Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js
Research article Special Issues

Stability of an adaptive immunity delayed HIV infection model with active and silent cell-to-cell spread

  • This paper investigates an adaptive immunity HIV infection model with three types of distributed time delays. The model describes the interaction between healthy CD4+T cells, silent infected cells, active infected cells, free HIV particles, Cytotoxic T lymphocytes (CTLs) and antibodies. The healthy CD4+T cells can be infected when they contacted by free HIV particles or silent infected cells or active infected cells. The incidence rates of the healthy CD4+T cells with free HIV particles, silent infected cells, and active infected cells are given by general functions. Moreover, the production/proliferation and removal/death rates of the virus and cells are represented by general functions. The model is an improvement of the existing HIV infection models which have neglected the infection due to the incidence between the silent infected cells and healthy CD4+T cells. We show that the model is well posed and it has five equilibria and their existence are governed by five threshold parameters. Under a set of conditions on the general functions and the threshold parameters, we have proven the global asymptotic stability of all equilibria by using Lyapunov method. We have illustrated the theoretical results via numerical simulations. We have studied the effect of cell-to-cell (CTC) transmission and time delays on the dynamical behavior of the system. We have shown that the inclusion of time delay can significantly increase the concentration of the healthy CD4+ T cells and reduce the concentrations of the infected cells and free HIV particles. While the inclusion of CTC transmission decreases the concentration of the healthy CD4+ T cells and increases the concentrations of the infected cells and free HIV particles.

    Citation: A. M. Elaiw, N. H. AlShamrani, A. D. Hobiny. Stability of an adaptive immunity delayed HIV infection model with active and silent cell-to-cell spread[J]. Mathematical Biosciences and Engineering, 2020, 17(6): 6401-6458. doi: 10.3934/mbe.2020337

    Related Papers:

    [1] Yan Wang, Minmin Lu, Daqing Jiang . Viral dynamics of a latent HIV infection model with Beddington-DeAngelis incidence function, B-cell immune response and multiple delays. Mathematical Biosciences and Engineering, 2021, 18(1): 274-299. doi: 10.3934/mbe.2021014
    [2] Yu Yang, Gang Huang, Yueping Dong . Stability and Hopf bifurcation of an HIV infection model with two time delays. Mathematical Biosciences and Engineering, 2023, 20(2): 1938-1959. doi: 10.3934/mbe.2023089
    [3] A. M. Elaiw, N. H. AlShamrani . Stability of HTLV/HIV dual infection model with mitosis and latency. Mathematical Biosciences and Engineering, 2021, 18(2): 1077-1120. doi: 10.3934/mbe.2021059
    [4] Ting Guo, Zhipeng Qiu . The effects of CTL immune response on HIV infection model with potent therapy, latently infected cells and cell-to-cell viral transmission. Mathematical Biosciences and Engineering, 2019, 16(6): 6822-6841. doi: 10.3934/mbe.2019341
    [5] A. M. Elaiw, A. S. Shflot, A. D. Hobiny . Stability analysis of general delayed HTLV-I dynamics model with mitosis and CTL immunity. Mathematical Biosciences and Engineering, 2022, 19(12): 12693-12729. doi: 10.3934/mbe.2022593
    [6] A. M. Elaiw, N. H. AlShamrani . Analysis of an HTLV/HIV dual infection model with diffusion. Mathematical Biosciences and Engineering, 2021, 18(6): 9430-9473. doi: 10.3934/mbe.2021464
    [7] Yan Wang, Tingting Zhao, Jun Liu . Viral dynamics of an HIV stochastic model with cell-to-cell infection, CTL immune response and distributed delays. Mathematical Biosciences and Engineering, 2019, 16(6): 7126-7154. doi: 10.3934/mbe.2019358
    [8] Cameron Browne . Immune response in virus model structured by cell infection-age. Mathematical Biosciences and Engineering, 2016, 13(5): 887-909. doi: 10.3934/mbe.2016022
    [9] Xiaohong Tian, Rui Xu, Jiazhe Lin . Mathematical analysis of an age-structured HIV-1 infection model with CTL immune response. Mathematical Biosciences and Engineering, 2019, 16(6): 7850-7882. doi: 10.3934/mbe.2019395
    [10] Xinran Zhou, Long Zhang, Tao Zheng, Hong-li Li, Zhidong Teng . Global stability for a class of HIV virus-to-cell dynamical model with Beddington-DeAngelis functional response and distributed time delay. Mathematical Biosciences and Engineering, 2020, 17(5): 4527-4543. doi: 10.3934/mbe.2020250
  • This paper investigates an adaptive immunity HIV infection model with three types of distributed time delays. The model describes the interaction between healthy CD4+T cells, silent infected cells, active infected cells, free HIV particles, Cytotoxic T lymphocytes (CTLs) and antibodies. The healthy CD4+T cells can be infected when they contacted by free HIV particles or silent infected cells or active infected cells. The incidence rates of the healthy CD4+T cells with free HIV particles, silent infected cells, and active infected cells are given by general functions. Moreover, the production/proliferation and removal/death rates of the virus and cells are represented by general functions. The model is an improvement of the existing HIV infection models which have neglected the infection due to the incidence between the silent infected cells and healthy CD4+T cells. We show that the model is well posed and it has five equilibria and their existence are governed by five threshold parameters. Under a set of conditions on the general functions and the threshold parameters, we have proven the global asymptotic stability of all equilibria by using Lyapunov method. We have illustrated the theoretical results via numerical simulations. We have studied the effect of cell-to-cell (CTC) transmission and time delays on the dynamical behavior of the system. We have shown that the inclusion of time delay can significantly increase the concentration of the healthy CD4+ T cells and reduce the concentrations of the infected cells and free HIV particles. While the inclusion of CTC transmission decreases the concentration of the healthy CD4+ T cells and increases the concentrations of the infected cells and free HIV particles.


    During the last decades, mathematical modeling and analysis of within-host human immunodeficiency virus (HIV) infection have become important and helpful tools for better understanding of HIV dynamics [1]. HIV is the causative agent of acquired immunodeficiency syndrome (AIDS). The main target cells of HIV is the healthy CD4+T cells which play an important role in the immune system. The basic HIV dynamics model has been formulated by Nowak and Bangham [1], which describes the interaction between CD4+T cells (S), infected cells (I), and free HIV particles (V). The incidence rate of infection has been given by bilinear form ηSV. This form has been generalized by considering saturation incidence [2,3], Beddington-DeAngelis incidence [4,5], general incidence [6,7,8,9]. The basic model has also been extended by including time delay [10,11,12,13].

    An adaptive immunity after viral infection plays a fundamental role in controlling the disease progression for long period up to 10 years. The adaptive immune response has two main arms, cell-mediated immunity which based on the Cytotoxic T lymphocytes (CTLs) that kill the HIV-infected cells, and humoral immunity which based on the B cells that produce antibodies to neutralize the HIV particles. In the literature, many works have been published which are devoted to address the effect of CTL-mediated immune response on the HIV infection (see e.g. [1] and [14,15]). Moreover, antibody immune response has been considered into mathematical models of viral infection in several works (see e.g. [16,17,18]). In 2003, Wodarz [19] has presented a virus dynamics model which incorporates the effect of both antibody and CTL-mediated immune responses. Dubey et al. [20] have extended the model in [19] by adding a logistic growth term which represents the proliferation of healthy CD4+T cells. Moreover, the model in [20] incorporates a combination of two classes of antiviral treatment, protease inhibitor and reverse transcriptase. Su et al. [21] have developed the model presented in [19] by considering Beddington-DeAngelis incidence rate to replace the mass-action incidence rate. Yousfi et al. [22] have suggested a model to describe the dynamics of hepatitis B virus. In [20,21,22], it has been assumed that the infection processes are instantaneous. However, it has been estimated that the time between the HIV enters a target cell until producing new HIV particlesis about 0.9 day [23]. Therefore, more realistic virus dynamics models are obtained when time delay is incorporated. Yan and Wang [24] have extended the model of Wodarz [19] by incorporating a discrete-time delay for production of active infected cells. The model of Yan and Wang [24] has been extended by Wang and Liu [25] and Wang et al. [26] to include; saturated incidence rate and two types of distributed delays, respectively. Elaiw and AlShamrani [27] have studied an adaptive immunity viral infection model with distributed time delays and general incidence rate.

    In [19,20,21,22,23,24,25,26,27], it has been assumed that the infection occurs due to virus-to-cell transmission (VTC). It has been reported in several works that the healthy CD4+T cells can also be infected due to cell-cell contact known as cell-to-cell transmission (CTC) (see e.g. [28,29,30]). Therefore, CTC transmission plays an important role in the HIV infection process even during the antiviral treatment [31]. Guo et al. [32] incorporated the CTC transmission and two discrete-time delays to the same model of Yan and Wang [24]. Lin et al. [33] have replaced the VTC bilinear incidence rate by a saturated incidence one. Adaptive immunity HIV dynamics model with two distributed-time delays and both VTC and CTC transmission has been studied in [34].

