed oligodendrocytes form a homogeneous plaque.
The authors would like to thank the editors and the anonymous referees for their constructive comments. This research was supported by the National Natural Science Foundation of China (Nos. 11761063, 11661051).
We have no conflict of interest in this paper.
[1] |
Wang JHC, Thampatty BP (2006) An introductory review in cell mechanobiology. Biomechan Model Mechanobiol 5: 1–6. doi: 10.1007/s10237-005-0012-z
![]() |
[2] | Osmanagic-Myers S, Dechat T, Foisner R (2015) Lamins at the crossroads of mechanosignaling. Genes Dev 29: 225–237. |
[3] |
Bausch AR, Schwarz US (2013) Cellular mechanosensing: Sharing the force. Nat Mat 12: 948–949. doi: 10.1038/nmat3791
![]() |
[4] |
Luo T, Mohan K, Iglesias PA, et al. (2013) Molecular mechanisms of cellular mechanosensing. Nat Mat 12: 1064–1071. doi: 10.1038/nmat3772
![]() |
[5] | Wang N, Tytell JD, Ingber DE (2009) Mechanotransduction at a distance: mechanically coupling the extracellular matrix with the nucleus. Nat Rev Mol Cell Biology 10: 75–82. |
[6] | Goldmann WH (2012a) Mechanotransduction in cells. Cell Biol Int 36: 649–652. |
[7] | Shao X, Li Q, Mogilner A, et al. (2015) Mechanical stimulation induces formin-dependent assembly of a perinuclear actin rim. Proc Nat Acad Sci USA122: E2595–2601. |
[8] |
Jalali S, del Pozo MA, Chen KD, et al. (2001) Integrin-mediated mechanotransduction requires its dynamic interaction with specific extracellular matrix (ECM) ligands. Proc Natl Acad Sci USA 98: 1042–1046. doi: 10.1073/pnas.98.3.1042
![]() |
[9] | Steinwachs J, Metzner C, Skodzek K, et al. (2015) Three-dimensional force microscopy of cells in biopolymer networks. Nat Methods [in press]. |
[10] |
Geiger B, Spatz JP, Bershadsky AD (2009) Environmental sensing through focal adhesions. Nat Rev Molecular Cell Biology 10: 21–33. doi: 10.1038/nrm2593
![]() |
[11] |
Jaalouk DE, Lammerding J (2009) Mechanotransduction gone awry. Nat Rev Molecular Cell Biology 10: 63–73. doi: 10.1038/nrm2597
![]() |
[12] |
Grashoff C, Hofman BD, Brenner MD, et al. (2010) Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics. Nature 466: 263–267. doi: 10.1038/nature09198
![]() |
[13] | Honarmandi P, Lee H, Lang MJ, et al. (2010) A microfluidic system with optical laser tweezers to study mechanotransduction and focal adhesion recruitment. Lab Chip 11: 684–694. |
[14] |
Fabry B, Klemm AH, Kienle S, et al. (2011) Focal adhesion kinase stabilizes the cytoskeleton. Biophys J 101: 2131–2138. doi: 10.1016/j.bpj.2011.09.043
![]() |
[15] |
Goldmann WH (2014) Mechanosensation: a basic cellular process. Progress in Molecular Biology and Translational Science 126: 75–102. doi: 10.1016/B978-0-12-394624-9.00004-X
![]() |
[16] |
Dent JE, Devescovi V, Li H, et al. (2015) Mechanotransduction map: simulation model, molecular pathway, gene set. Bioinformatics 31: 1053–1059. doi: 10.1093/bioinformatics/btu776
![]() |
[17] | Goldmann WH (2016) Role of vinculin in cellular mechanotransduction. Cell Biol Int [in press]. |
[18] |
Janoštiak R, Pataki AC, Brabek J, et al. (2014) Mechanosensors in integrin signaling: the emerging role of p130Cas. Eur J Cell Biol 93: 445–454. doi: 10.1016/j.ejcb.2014.07.002
![]() |
[19] |
Ezzell RM, Goldmann WH, Wang N, et al. (1997) Vinculin promotes cell spreading by mechanically coupling integrins to the cytoskeleton. Exp Cell Res 231: 14–26. doi: 10.1006/excr.1996.3451
![]() |
[20] |
Mierke CT, Kollmannsberger P, Zitterbart DP, et al. (2010) Vinculin facilitates cell invasion into three-dimensional collagen matrices. J Biol Chem 285: 13121–13130. doi: 10.1074/jbc.M109.087171
![]() |
[21] |
Wozniak MA, Chen CS (2009) Mechanotransduction in development: a growing role for contractility. Nat Rev Molecular Cell Biology 10: 34–42. doi: 10.1038/nrm2592
![]() |
[22] |
Bays JL, Peng X, Tolbert CE, et al. (2014) Vinculin phosphorylation differentially regulates mechanotransduction at cell-cell and cell-matrix adhesions. J Cell Biol 205: 251–263. doi: 10.1083/jcb.201309092
![]() |
[23] |
Martinac B (2004) Mechanosensitive ion channels: molecules of mechanotransduction. J Cell Sci 117: 2449–2460. doi: 10.1242/jcs.01232