    Highly active anti-retroviral therapy is very effective in controlling HIV replication and reducing disease progression, however, it can not completely remove the HIV from the body. The major barrier to HIV clearance is the silent (latent) CD4+T infected cells [35]. Silent CD4+T infected cells are considered as viral reservoirs for long time until they are activated to produce new HIV particles. Mathematical models of HIV with silent infected cells have been considered in several works (see e.g. [36,37,38,39,40]). Recently, Agosto et al. [41] have shown that both silent and active infected CD4+T cells can infect the healthy CD4+T cells through CTC mechanism. Silent HIV-infected cells have been included in the virus dynamics models with both VTC and CTC transmissions in [42,43,44,45], however, the contribution of silent infected cells in the CTC transmission has been neglected. In [46,47] a class of viral infection models have been formulated by assuming that both silent and active infected cells can participate in cell-to-cell infection, however, the immune response has been neglected. In a very recent work, Elaiw and Alshamrani [48] have investigated an HIV dynamics model with silent and active CTC transmissions and CTL immune response. In [48] the antibody immune response has not been included.

    In this present paper, we extend on the research done in the above mentioned works by including three distributed time delays and both VTC and CTC transmissions. The CTC mechanism consists of silent HIV-infected CTC and active HIV-infected CTC transmissions. The incidence rates of the healthy CD4+T cells with free HIV particles, silent HIV-infected cells, and active HIV-infected cells are given by general functions. Moreover, the production/proliferation and removal/death rates of all compartments are represented by general functions.

    The rest of the paper is organized as follows: In Section 2, we formulate an HIV dynamics model. In Section 3, we prove the nonnegativity and boundedness of solutions of the proposed model. Then we study the existence of all possible equilibria of the model in Section 4, which depend on five threshold parameters. In Section 5, we investigate the global stability of the five equilibria by constructing suitable Lyapunov functionals. These results are supported with numerical simulations in Section 6. The paper ends with a conclusion.

    We formulate an adaptive immunity HIV infection model by assuming that the HIV virions can replicate by two mechanisms, VTC and CTC transmissions. The CTC infection has two sources, (i) the contact between healthy CD4+T cells and silent HIV-infected cells, and (ii) the contact between healthy CD4+T cells and active HIV-infected cells. Under these assumptions we propose a model that contains six compartments: healthy CD4+T cells, silent HIV-infected CD4+T cells, active HIV-infected CD4+T cells, free HIV particles, HIV-specific CTLs and HIV-specific antibodies.

    {˙S(t)=¥(S(t))1(S(t),V(t))2(S(t),L(t))3(S(t),I(t)),˙L(t)=κ10Λ1(θ)e1θ[1(S(tθ),V(tθ))+2(S(tθ),L(tθ))+3(S(tθ),I(tθ))]dθ(λ+γ)J1(L(t)),˙I(t)=λκ20Λ2(θ)e2θJ1(L(tθ))dθaJ2(I(t))μJ4(C(t))J2(I(t)),˙V(t)=bκ30Λ3(θ)e3θJ2(I(tθ))dθεJ3(V(t))ϖJ5(A(t))J3(V(t)),˙C(t)=σJ4(C(t))J2(I(t))πJ4(C(t)),˙A(t)=τJ5(A(t))J3(V(t))ζJ5(A(t)), (2.1)

    where S(t), L(t), I(t), V(t), C(t) and A(t) are the concentrations of healthy CD4+T cells, silent HIV-infected cells, active HIV-infected cells, free HIV particles, HIV-specific CTLs and HIV-specific antibodies at time t, respectively. Function ¥(S) refers to the intrinsic growth rate of healthy CD4+T cells accounting for both production and natural mortality. The virus-cell, silent infected cell-cell and active infected cell-cell incidence rates are given by general nonlinear functions 1(S,V), 2(S,L) and 3(S,I), respectively. The terms λJ1(L) and γJ1(L) are the rates of silent HIV-infected cells that become active and the natural death of the silent HIV-infected cells, respectively. The term μJ4(C)J2(I) is the killing rate of active HIV-infected cells due to their specific CTL-mediated immunity. The proliferation rates for effective HIV-specific CTLs is given by σJ4(C)J2(I). The proliferation rate for HIV-specific antibodies is given by τJ5(A)J3(V). The integral κ30Λ3(θ)e3θJ2(I(tθ))dθ describes the mature viral particles produced at time t. The mature HIV particles die at rate εJ3(V) and neutralized from the plasma due to HIV-specific antibodies at rate ϖJ5(A)J3(V). In this proposed model, we assume the following:

    ● The virus or silent HIV-infected cells or active HIV-infected cells contacts a healthy CD4+T cell at time tθ, and the cell becomes silent HIV-infected cells at time t, where θ is a random variable taken from a probability distribution Λi(θ) over the time interval [0,κ1], where κ1 is the limit superior of this delay period. The term e1θ represents the probability of surviving from time tθ to time θ [37].

    ● The silent HIV-infected cell takes θ time units to transmit to active HIV-infected cell, where θ is a random variable taken from a probability distribution Λ2(θ) over the time interval [0,κ2], where κ2 is the limit superior of this delay period. The term e2θ represents the probability of surviving from time tθ to time θ.

    ● The time necessary for the newly produced virions to become mature and infectious is a random variable with a probability distribution Λ3(θ) over the time interval [0,κ3], where κ3 is the limit superior of this delay period. The term e3θ denotes the probability of surviving the immature virions during the delay period [37]. Here i, i=1,2,3 are positive constants.

    The function Λi(θ), i=1,2,3 satisfies Λi(θ)>0 and

    κi0Λi(θ)dθ=1 and κi0Λi(θ)euθdθ<,

    where u>0. Let us denote

    ˉHi(θ)=Λi(θ)eiθ and Hi=κi0ˉHi(θ)dθ, i=1,2,3.

    Thus 0<Hi1, i=1,2,3. The initial conditions of system (2.1) is given by:

    S()=ϵ1(), L()=ϵ2(), I()=ϵ3(), V()=ϵ4(), C()=ϵ5(), A()=ϵ6(),ϵj()0, [κ,0], j=1,2,...,6,     κ=max{κ1,κ2,κ3}, (2.2)

    where ϵj()C([κ,0],R0), j=1,2,...,6 and C=C([κ,0],R0) is the Banach space of continuous functions mapping the interval [κ,0]  into R0 with norm for \epsilon_{j}\in \mathcal{C} . Therefore, system (2.1) with initial conditions (2.2) has a unique solution by using the standard theory of functional differential equations (see [49,50]). All parameters and their definitions are summarized in Table 1.

    Table 1.  Parameters of model (2.1) and their interpretations.
    Symbol Biological meaning
    \gamma Death rate constant of silent HIV-infected cells
    a Death rate constant of active HIV-infected cells
    \mu Killing rate constant of active HIV-infected cells due to their specific CTL-mediated immunity
    \lambda Transmission rate constant of silent HIV-infected cells that become active HIV-infected cells
    b Generation rate constant of new HIV particles
    \varepsilon Death rate constant of free HIV particles
    \sigma Proliferation rate constant of HIV-specific CTLs
    \pi Decay rate constant of HIV-specific CTLs
    \varpi Neutralization rate constant of HIV particles due to HIV-specific antibodies
    \tau Proliferation rate constant of HIV-specific antibodies
    \zeta Decay rate constant of HIV-specific antibodies
    \theta Delay parameter
    \Lambda_{i}(\theta) Probability distribution function

     | Show Table
    DownLoad: CSV

    Functions \yen , \aleph_{i} , i = 1, 2, 3 and \mathcal{J}_{k} , k = 1, 2, ..., 5 , are continuously differentiable and satisfy the following conditions in [6,51,52]:

    Condition (H1). (i) there exists S_{0} such that \yen (S_{0}) = 0 and \yen (S) > 0 for S\in \lbrack0, S_{0}) ,

    (ii) \yen ^{\prime}(S) < 0 for all S > 0 ,

    (iii) there are \rho > 0 and \alpha_{0} > 0 such that \yen (S)\leq \rho -\alpha_{0}S for S\geq0 .

    Condition (H2). (i) \aleph_{i}(S, U) > 0 and \aleph _{i}(0, U) = \aleph_{i}(S, 0) = 0 for all S > 0 , U > 0, i = 1, 2, 3,

    (ii) \dfrac{\partial \aleph_{i}(S, U)}{\partial S} > 0, \dfrac{\partial \aleph_{i}(S, U)}{\partial U} > 0 and \left. \dfrac{\partial \aleph_{i} (S, U)}{\partial U}\right \vert _{U = 0} > 0 for all S > 0, U > 0 , i = 1, 2, 3,

    (iii) \dfrac{d}{dS}\left(\left. \dfrac{\partial \aleph_{i}(S, U)}{\partial U}\right \vert _{U = 0}\right) > 0 for all \ S > 0 , i = 1, 2, 3 .

    Condition (H3).(i) \mathcal{J}_{k}(x) > 0 for all x > 0 , \mathcal{J}_{k}(0) = 0 , k = 1, 2, ..., 5,

    (ii) \mathcal{J}_{k}^{\prime}(x) > 0 for all x > 0, k = 1, 2, ..., 5 . Further, \mathcal{J}_{k}^{\prime}(0) > 0 , k = 1, 2, 3 ,

    (iii) there are \alpha_{k} > 0 such that \mathcal{J}_{k} (x)\geq \alpha_{k}x for all x\geq0 , k = 1, 2, ..., 5.

    Condition (H4). \dfrac{\partial}{\partial V}\left(\dfrac{\aleph_{1}(S, V)}{\mathcal{J}_{3}(V)}\right) \leq0 , \dfrac{\partial }{\partial L}\left(\dfrac{\aleph_{2}(S, L)}{\mathcal{J}_{1}(L)}\right) \leq0

    and \dfrac{\partial}{\partial I}\left(\dfrac{\aleph_{3}(S, I)} {\mathcal{J}_{2}(I)}\right) \leq0 for all \ S, L, I, V > 0 .

    Proposition 1. Suppose that conditions H1-H3 are satisfied. Then all solutions of system (2.1) with initial conditions (2.2) are nonnegative and ultimately bounded.

    Proof. First, we show the nonnegativity of solutions. The proof is similar to the one given in [53]. System (2.1) can be written as: \dot{X}(t) = \mathcal{W}(X(t)) , where X(t) = \left(S(t), L(t), I(t), V(t), C(t), A(t)\right) ^{T} , \mathcal{W} = (\mathcal{W} _{1}, \mathcal{W}_{2}, \mathcal{W}_{3}, \mathcal{W}_{4}, \mathcal{W} _{5}, \mathcal{W}_{6})^{T} , and

    \left( \begin{array} [c]{c} \mathcal{W}_{1}(X(t))\\ \mathcal{W}_{2}(X(t))\\ \mathcal{W}_{3}(X(t))\\ \mathcal{W}_{4}(X(t))\\ \mathcal{W}_{5}(X(t))\\ \mathcal{W}_{6}(X(t)) \end{array} \right) = \left( \begin{array} [c]{l} \yen (S(t))-\aleph_{1}(S(t), V(t))-\aleph_{2}(S(t), L(t))-\aleph_{3} (S(t), I(t))\\ \int \limits_{0}^{\kappa_{1}}\mathcal{\bar{H}}_{1}(\theta)\left[ \aleph _{1}(S(t-\theta), V(t-\theta))+\aleph_{2}(S(t-\theta), L(t-\theta))\right. \\ {\left. +\aleph_{3}(S(t-\theta), I(t-\theta))\right] d\theta-\left( \lambda+\gamma \right) \mathcal{J}_{1}(L(t))}\\ \lambda \int \limits_{0}^{\kappa_{2}}\mathcal{\bar{H}}_{2}(\theta)\mathcal{J} _{1}(L(t-\theta))d\theta-a\mathcal{J}_{2}(I(t))-\mu \mathcal{J}_{4} (C(t))\mathcal{J}_{2}(I(t))\\ b\int \limits_{0}^{\kappa_{3}}\mathcal{\bar{H}}_{3}(\theta)\mathcal{J} _{2}(I(t-\theta))d\theta-\varepsilon \mathcal{J}_{3}(V(t))-\varpi \mathcal{J}_{5}(A(t))\mathcal{J}_{3}(V(t))\\ \sigma \mathcal{J}_{4}(C(t))\mathcal{J}_{2}(I(t))-\pi \mathcal{J}_{4}(C(t))\\ \tau \mathcal{J}_{5}(A(t))\mathcal{J}_{3}(V(t))-\zeta \mathcal{J}_{5}(A(t)) \end{array} \right) .

    It is easy to see that the function \mathcal{W} satisfies the following condition

    \mathcal{W}_{i}(X(t))\big|_{X_{i}(t) = 0, X(t)\in \mathcal{C}_{\geq0}^{6}} \geq0, \ i = 1, 2, ..., 6.

    Due to Lemma 2 in [54], any solution of system (2.1) with initial conditions (2.2) satisfies X(t)\in \mathbb{R}_{\geq0}^{6} for all t\geq0. It means that model (2.1) is biologically acceptable in the sense that no population goes negative. In addition, the orthant \mathbb{R}_{\geq0}^{6} is positively invariant for system (2.1). Next, we establish the boundedness of the model's solutions. The nonnegativity of the model's solution together with condition H1 implies that \lim \sup_{t\rightarrow \infty}S(t)\leq \dfrac{\rho}{\alpha_{0}} . To show the ultimate boundedness of L(t) we let \Psi_{1}(t) = \int \limits_{0}^{\kappa _{1}}\mathcal{\bar{H}}_{1}(\theta)S(t-\theta)d\theta+L(t), then using conditions H1 and H3 we get

    \begin{align*} \dot{\Psi}_{1}(t) & = \int \limits_{0}^{\kappa_{1}}\mathcal{\bar{H}} _{1}(\theta)\yen (S(t-\theta))d\theta-\left( \lambda+\gamma \right) \mathcal{J}_{1}(L(t))\leq \rho \mathcal{H}_{1}-\alpha_{0}\int \limits_{0} ^{\kappa_{1}}\mathcal{\bar{H}}_{1}(\theta)S(t-\theta)d\theta-\alpha_{1}\left( \lambda+\gamma \right) L(t)\\ & \leq \rho-\phi_{1}\left( \int \limits_{0}^{\kappa_{1}}\mathcal{\bar{H}} _{1}(\theta)S(t-\theta)d\theta+L(t)\right) = \rho-\phi_{1}\Psi_{1}(t), \end{align*}

    where \phi_{1} = \min \{ \alpha_{0}, \alpha_{1}\left(\lambda+\gamma \right) \} . It follows that, \lim \sup_{t\rightarrow \infty}\Psi_{1}(t)\leq \Omega_{1} , where \Omega_{1} = \dfrac{\rho}{\phi_{1}} . Since \int \limits_{0} ^{\kappa_{1}}\mathcal{\bar{H}}_{1}(\theta)S(t-\theta)d\theta and L(t) are nonnegative, then \lim \sup_{t\rightarrow \infty}L(t)\leq \Omega_{1} . Moreover, we let \Psi_{2}(t) = I(t)+\dfrac{\mu}{\sigma}C(t) , then using condition H3 we obtain

    \begin{align*} \dot{\Psi}_{2}(t) & = \lambda \int \limits_{0}^{\kappa_{2}}\mathcal{\bar{H} }_{2}(\theta)\mathcal{J}_{1}(L(t-\theta))d\theta-a\mathcal{J}_{2} (I(t))-\frac{\mu \pi}{\sigma}\mathcal{J}_{4}(C(t))\leq \lambda \mathcal{H} _{2}\mathcal{J}_{1}(\Omega_{1})-a\alpha_{2}I(t)-\frac{\mu \pi \alpha_{4}} {\sigma}C(t)\\ & \leq \lambda \mathcal{J}_{1}(\Omega_{1})-a\alpha_{2}I(t)-\frac{\mu \pi \alpha_{4}}{\sigma}C(t)\leq \lambda \mathcal{J}_{1}(\Omega_{1})-\phi_{2}\left( I(t)+\frac{\mu}{\sigma}C(t)\right) = \lambda \mathcal{J}_{1}(\Omega_{1} )-\phi_{2}\Psi_{2}(t), \end{align*}

    where \phi_{2} = \min \{a\alpha_{2}, \pi \alpha_{4}\} . It follows that, \lim \sup_{t\rightarrow \infty}\Psi_{2}(t)\leq \Omega_{2} , where \Omega_{2} = \dfrac{\lambda \mathcal{J}_{1}(\Omega_{1})}{\phi_{2}} . Since I(t)\geq0 and C(t)\geq0 , then \lim \sup_{t\rightarrow \infty}I(t)\leq \Omega_{2} and \lim \sup_{t\rightarrow \infty}C(t)\leq \Omega_{3} , where \Omega_{3} = \dfrac{\sigma}{\mu}\Omega_{2} . Finally, let \Psi_{3}(t) = V(t)+\dfrac{\varpi }{\tau}A(t) , then applying condition H3 we get

    \begin{align*} \dot{\Psi}_{3}(t) & = b\int \limits_{0}^{\kappa_{3}}\mathcal{\bar{H}} _{3}(\theta)\mathcal{J}_{2}(I(t-\theta))d\theta-\varepsilon \mathcal{J} _{3}(V(t))-\frac{\varpi \zeta}{\tau}\mathcal{J}_{5}(A(t))\leq b\mathcal{H} _{3}\mathcal{J}_{2}(\Omega_{2})-\varepsilon \alpha_{3}V(t)-\frac{\varpi \zeta \alpha_{5}}{\tau}A(t)\\ & \leq b\mathcal{J}_{2}(\Omega_{2})-\varepsilon \alpha_{3}V(t)-\frac {\varpi \zeta \alpha_{5}}{\tau}A(t)\leq b\mathcal{J}_{2}(\Omega_{2})-\phi _{3}\left( V(t)+\frac{\varpi}{\tau}A(t)\right) = b\mathcal{J}_{2}(\Omega _{2})-\phi_{3}\Psi_{3}(t), \end{align*}

    where \phi_{3} = \min \{ \varepsilon \alpha_{3}, \zeta \alpha_{5}\} . It follows that, \lim \sup_{t\rightarrow \infty}\Psi_{3}(t)\leq \Omega_{4} , where \Omega_{4} = \dfrac{b\mathcal{J}_{2}(\Omega_{2})}{\phi_{3}} . Since V(t)\geq0 and A(t)\geq0 , then \lim \sup_{t\rightarrow \infty}V(t)\leq \Omega_{4} and \lim \sup_{t\rightarrow \infty}A(t)\leq \Omega_{5} , where \Omega_{5} = \dfrac{\tau}{\varpi}\Omega_{4} .