![]() |
[24] |
Ingber DE (2006) Cellular mechanotransduction: putting all the pieces together again. FASEB J 20: 811–827. doi: 10.1096/fj.05-5424rev
![]() |
[25] | Haswell ES, Phillips R, Rees DC (2011) Mechanosensitive channels: what can they do and how do they do it? Structure 19: 1356–1369. |
[26] |
Delmas P, Hao J, Rodat-Despoix L (2011) Molecular mechanisms of mechanotransduction in mammalian sensory neurons. Nat Rev Neurosci 12: 139–153. doi: 10.1038/nrn2993
![]() |
[27] |
Nomura S, Yamamoto TT (2000) Molecular events caused by mechanical stress in bone. Matrix Biology 19: 91–96. doi: 10.1016/S0945-053X(00)00050-0
![]() |
[28] |
Hoffman BD, Grashoff C, Schwartz MA (2011) Dynamic molecular processes mediate cellular mechanotransduction. Nature 475: 316–23. doi: 10.1038/nature10316
![]() |
[29] |
Luo T, Mohan K, Iglesias PA, et al. (2013) Molecular mechanisms of cellular mechanosensing. Nat Materials 12: 1064–1071. doi: 10.1038/nmat3772
![]() |
[30] |
Leerberg JM, Gomez GA, Verma S, et al. (2014) Tension-sensitive actin assembly supports contractility at the epithelial zonula adherens. Curr Biology 24: 1689–1699. doi: 10.1016/j.cub.2014.06.028
![]() |
[31] |
Milllward-Sadler SJ, Salter DM (2004) Integrin-dependent signal cascades in chondrocyte mechanotransduction. Ann Biomed Eng 32: 435–446. doi: 10.1023/B:ABME.0000017538.72511.48
![]() |
[32] |
Shivashankar GV (2011) Mechanosignaling to the cell nucleus and gene regulation. Ann Rev Biophysics 40: 361–378. doi: 10.1146/annurev-biophys-042910-155319
![]() |
[33] | McCain ML, Parker KK (2011) Mechanotransduction: the role of mechanical stress, myocyte shape, and cytoskeletal architecture on cardiac function. Eur J Physiol 462: 89–104. |
[34] |
Frank D, Frey N (2011) Cardiac Z-disc Signaling Network. J Biol Chem 286: 9897–9904. doi: 10.1074/jbc.R110.174268
![]() |
[35] |
Paluch EK, Nelson CM, Biais N, et al. (2015) Mechanotransduction: use the force(s). BMC Biology 13: 47. doi: 10.1186/s12915-015-0150-4
![]() |
[36] |
Ross RS (2004) Molecular and mechanical synergy: cross-talk between integrins and growth factor receptors. Cardiovascular Res 63: 381–390. doi: 10.1016/j.cardiores.2004.04.027
![]() |
[37] |
Vogel V, Sheetz MP (2009) Cell fate regulation by coupling mechanical cycles to biochemical signaling pathways. Curr Biol Cell Biol 21: 38–46. doi: 10.1016/j.ceb.2009.01.002
![]() |
[38] | Dupont S, Morsut L, Aragona M, et al. (2011) Role of YAP/TAZ in mechanotransduction. Nature 474: 179–185. |
[39] |
Goldmann WH, Auernheimer V, Thievessen I, et al. (2013) Vinculin, cell mechanics and tumour cell invasion. Cell Biol Int 37: 397–405. doi: 10.1002/cbin.10064
![]() |
[40] |
Kaminski A, Fedorchak GR, Lammerding J (2014) The cellular mastermind(?)– Mechanotransduction and the nucleus. Progress in Molecular Biology and Translational Science 126: 157–203. doi: 10.1016/B978-0-12-394624-9.00007-5
![]() |
[41] |
Wang N, Tytell JD, Ingber DE (2009) Mechanotransduction at a distance: mechanically coupling the extracellular matrix with the nucleus. Nat Rev Mol Cell Biology 10: 75–82. doi: 10.1038/nrm2594
![]() |
[42] | Alenghat FJ, Ingber DE (2002) Mechanotransduction: All signals point to cytoskeleton, Matrix, and Integrins. Sci StKE 119: pe6. |
[43] | Auernheimer V, Lautscham LA, Leidenberger M, et al. (2015) Vinculin phosphorylation at residues V100 and Y1065 is required for cellular force transmission. J Cell Sci 128: 3435–3443. |
[44] |
Goldmann WH (2002) Mechanical aspects of cell shape regulation and signaling. Cell Biol Int 26: 313–317. doi: 10.1006/cbir.2002.0857
![]() |
[45] |
Janoštiak R, Brábek J, Auernheimer V, et al. (2014) CAS directly interacts with vinculin to control mechanosensing and focal adhesion dynamics. Cell Mol Life Sci 71: 727–44. doi: 10.1007/s00018-013-1450-x
![]() |
[46] |
Samarel AM (2005) Costameres, focal adhesions, and cardiomyocyte mechanotransduction. Am J Physiol Heart Circ Physiol 289: H2291–H2301. doi: 10.1152/ajpheart.00749.2005
![]() |
[47] |