    According to Proposition 1 we can show that the region

    \Theta = \left. \left \{ (S, L, I, V, C, A)\in \mathcal{C}_{\geq0}^{6}:\left \Vert S\right \Vert \leq \Omega_{1}, \left \Vert L\right \Vert \leq \Omega_{1}, \left \Vert I\right \Vert \leq \Omega_{2}, \left \Vert C\right \Vert \leq \Omega_{3}, \left \Vert V\right \Vert \leq \Omega_{4}, \left \Vert A\right \Vert \leq \Omega_{5}\right \} \right.

    is positively invariant with respect to system (2.1).

    In this section, we study the equilibria of the model and derive the conditions for their existence.Let Ð _{1} = (S, L, I, V, C, A) be any equilibrium satisfying the following system of algebraic equations:

    \begin{align} 0 & = \yen (S)-\aleph_{1}(S, V)-\aleph_{2}(S, L)-\aleph_{3}(S, I), \end{align} (4.1)
    \begin{align} 0 & = \mathcal{H}_{1}\left[ \aleph_{1}(S, V)+\aleph_{2}(S, L)+\aleph _{3}(S, I)\right] -\left( \lambda+\gamma \right) \mathcal{J}_{1} (L), \end{align} (4.2)
    \begin{align} 0 & = \lambda \mathcal{H}_{2}\mathcal{J}_{1}(L)-a\mathcal{J}_{2}(I)-\mu \mathcal{J}_{4}(C)\mathcal{J}_{2}(I), \end{align} (4.3)
    \begin{align} 0 & = b\mathcal{H}_{3}\mathcal{J}_{2}(I)-\varepsilon \mathcal{J}_{3} (V)-\varpi \mathcal{J}_{5}(A)\mathcal{J}_{3}(V), \end{align} (4.4)
    \begin{align} 0 & = \left( \sigma \mathcal{J}_{2}(I)-\pi \right) \mathcal{J}_{4} (C), \end{align} (4.5)
    \begin{align} 0 & = \left( \tau \mathcal{J}_{3}(V)-\zeta \right) \mathcal{J}_{5} (A). \end{align} (4.6)

    If V = 0 , then model (2.1) always admits an infection-free equilibrium, Ð _{0} = (S_{0}, 0, 0, 0, 0, 0) , where \yen (S_{0}) = 0 . This case describes the situation of healthy state where the HIV infection is absent. If V\neq0 , then from Eqs. (4.5) and (4.6) we have four possibilities:

    (i) \mathcal{J}_{4}(C) = \mathcal{J}_{5}(A) = 0; which leads to C_{1} = A_{1} = 0 . From Eqs. (4.1)-(4.4) we get

    \begin{equation} \yen (S) = \aleph_{1}(S, V)+\aleph_{2}(S, L)+\aleph_{3}(S, I) = \frac{\lambda+\gamma }{\mathcal{H}_{1}}\mathcal{J}_{1}(L) = \frac{a\left( \lambda+\gamma \right) }{\lambda \mathcal{H}_{1}\mathcal{H}_{2}}\mathcal{J}_{2}(I) = \frac {a\varepsilon \left( \lambda+\gamma \right) }{b\lambda \mathcal{H} _{1}\mathcal{H}_{2}\mathcal{H}_{3}}\mathcal{J}_{3}(V). \end{equation} (4.7)

    Condition H3 implies that \mathcal{J}_{k}^{-1} exists, continuous and strictly increasing. From Eq. (4.7), we obtain

    \begin{equation} L = f_{1}(S), \ \ \ \ \ \ I = f_{2}(S), \ \ \ \ \ \ V = f_{3}(S), \end{equation} (4.8)

    where

    f_{1}(S) = \mathcal{J}_{1}^{-1}\left( \frac{\mathcal{H}_{1}\yen (S)} {\lambda+\gamma}\right) , \ \ f_{2}(S) = \mathcal{J}_{2}^{-1}\left( \frac{\lambda \mathcal{H}_{1}\mathcal{H}_{2}\yen (S)}{a\left( \lambda +\gamma \right) }\right) , \ \ f_{3}(S) = \mathcal{J}_{3}^{-1}\left( \frac{b\lambda \mathcal{H}_{1}\mathcal{H}_{2}\mathcal{H}_{3}\yen (S)} {a\varepsilon \left( \lambda+\gamma \right) }\right) .

    Obviously from condition H1, f_{i}(S) > 0 for all S\in \lbrack 0, S_{0}) and f_{i}(S_{0}) = 0, i = 1, 2, 3 . Let us define

    \mathcal{F} _{1}\left( S\right) = \aleph_{1}(S, f_{3}(S))+\aleph_{2}(S, f_{1} (S))+\aleph_{3}(S, f_{2}(S))-\frac{a\varepsilon \left( \lambda+\gamma \right) }{b\lambda \mathcal{H}_{1}\mathcal{H}_{2}\mathcal{H}_{3}}\mathcal{J}_{3} (f_{3}(S)) = 0.

    Then from conditions H1-H3, we have

    \mathcal{F} _{1}\left( 0\right) = -\frac{a\varepsilon \left( \lambda+\gamma \right) }{b\lambda \mathcal{H}_{1}\mathcal{H}_{2}\mathcal{H}_{3}}\mathcal{J}_{3} (f_{3}(0)) \lt 0, \ \ \ \ \ \ \ \mathcal{F} _{1}\left( S_{0}\right) = 0.

    Moreover,

    \begin{align*} \mathcal{F} _{1}^{\prime}\left( S\right) & = \frac{\partial \aleph_{1}}{\partial S}+f_{3}^{\prime}(S)\frac{\partial \aleph_{1}}{\partial V}+\frac{\partial \aleph_{2}}{\partial S}+f_{1}^{\prime}(S)\frac{\partial \aleph_{2}}{\partial L}+\frac{\partial \aleph_{3}}{\partial S}+f_{2}^{\prime}(S)\frac{\partial \aleph_{3}}{\partial I}\\ & -\frac{a\varepsilon \left( \lambda+\gamma \right) }{b\lambda \mathcal{H} _{1}\mathcal{H}_{2}\mathcal{H}_{3}}\mathcal{J}_{3}^{\prime}(f_{3} (S))f_{3}^{\prime}(S), \\ \mathcal{F} _{1}^{\prime}\left( S_{0}\right) & = \frac{\partial \aleph_{1}(S_{0} , 0)}{\partial S}+f_{3}^{\prime}(S_{0})\frac{\partial \aleph_{1}(S_{0} , 0)}{\partial V}+\frac{\partial \aleph_{2}(S_{0}, 0)}{\partial S}+f_{1}^{\prime }(S_{0})\frac{\partial \aleph_{2}(S_{0}, 0)}{\partial L}\\ & +\frac{\partial \aleph_{3}(S_{0}, 0)}{\partial S}+f_{2}^{\prime}(S_{0} )\frac{\partial \aleph_{3}(S_{0}, 0)}{\partial I}-\frac{a\varepsilon \left( \lambda+\gamma \right) }{b\lambda \mathcal{H}_{1}\mathcal{H}_{2}\mathcal{H} _{3}}\mathcal{J}_{3}^{\prime}(0)f_{3}^{\prime}(S_{0}). \end{align*}

    Condition H2 implies that \frac{\partial \aleph_{i}(S_{0}, 0)}{\partial S} = 0, i = 1, 2, 3 . Also, from condition H3, we have \mathcal{J}_{3}^{\prime}(0) > 0, then

    \begin{align*} \mathcal{F} _{1}^{\prime}\left( S_{0}\right) & = \frac{a\varepsilon \left( \lambda+\gamma \right) }{b\lambda \mathcal{H}_{1}\mathcal{H}_{2}\mathcal{H} _{3}}\mathcal{J}_{3}^{\prime}(0)f_{3}^{\prime}(S_{0})\left[ \frac {b\lambda \mathcal{H}_{1}\mathcal{H}_{2}\mathcal{H}_{3}}{a\varepsilon \left( \lambda+\gamma \right) \mathcal{J}_{3}^{\prime}(0)}\frac{\partial \aleph _{1}(S_{0}, 0)}{\partial V}\right. \\ & \left. +\frac{b\lambda \mathcal{H}_{1}\mathcal{H}_{2}\mathcal{H}_{3} f_{1}^{\prime}(S_{0})}{a\varepsilon \left( \lambda+\gamma \right) \mathcal{J}_{3}^{\prime}(0)f_{3}^{\prime}(S_{0})}\frac{\partial \aleph _{2}(S_{0}, 0)}{\partial L}+\frac{b\lambda \mathcal{H}_{1}\mathcal{H} _{2}\mathcal{H}_{3}f_{2}^{\prime}(S_{0})}{a\varepsilon \left( \lambda +\gamma \right) \mathcal{J}_{3}^{\prime}(0)f_{3}^{\prime}(S_{0})} \frac{\partial \aleph_{3}(S_{0}, 0)}{\partial I}-1\right] . \end{align*}

    From Eqs. (4.7) and (4.8), we obtain

    \begin{align*} \mathcal{F} _{1}^{\prime}\left( S_{0}\right) & = \yen ^{\prime}(S_{0})\left[ \frac{b\lambda \mathcal{H}_{1}\mathcal{H}_{2}\mathcal{H}_{3}}{a\varepsilon \left( \lambda+\gamma \right) \mathcal{J}_{3}^{\prime}(0)}\frac {\partial \aleph_{1}(S_{0}, 0)}{\partial V}\right. \\ & \left. +\frac{\mathcal{H}_{1}}{\left( \lambda+\gamma \right) \mathcal{J}_{1}^{\prime}(0)}\frac{\partial \aleph_{2}(S_{0}, 0)}{\partial L}+\frac{\lambda \mathcal{H}_{1}\mathcal{H}_{2}}{a\left( \lambda +\gamma \right) \mathcal{J}_{2}^{\prime}(0)}\frac{\partial \aleph_{3}(S_{0} , 0)}{\partial I}-1\right] . \end{align*}

    From condition H1, we have \yen ^{\prime}(S_{0}) < 0 . Therefore, if

    \frac{b\lambda \mathcal{H}_{1}\mathcal{H}_{2}\mathcal{H}_{3}}{a\varepsilon \left( \lambda+\gamma \right) \mathcal{J}_{3}^{\prime}(0)}\frac {\partial \aleph_{1}(S_{0}, 0)}{\partial V}+\frac{\mathcal{H}_{1}}{\left( \lambda+\gamma \right) \mathcal{J}_{1}^{\prime}(0)}\frac{\partial \aleph _{2}(S_{0}, 0)}{\partial L}+\frac{\lambda \mathcal{H}_{1}\mathcal{H}_{2} }{a\left( \lambda+\gamma \right) \mathcal{J}_{2}^{\prime}(0)}\frac {\partial \aleph_{3}(S_{0}, 0)}{\partial I} \gt 1,

    then \mathcal{F} _{1}^{\prime}\left(S_{0}\right) < 0 and there exists S_{1}\in(0, S_{0}) such that \mathcal{F} _{1}\left(S_{1}\right) = 0 . From Eq. (4.8) and condition H3, we have

    L_{1} = \mathcal{J}_{1}^{-1}\left( \frac{\mathcal{H}_{1}\yen (S_{1})} {\lambda+\gamma}\right) \gt 0, \ \ \ \ \ I_{1} = \mathcal{J}_{2}^{-1}\left( \frac{\lambda \mathcal{H}_{1}\mathcal{H}_{2}\yen (S_{1})}{a\left( \lambda+\gamma \right) }\right) \gt 0, \ \ \ \ \ V_{1} = \mathcal{J}_{3} ^{-1}\left( \frac{b\lambda \mathcal{H}_{1}\mathcal{H}_{2}\mathcal{H} _{3}\yen (S_{1})}{a\varepsilon \left( \lambda+\gamma \right) }\right) \gt 0.

    It follows that Ð _{1} = (S_{1}, L_{1}, I_{1}, V_{1}, 0, 0) exists when

    \frac{b\lambda \mathcal{H}_{1}\mathcal{H}_{2}\mathcal{H}_{3}}{a\varepsilon \left( \lambda+\gamma \right) \mathcal{J}_{3}^{\prime}(0)}\frac {\partial \aleph_{1}(S_{0}, 0)}{\partial V}+\frac{\mathcal{H}_{1}}{\left( \lambda+\gamma \right) \mathcal{J}_{1}^{\prime}(0)}\frac{\partial \aleph _{2}(S_{0}, 0)}{\partial L}+\frac{\lambda \mathcal{H}_{1}\mathcal{H}_{2} }{a\left( \lambda+\gamma \right) \mathcal{J}_{2}^{\prime}(0)}\frac {\partial \aleph_{3}(S_{0}, 0)}{\partial I} \gt 1.

    We call Ð _{1} as a chronic HIV infection equilibrium with inactive immune responses. In order to state the threshold dynamics of infection-free equilibrium, it is necessary to define the basic HIV reproduction number \Re_{0} of the model. The basic HIV reproduction number of model (2.1) can be calculated by different methods such as (a) the next-generation matrix method of van den Driessche and Watmough [55], (b) local stability of the infection-free equilibrium, and (c) the existence of the chronic HIV infection equilibrium with inactive immune responses. In the present paper, we derive \Re_{0} by method (c) as follows:

    \Re_{0} = \Re_{01}+\Re_{02}+\Re_{03},

    where

    \begin{align*} \Re_{01} & = \dfrac{b\lambda \mathcal{H}_{1}\mathcal{H}_{2}\mathcal{H}_{3} }{a\varepsilon \left( \lambda+\gamma \right) \mathcal{J}_{3}^{\prime}(0)} \frac{\partial \aleph_{1}(S_{0}, 0)}{\partial V}, \\ \Re_{02} & = \dfrac{\mathcal{H}_{1}}{\left( \lambda+\gamma \right) \mathcal{J}_{1}^{\prime}(0)}\frac{\partial \aleph_{2}(S_{0}, 0)}{\partial L}, \\ \Re_{03} & = \dfrac{\lambda \mathcal{H}_{1}\mathcal{H}_{2}}{a\left( \lambda+\gamma \right) \mathcal{J}_{2}^{\prime}(0)}\frac{\partial \aleph _{3}(S_{0}, 0)}{\partial I}. \end{align*}

    The parameter \Re_{0} determines whether or not the infection will be chronic. In fact, \Re_{01} measures the average number of secondary HIV-infected cells caused by free HIV particles due to VTC transmission, while \Re_{02} and \Re_{03} measure the average numbers of secondary HIV-infected cells caused by silent and active HIV-infected cells, respectively, due to CTC transmission.

    (ii) \mathcal{J}_{4}(C)\neq0 , \mathcal{J}_{5}(A) = 0; which leads to \mathcal{J}_{2}(I_{2}) = \dfrac{\pi}{\sigma}, A_{2} = 0\ and this gives I_{2} = \mathcal{J}_{2}^{-1}\left(\dfrac{\pi}{\sigma}\right) . From Eqs. (2.1)-(4.3) we get

    \begin{equation} \yen (S) = \aleph_{1}(S, V)+\aleph_{2}(S, L)+\aleph_{3}(S, I) = \frac{\lambda+\gamma }{\mathcal{H}_{1}}\mathcal{J}_{1}(L) = \frac{\lambda+\gamma}{\lambda \mathcal{H}_{1}\mathcal{H}_{2}}\left( a+\mu \mathcal{J}_{4}(C)\right) \mathcal{J}_{2}(I). \end{equation} (4.9)

    According to condition H3 and from Eq. (4.4) we have

    \begin{equation} \varepsilon \mathcal{J}_{3}\left( V_{2}\right) = b\mathcal{H}_{3} \mathcal{J}_{2}(I_{2}). \end{equation} (4.10)

    Then, we obtain

    V_{2} = \mathcal{J}_{3}^{-1}\left( \frac{b\mathcal{H}_{3}\mathcal{J}_{2} (I_{2})}{\varepsilon}\right) = \mathcal{J}_{3}^{-1}\left( \dfrac {b\pi \mathcal{H}_{3}}{\varepsilon \sigma}\right) \gt 0.

    From Eq. (4.9), we get

    \begin{equation} L = \mathcal{J}_{1}^{-1}\left( \frac{\mathcal{H}_{1}\yen (S)}{\lambda+\gamma }\right) = f_{4}(S). \end{equation} (4.11)

    Obviously from condition H1 we have f_{4}(S) > 0 for all S\in \lbrack0, S_{0}) and f_{4}(S_{0}) = 0 . Let V = V_{2} , I = I_{2} and using Eq. (4.11) in Eq. (4.1), we define

    \mathcal{F} _{2}\left( S\right) = \yen (S)-\aleph_{1}(S, V_{2})-\aleph_{2}(S, f_{4} (S))-\aleph_{3}(S, I_{2}) = 0.

    Conditions H1 and H2 imply that \mathcal{F} _{2}(0) = \yen (0) > 0 and \mathcal{F} _{2}\left(S_{0}\right) = -\left[\aleph_{1}(S_{0}, V_{2})+\aleph_{3} (S_{0}, I_{2})\right] < 0 . Thus, from the intermediate value property there exists S_{2}\in(0, S_{0}) such that \mathcal{F} _{2}(S_{2}) = 0 .From Eq. (4.11) and condition H3, we obtain

    L_{2} = \mathcal{J}_{1}^{-1}\left( \frac{\mathcal{H}_{1}\yen (S_{2})} {\lambda+\gamma}\right) \gt 0.

    Further, from Eq. (4.9), we have

    C_{2} = \mathcal{J}_{4}^{-1}\left( \frac{a}{\mu}\left[ \frac{\lambda \mathcal{H}_{1}\mathcal{H}_{2}\left \{ \aleph_{1}(S_{2}, V_{2})+\aleph _{2}(S_{2}, L_{2})+\aleph_{3}(S_{2}, I_{2})\right \} }{a\left( \lambda +\gamma \right) \mathcal{J}_{2}(I_{2})}-1\right] \right) .

    Clearly, C_{2} > 0 when \dfrac{\lambda \mathcal{H}_{1}\mathcal{H}_{2}\left[\aleph_{1}(S_{2}, V_{2})+\aleph_{2}(S_{2}, L_{2})+\aleph_{3}(S_{2}, I_{2})\right] }{a\left(\lambda+\gamma \right) \mathcal{J}_{2}(I_{2})} > 1. Now we define the HIV-specific CTL-mediated immunity reproduction number as follows:

    \Re_{1} = \dfrac{\lambda \mathcal{H}_{1}\mathcal{H}_{2}\left[ \aleph_{1} (S_{2}, V_{2})+\aleph_{2}(S_{2}, L_{2})+\aleph_{3}(S_{2}, I_{2})\right] }{a\left( \lambda+\gamma \right) \mathcal{J}_{2}(I_{2})}.