Butcher DT, Alliston T, Weaver VM (2009) A tense situation: forcing tumour progression. Nature Rev. Cancer 9: 108–122. doi: 10.1038/nrc2544
![]() |
[48] | Goldmann WH (2012b) Mechanotransduction and focal adhesions. Cell Biol Int 36: 649–652. |
[49] |
Vogel V, Sheetz MP (2006) Local force and geometry sensing regulate cell functions. Nat Rev Molecular Cell Biology 7: 265–275. doi: 10.1038/nrm1890
![]() |
[50] |
Wang HB, Dembo M, Hanks SK, et al. (2001) Focal adhesion kinase is involved in mechanosensing during fibroblast migration. Proc Nat Acad Sci USA 98: 11295–11300. doi: 10.1073/pnas.201201198
![]() |
[51] | Bendig G, Grimmler M, Huttner IG, et al. (2006) Integrin-linked kinase, a novel component of the cardiac mechanical stretch sensor, controls contractility in the zebrafish heart. Genes Dev 20: 2361–2372. |
[52] |
Shih YRV, Tseng KF, Lai HY, et al. (2011) Matrix stiffness regulation of integrin-mediated mechanotransduction during osteogenic differentiation of human mesenchymal stem cells. J Bone Miner Res 26: 730–738. doi: 10.1002/jbmr.278
![]() |
[53] |
Mehta PK, Griendling KK (2006) Angiotensin II cell signaling: physiological and pathological effects in the cardiovascular system. Am J Physiol Cell Physiol 292: C82–C97. doi: 10.1152/ajpcell.00287.2006
![]() |
[54] | Schwartz MA, Assoian RK (2001) Integrins and cell proliferation: regulation of cyclin-dependent kinases via cytoplasmic signaling pathways. J Cell Sci 114: 2553–2560. |
[55] | McBeath R, Pirone DM, Nelson CM, et al. (2004) Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Cell 6: 483–495. |
[56] |
Bertrand AT, Ziaei S, Ehret C, et al. (2014) Cellular microenvironments reveal defective mechanosensing responses and elevated YAP signaling in LMNA-mutated muscle precursors. J Cell Sci 127: 2873–2884. doi: 10.1242/jcs.144907
![]() |
[57] |
Yuan JM, Chyan AL, Zhou HX, et al. (2008) The effect of macromolecular crowding on the mechanical stability of protein molecules. Protein Sci 17: 2156–2166. doi: 10.1110/ps.037325.108
![]() |
[58] |
Ladoux B, Nelson WJ, Yan J, et al. (2015) The mechanotransduction machinery at work at adherens junctions. Integr Biol 7: 1109–1119. doi: 10.1039/C5IB00070J
![]() |
[59] |
Agrawal S, Agrawal A, Doughty B, et al. (2003) Cutting edge: different toll-like receptors agonists instruct dendritic cells to induce distinct responses via differential modulation of extracellular signal-regulated kinase-activated protein kinase and cFos. J Immunol 171: 4984–4989. doi: 10.4049/jimmunol.171.10.4984
![]() |
[60] | Chiu JJ, Chien S (2011) Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiol Rev 91: 10.1152. |
[61] |
Maroto R, Raso A, Wood TG, et al. (2005) TRPC1 forms the stretch-activated cation channel in vertebrate cells. Nat Cell Biol 7: 179–185. doi: 10.1038/ncb1218
![]() |
[62] |
Davies PF, Tripathi SC (1993) Mechanical stress mechanisms and the cell: an endothelial paradigm. Cir Res 72: 239–245. doi: 10.1161/01.RES.72.2.239
![]() |
[63] | Burkholder TJ (2008) Mechanotransduction in skeletal muscle. Front Biosci 12: 174–191. |
[64] |
Benavides DT, Egli M (2014) Calcium's Role in Mechanotransduction during muscle development. Cell Physiol Biochem 33: 249–272. doi: 10.1159/000356667
![]() |
[65] |
Schwartz MA, Simone DW (2008) Cell adhesion receptors in mechano-transduction. Curr Opion Cell Biol 20: 551–556. doi: 10.1016/j.ceb.2008.05.005
![]() |
[66] | Ingber DE (2003) Mechanobiology and diseases of mechanotransduction. Ann Med 35: 1–14. |
[67] | Schreiner SM, Koo PK, Zhao Y, et al (2015) The tethering of chromatin to the nuclear envelope supports nuclear mechanics. Nat Comm 6: 7159. |
[68] | Engler AJ, Kumar S (2014) Mechanosensation. Progress in Molecular Biology and Translational Science, Academic Press. 126: 1–384. |
[69] |
Isermann P, Lammerding J (2013) Nuclear mechanics and mechanotransduction in health and disease. Curr Biol 23: R1113–1121. doi: 10.1016/j.cub.2013.11.009
![]() |
1. | Lu Xu, Chunlai Mu, Qiao Xin, Global boundedness and asymptotic behavior of solutions for a quasilinear chemotaxis model of multiple sclerosis with nonlinear signal secretion, 2023, 28, 1531-3492, 1215, 10.3934/dcdsb.2022118 |