    From Eq. (4.10), we get

    \Re_{1} = \dfrac{b\lambda \mathcal{H}_{1}\mathcal{H}_{2}\mathcal{H}_{3}\aleph _{1}(S_{2}, V_{2})}{a\varepsilon \left( \lambda+\gamma \right) \mathcal{J} _{3}(V_{2})}+\dfrac{\lambda \mathcal{H}_{1}\mathcal{H}_{2}\aleph_{2} (S_{2}, L_{2})}{a\left( \lambda+\gamma \right) \mathcal{J}_{2}(I_{2})} +\dfrac{\lambda \mathcal{H}_{1}\mathcal{H}_{2}\aleph_{3}(S_{2}, I_{2})}{a\left( \lambda+\gamma \right) \mathcal{J}_{2}(I_{2})}.

    Thus, C_{2} = \mathcal{J}_{4}^{-1}\left(\dfrac{a}{\mu}\left(\Re _{1}-1\right) \right) . The parameter \Re_{1} determines whether or not the HIV-specific CTL-mediated immune response is stimulated. Therefore, Ð _{2} = (S_{2}, L_{2}, I_{2}, V_{2}, C_{2}, 0) exists when \Re_{1} > 1 . We call Ð _{2} as a chronic HIV infection equilibrium with only active CTL-mediated immune response.

    (iii) \mathcal{J}_{4}(C) = 0 , \mathcal{J}_{5}(A)\neq0; which leads to C_{3} = 0 , \mathcal{J}_{3}(V_{3}) = \dfrac{\zeta}{\tau} and this gives V_{3} = \mathcal{J}_{3}^{-1}\left(\dfrac{\zeta}{\tau}\right) . From Eqs. (2.1)-(4.4) we get

    \begin{align} \yen (S) & = \aleph_{1}(S, V)+\aleph_{2}(S, L)+\aleph_{3}(S, I) = \frac {\lambda+\gamma}{\mathcal{H}_{1}}\mathcal{J}_{1}(L) \\ & = \frac{a\left( \lambda+\gamma \right) }{\lambda \mathcal{H}_{1} \mathcal{H}_{2}}\mathcal{J}_{2}(I) = \frac{a\left( \lambda+\gamma \right) \left( \varepsilon+\varpi \mathcal{J}_{5}(A)\right) }{b\lambda \mathcal{H} _{1}\mathcal{H}_{2}\mathcal{H}_{3}}\mathcal{J}_{3}(V). \end{align} (4.12)

    From Eq. (4.12), we get

    \begin{equation} L = \mathcal{J}_{1}^{-1}\left( \frac{\mathcal{H}_{1}\yen (S)}{\lambda+\gamma }\right) = f_{5}(S), \ \ \ \ \ I = \mathcal{J}_{2}^{-1}\left( \frac{\lambda \mathcal{H}_{1}\mathcal{H}_{2}\yen (S)}{a\left( \lambda +\gamma \right) }\right) = f_{6}(S). \end{equation} (4.13)

    Obviously from condition H1 we have f_{i}(S) > 0 for all S\in \lbrack0, S_{0}) and f_{i}(S_{0}) = 0, i = 5, 6 .Using Eq. (4.13) and letting V = V_{3} in Eq. (4.1), we define

    \begin{equation} \mathcal{F} _{3}\left( S\right) = \yen (S)-\aleph_{1}(S, V_{3})-\aleph_{2}(S, f_{5} (S))-\aleph_{3}(S, f_{6}(S)) = 0. \end{equation} (4.14)

    Then, we get

    \begin{align*} \mathcal{F} _{3}(0) & = \yen (0) \gt 0, \\ \mathcal{F} _{3}\left( S_{0}\right) & = \yen (S_{0})-\aleph_{1}(S_{0}, V_{3})-\aleph _{2}(S_{0}, 0)-\aleph_{3}(S_{0}, 0) = -\aleph_{1}(S_{0}, V_{3}) \lt 0. \end{align*}

    Since \mathcal{F} _{3}\left(S\right) is continuous on [0, S_{0}), then there exists S_{3}\in(0, S_{0}) such that \mathcal{F} _{3}(S_{0}) = 0 .From Eq. (4.13) and condition H3, we obtain

    L_{3} = \mathcal{J}_{1}^{-1}\left( \frac{\mathcal{H}_{1}\yen (S_{3})} {\lambda+\gamma}\right) \gt 0, \ \ \ \ \ I_{3} = \mathcal{J}_{2}^{-1}\left( \frac{\lambda \mathcal{H}_{1}\mathcal{H}_{2}\yen (S_{3})}{a\left( \lambda+\gamma \right) }\right) \gt 0.

    Moreover, from Eq. (4.12) and condition H3, we have

    A_{3} = \mathcal{J}_{5}^{-1}\left( \frac{\varepsilon}{\varpi}\left[ \frac{b\lambda \mathcal{H}_{1}\mathcal{H}_{2}\mathcal{H}_{3}\left \{ \aleph _{1}(S_{3}, V_{3})+\aleph_{2}(S_{3}, L_{3})+\aleph_{3}(S_{3}, I_{3})\right \} }{a\varepsilon \left( \lambda+\gamma \right) \mathcal{J}_{3}(V_{3})}-1\right] \right) .

    Clearly, A_{3} > 0 when \dfrac{b\lambda \mathcal{H}_{1}\mathcal{H} _{2}\mathcal{H}_{3}\left[\aleph_{1}(S_{3}, V_{3})+\aleph_{2}(S_{3}, L_{3})+\aleph_{3}(S_{3}, I_{3})\right] }{a\varepsilon \left(\lambda +\gamma \right) \mathcal{J}_{3}(V_{3})} > 1. Now we define the HIV-specific antibody immune response reproduction number

    \begin{align*} \Re_{2} & = \dfrac{b\lambda \mathcal{H}_{1}\mathcal{H}_{2}\mathcal{H} _{3}\left[ \aleph_{1}(S_{3}, V_{3})+\aleph_{2}(S_{3}, L_{3})+\aleph_{3} (S_{3}, I_{3})\right] }{a\varepsilon \left( \lambda+\gamma \right) \mathcal{J}_{3}(V_{3})}\\ & = \dfrac{\tau b\lambda \mathcal{H}_{1}\mathcal{H}_{2}\mathcal{H}_{3}\left[ \aleph_{1}(S_{3}, V_{3})+\aleph_{2}(S_{3}, L_{3})+\aleph_{3}(S_{3} , I_{3})\right] }{a\varepsilon \zeta \left( \lambda+\gamma \right) }. \end{align*}

    Thus, A_{3} = \mathcal{J}_{5}^{-1}\left(\dfrac{\varepsilon}{\varpi}(\Re _{2}-1)\right) . The parameter \Re_{2} determines whether or not the HIV-specific antibody immune response is stimulated. It follows that, Ð _{3} = (S_{3}, L_{3}, I_{3}, V_{3}, 0, A_{3}) exists when \Re_{2} > 1 . We call Ð _{3} as a chronic HIV infection equilibrium with only active antibody immune response.

    (iv) \mathcal{J}_{4}(C)\neq0 , \mathcal{J}_{5}(A)\neq0; which leads to I_{4} = \mathcal{J}_{2}^{-1}\left(\dfrac{\pi}{\sigma}\right) and V_{4} = \mathcal{J}_{3}^{-1}\left(\dfrac{\zeta}{\tau}\right) . From Eqs. (4.1)-(4.4) we get

    \begin{align} & \left. \yen (S) = \aleph_{1}(S, V)+\aleph_{2}(S, L)+\aleph_{3}(S, I) = \frac {\lambda+\gamma}{\mathcal{H}_{1}}\mathcal{J}_{1}(L) = \frac{\lambda+\gamma }{\lambda \mathcal{H}_{1}\mathcal{H}_{2}}\left( a+\mu \mathcal{J} _{4}(C)\right) \mathcal{J}_{2}(I), \right. \\ & \left. b\mathcal{H}_{3}\mathcal{J}_{2}(I) = \left( \varepsilon \mathcal{+}\varpi \mathcal{J}_{5}(A)\right) \mathcal{J}_{3}(V).\right. \end{align} (4.15)

    From Eq. (4.15), we get

    \begin{equation} L = \mathcal{J}_{1}^{-1}\left( \frac{\mathcal{H}_{1}\yen (S)}{\lambda+\gamma }\right) = f_{7}(S). \end{equation} (4.16)

    Obviously from condition H1 we have f_{7}(S) > 0 for all S\in \lbrack0, S_{0}) and f_{7}(S_{0}) = 0 .Let I = I_{4} , V = V_{4} and using Eq. (4.16) in Eq. (4.1), we define

    \mathcal{F} _{4}\left( S\right) = \yen (S)-\aleph_{1}(S, V_{4})-\aleph_{2}(S, f_{7} (S))-\aleph_{3}(S, I_{4}) = 0.

    Conditions H1 and H2 imply that \mathcal{F} _{4}(0) = \yen (0) > 0 and \mathcal{F} _{2}\left(S_{0}\right) = -\left[\aleph_{1}(S_{0}, V_{4})+\aleph_{3} (S_{0}, I_{4})\right] < 0 . Thus, there exists S_{4}\in(0, S_{0}) such that \mathcal{F} _{4}(S_{4}) = 0 .From Eq. (4.16) and condition H3, we obtain

    L_{4} = \mathcal{J}_{1}^{-1}\left( \frac{\mathcal{H}_{1}\yen (S_{4})} {\lambda+\gamma}\right) \gt 0.

    Moreover, from Eq. (4.15), we have

    \begin{align*} C_{4} & = \mathcal{J}_{4}^{-1}\left( \frac{a}{\mu}\left[ \frac {\lambda \mathcal{H}_{1}\mathcal{H}_{2}\left \{ \aleph_{1}(S_{4}, V_{4} )+\aleph_{2}(S_{4}, L_{4})+\aleph_{3}(S_{4}, I_{4})\right \} }{a\left( \lambda+\gamma \right) \mathcal{J}_{2}(I_{4})}-1\right] \right) , \\ A_{4} & = \mathcal{J}_{5}^{-1}\left( \frac{\varepsilon}{\varpi}\left( \dfrac{b\mathcal{H}_{3}\mathcal{J}_{2}(I_{4})}{\varepsilon \mathcal{J} _{3}(V_{4})}-1\right) \right) . \end{align*}

    It follows that C_{4} > 0 and A_{4} > 0 only when

    \frac{\lambda \mathcal{H}_{1}\mathcal{H}_{2}\left[ \aleph_{1}(S_{4} , V_{4})+\aleph_{2}(S_{4}, L_{4})+\aleph_{3}(S_{4}, I_{4})\right] }{a\left( \lambda+\gamma \right) \mathcal{J}_{2}(I_{4})} \gt 1\text{ and }\dfrac {b\mathcal{H}_{3}\mathcal{J}_{2}(I_{4})}{\varepsilon \mathcal{J}_{3}(V_{4} )} \gt 1.

    The HIV-specific CTL-mediated immune competitive reproduction number and the HIV-specific antibody immune competitive reproduction number of system (2.1) are stated, respectively, as:

    \begin{align*} \Re_{3} & = \frac{\lambda \mathcal{H}_{1}\mathcal{H}_{2}\left[ \aleph _{1}(S_{4}, V_{4})+\aleph_{2}(S_{4}, L_{4})+\aleph_{3}(S_{4}, I_{4})\right] }{a\left( \lambda+\gamma \right) \mathcal{J}_{2}(I_{4})}\\ & = \frac{\sigma \lambda \mathcal{H}_{1}\mathcal{H}_{2}\left[ \aleph_{1} (S_{4}, V_{4})+\aleph_{2}(S_{4}, L_{4})+\aleph_{3}(S_{4}, I_{4})\right] } {a\pi \left( \lambda+\gamma \right) }, \\ \Re_{4} & = \dfrac{b\mathcal{H}_{3}\mathcal{J}_{2}(I_{4})}{\varepsilon \mathcal{J}_{3}(V_{4})} = \dfrac{\tau b\pi \mathcal{H}_{3}}{\sigma \varepsilon \zeta}. \end{align*}

    The parameters \Re_{3} and \Re_{4} together determine whether or not the HIV-specific CTL-mediated and antibody immune responses are both stimulated. Clearly, Ð _{4} = (S_{4}, L_{4}, I_{4}, V_{4}, C_{4}, A_{4}) exists when \Re _{3} > 1 and \Re_{4} > 1 and we can write C_{4} = \mathcal{J}_{4}^{-1}\left(\dfrac{a}{\mu}\left(\Re_{3}-1\right) \right), A_{4} = \mathcal{J} _{5}^{-1}\left(\dfrac{\varepsilon}{\varpi}\left(\Re_{4}-1\right) \right) . We call Ð _{4} as a chronic HIV infection equilibrium with active CTL-mediated and antibody immune responses.

    The threshold parameters are given as follows:

    \begin{align} \Re_{0} & = \frac{b\lambda \mathcal{H}_{1}\mathcal{H}_{2}\mathcal{H}_{3} }{a\varepsilon \left( \lambda+\gamma \right) \mathcal{J}_{3}^{\prime}(0)} \frac{\partial \aleph_{1}(S_{0}, 0)}{\partial V}+\frac{\mathcal{H}_{1}}{\left( \lambda+\gamma \right) \mathcal{J}_{1}^{\prime}(0)}\frac{\partial \aleph _{2}(S_{0}, 0)}{\partial L}+\frac{\lambda \mathcal{H}_{1}\mathcal{H}_{2} }{a\left( \lambda+\gamma \right) \mathcal{J}_{2}^{\prime}(0)}\frac {\partial \aleph_{3}(S_{0}, 0)}{\partial I}, \\ \Re_{1} & = \dfrac{b\lambda \mathcal{H}_{1}\mathcal{H}_{2}\mathcal{H} _{3}\aleph_{1}(S_{2}, V_{2})}{a\varepsilon \left( \lambda+\gamma \right) \mathcal{J}_{3}(V_{2})}+\dfrac{\lambda \mathcal{H}_{1}\mathcal{H}_{2}\aleph _{2}(S_{2}, L_{2})}{a\left( \lambda+\gamma \right) \mathcal{J}_{2}(I_{2} )}+\dfrac{\lambda \mathcal{H}_{1}\mathcal{H}_{2}\aleph_{3}(S_{2}, I_{2} )}{a\left( \lambda+\gamma \right) \mathcal{J}_{2}(I_{2})}, \\ \Re_{2} & = \dfrac{\tau b\lambda \mathcal{H}_{1}\mathcal{H}_{2}\mathcal{H} _{3}\left[ \aleph_{1}(S_{3}, V_{3})+\aleph_{2}(S_{3}, L_{3})+\aleph_{3} (S_{3}, I_{3})\right] }{a\varepsilon \zeta \left( \lambda+\gamma \right) }, \\ \Re_{3} & = \frac{\sigma \lambda \mathcal{H}_{1}\mathcal{H}_{2}\left[ \aleph_{1}(S_{4}, V_{4})+\aleph_{2}(S_{4}, L_{4})+\aleph_{3}(S_{4} , I_{4})\right] }{a\pi \left( \lambda+\gamma \right) }, \\ \Re_{4} & = \dfrac{\tau b\pi \mathcal{H}_{3}}{\sigma \varepsilon \zeta}. \end{align} (4.17)

    Considering the above discussion, we sum up the following result:

    Lemma 1. Suppose that conditions H1-H3 are hold true, then there exist five positive threshold parameters \Re_{0}, \Re_{1} , \Re_{2}, \Re_{3} and \Re_{4} such that

    (i) if \Re_{0}\leq1, then there exists only one equilibrium Ð _{0} ,

    (ii) if \Re_{1}\leq1 < \Re_{0} and \Re_{2}\leq1 then there exist only two equilibria Ð _{0} and Ð _{1} ,

    (iii) if \Re_{1} > 1, then there exist three equilibria Ð _{0} , Ð _{1} and Ð _{2} ,

    (iv) if \Re_{2} > 1, then there exist three equilibria Ð _{0} , Ð _{1} and Ð _{3} , and

    (v) if \Re_{3} > 1 and \Re_{4} > 1, then there exist five equilibria Ð _{0} , Ð _{1}, Ð _{2} , Ð _{3} and Ð _{4} .

    In this section we prove the global asymptotic stability of all equilibria by constructing Lyapunov functional following the method presented in [56,57,58,59]. Let us state the function \mathcal{K}:\mathbb{(}0, \infty \mathbb{)}\rightarrow \mathbb{[}0, \infty \mathbb{)} as \mathcal{K}(\ell) = \ell-1-\ln \ell . In addition, we define

    \begin{equation} \digamma_{1}(S) = \lim \limits_{V\rightarrow0^{+}}\frac{\aleph_{1}(S, V)} {\mathcal{J}_{3}(V)}, \ \ \ \ \ \digamma_{2}(S) = \lim \limits_{L\rightarrow0^{+}}\frac{\aleph_{2}(S, L)}{\mathcal{J}_{1}(L)}, \ \ \ \ \ \digamma_{3}(S) = \lim \limits_{I\rightarrow0^{+}}\frac{\aleph _{3}(S, I)}{\mathcal{J}_{2}(I)}. \end{equation} (5.1)

    From conditions H2 and H3 we obtain

    \begin{align*} \digamma_{1}(S) & = \frac{1}{\mathcal{J}_{3}^{\prime}(0)}\frac{\partial \aleph_{1}(S, 0)}{\partial V} \gt 0\text{, }\\ \digamma_{2}(S) & = \frac{1}{\mathcal{J}_{1}^{\prime}(0)}\frac{\partial \aleph_{2}(S, 0)}{\partial L} \gt 0\text{, }\\ \digamma_{3}(S) & = \frac{1}{\mathcal{J}_{2}^{\prime}(0)}\frac{\partial \aleph_{3}(S, 0)}{\partial I} \gt 0\text{ for any }S \gt 0, \end{align*}

    moreover,

    \begin{equation} \digamma_{i}^{^{\prime}}(S) \gt 0, \ \ i = 1, 2, 3. \end{equation} (5.2)

    Therefore, the parameter \Re_{0} can be rewritten as

    \Re_{0} = \dfrac{b\lambda \mathcal{H}_{1}\mathcal{H}_{2}\mathcal{H}_{3} \digamma_{1}(S_{0})}{a\varepsilon \left( \lambda+\gamma \right) } +\dfrac{\mathcal{H}_{1}\digamma_{2}(S_{0})}{\lambda+\gamma}+\dfrac {\lambda \mathcal{H}_{1}\mathcal{H}_{2}\digamma_{3}(S_{0})}{a\left( \lambda+\gamma \right) }.

    To investigate the next theorem we need the following condition [60]:

    Condition (H5). (i) The supremum of \frac{\digamma_{2} (S)}{\digamma_{1}(S)} is achieved at S = S_{0} for all S\in(0, S_{0}],

    (ii) The supremum of \frac{\digamma_{3}(S)}{\digamma_{1}(S)} is achieved at S = S_{0} for all S\in(0, S_{0}].

    Theorem 1. Let \Re_{0}\leq1 and conditions H1-H5 are satisfied, then Ð _{0} is globally asymptotically stable (G.A.S).

    Remark 1. From conditions H2 and H4 we get

    \left( \aleph_{1}(S, V)-\aleph_{1}(S, V_{i})\right) \left( \frac{\aleph _{1}(S, V)}{\mathcal{J}_{3}(V)}-\frac{\aleph_{1}(S, V_{i})}{\mathcal{J} _{3}(V_{i})}\right) \leq0, \ \ \ S, V, V_{i} \gt 0, \text{ }i = 1, 2, 3, 4,

    which leads to

    \begin{equation} \left( 1-\frac{\aleph_{1}(S, V_{i})}{\aleph_{1}(S, V)}\right) \left( \frac{\aleph_{1}(S, V)}{\aleph_{1}(S, V_{i})}-\frac{\mathcal{J}_{3} (V)}{\mathcal{J}_{3}(V_{i})}\right) \leq0 , \ \ \ S, V, V_{i} \gt 0, \text{ }i = 1, 2, 3, 4. \end{equation} (5.3)

    Define the following functions [60]:

    \begin{equation} \mathcal{G}_{i}^{L}(S, L) = \frac{\aleph_{2}(S, L)}{\aleph_{1}(S, V_{i})}, \ \ \ \ \ \mathcal{G}_{i}^{I}(S, I) = \frac{\aleph_{3}(S, I)}{\aleph_{1}(S, V_{i} )}, \text{ }i = 1, 2, 3, 4. \end{equation} (5.4)

    We state the following condition

    Condition(H6)

    \begin{align*} ({\bf{i}})\left( \mathcal{G}_{i}^{L}(S, L)-\mathcal{G}_{i}^{L} (S_{i}, L_{i})\right) \left( \frac{\mathcal{G}_{i}^{L}(S, L)}{\mathcal{J} _{1}(L)}-\frac{\mathcal{G}_{i}^{L}(S_{i}, L_{i})}{\mathcal{J}_{1}(L_{i} )}\right) & \leq0, \\ ({\bf{ii}})\left( \mathcal{G}_{i}^{I}(S, I)-\mathcal{G}_{i} ^{I}(S_{i}, I_{i})\right) \left( \frac{\mathcal{G}_{i}^{I}(S, I)} {\mathcal{J}_{2}(I)}-\frac{\mathcal{G}_{i}^{I}(S_{i}, I_{i})}{\mathcal{J} _{2}(I_{i})}\right) & \leq0, \end{align*}

    for all L, L_{i}, I, I_{i} > 0, i = 1, 2, 3, 4, \ S\in \left(0, S_{0}\right) .

    Remark 2. From Condition H6 we get

    \begin{align} \left( 1-\frac{\mathcal{G}_{i}^{L}(S_{i}, L_{i})}{\mathcal{G}_{i}^{L} (S, L)}\right) \left( \frac{\mathcal{G}_{i}^{L}(S, L)}{\mathcal{G}_{i} ^{L}(S_{i}, L_{i})}-\frac{\mathcal{J}_{1}(L)}{\mathcal{J}_{1}(L_{i})}\right) & \leq0 , \ \ \ S\in \left( 0, S_{0}\right) , \text{ }L, \text{ } L_{i}, \gt 0, \text{ }i = 1, 2, 3, 4, \\ \left( 1-\frac{\mathcal{G}_{i}^{I}(S_{i}, I_{i})}{\mathcal{G}_{i}^{I} (S, I)}\right) \left( \frac{\mathcal{G}_{i}^{I}(S, I)}{\mathcal{G}_{i} ^{I}(S_{i}, I_{i})}-\frac{\mathcal{J}_{2}(I)}{\mathcal{J}_{2}(I_{i})}\right) & \leq0 , \ \ \ S\in \left( 0, S_{0}\right) , \text{ }I, \text{ } I_{i} \gt 0, \text{ }i = 1, 2, 3, 4. \end{align} (5.5)

    We consider the following equalities to be used in the proceeding theorems:

    \begin{align} \ln \left( \frac{\aleph_{1}(S(t-\theta), V(t-\theta))}{\aleph_{1}(S, V)}\right) & = \ln \left( \frac{\aleph_{1}(S(t-\theta), V(t-\theta))\mathcal{J}_{1} (L_{n})}{\aleph_{1}(S_{n}, V_{n})\mathcal{J}_{1}(L)}\right) +\ln \left( \frac{\aleph_{1}(S_{n}, V_{n})}{\aleph_{1}(S, V_{n})}\right) \\ & +\ln \left( \frac{\mathcal{J}_{1}(L)\mathcal{J}_{2}(I_{n})}{\mathcal{J} _{1}(L_{n})\mathcal{J}_{2}(I)}\right) +\ln \left( \frac{\mathcal{J} _{2}(I)\mathcal{J}_{3}(V_{n})}{\mathcal{J}_{2}(I_{n})\mathcal{J}_{3} (V)}\right) +\ln \left( \frac{\aleph_{1}(S, V_{n})\mathcal{J}_{3}(V)} {\aleph_{1}(S, V)\mathcal{J}_{3}(V_{n})}\right) , \\ \ln \left( \frac{\aleph_{2}(S(t-\theta), L(t-\theta))}{\aleph_{2}(S, L)}\right) & = \ln \left( \frac{\aleph_{2}(S(t-\theta), L(t-\theta))\mathcal{J}_{1} (L_{n})}{\aleph_{2}(S_{n}, L_{n})\mathcal{J}_{1}(L)}\right) +\ln \left( \frac{\aleph_{1}(S_{n}, V_{n})}{\aleph_{1}(S, V_{n})}\right) \\ & +\ln \left( \frac{\aleph_{1}(S, V_{n})\aleph_{2}(S_{n}, L_{n})\mathcal{J} _{1}(L)}{\aleph_{1}(S_{n}, V_{n})\aleph_{2}(S, L)\mathcal{J}_{1}(L_{n})}\right) , \\ \ln \left( \frac{\aleph_{3}(S(t-\theta), I(t-\theta))}{\aleph_{3}(S, I)}\right) & = \ln \left( \frac{\aleph_{3}(S(t-\theta), I(t-\theta))\mathcal{J}_{1} (L_{n})}{\aleph_{3}(S_{n}, I_{n})\mathcal{J}_{1}(L)}\right) +\ln \left( \frac{\aleph_{1}(S_{n}, V_{n})}{\aleph_{1}(S, V_{n})}\right) \\ & +\ln \left( \frac{\mathcal{J}_{1}(L)\mathcal{J}_{2}(I_{n})}{\mathcal{J} _{1}(L_{n})\mathcal{J}_{2}(I)}\right) +\ln \left( \frac{\aleph_{1} (S, V_{n})\aleph_{3}(S_{n}, I_{n})\mathcal{J}_{2}(I)}{\aleph_{1}(S_{n} , V_{n})\aleph_{3}(S, I)\mathcal{J}_{2}(I_{n})}\right) , \\ \ln \left( \frac{\mathcal{J}_{1}(L(t-\theta))}{\mathcal{J}_{1}(L)}\right) & = \ln \left( \frac{\mathcal{J}_{1}(L(t-\theta))\mathcal{J}_{2}(I_{n} )}{\mathcal{J}_{1}(L_{n})\mathcal{J}_{2}(I)}\right) +\ln \left( \frac{\mathcal{J}_{1}(L_{n})\mathcal{J}_{2}(I)}{\mathcal{J}_{1}(L)\mathcal{J} _{2}(I_{n})}\right) , \\ \ln \left( \frac{\mathcal{J}_{2}(I(t-\theta))}{\mathcal{J}_{2}(I)}\right) & = \ln \left( \frac{\mathcal{J}_{2}(I(t-\theta))\mathcal{J}_{3}(V_{n} )}{\mathcal{J}_{2}(I_{n})\mathcal{J}_{3}(V)}\right) +\ln \left( \frac{\mathcal{J}_{2}(I_{n})\mathcal{J}_{3}(V)}{\mathcal{J}_{2}(I)\mathcal{J} _{3}(V_{n})}\right) , \ \ n = 1, 2, 3, 4. \end{align} (5.6)

    Theorem 2. Suppose that \Re_{1}\leq1 < \Re_{0}, \Re_{2}\leq1 and conditions H1-H4, H6 are hold true, then Ð _{1} is G.A.S.

    Theorem 3. Let \Re_{1} > 1, \Re_{4}\leq1 and conditions H1-H4, H6 are satisfied, then Ð _{2} is G.A.S.

    Theorem 4. Suppose that \Re_{2} > 1 , \Re_{3}\leq1 and conditions H1-H4, H6 are satisfied, then Ð _{3} is G.A.S.

    Theorem 5. If \Re_{3} > 1 , \Re_{4} > 1 and conditions H1 -H4, H6 are hold true, then Ð _{4} is G.A.S.

    In this section we present an example and perform some numerical simulations to illustrate our theoretical results. For numerical purposes we transform the distributed-time delay model (2.1) to a discrete-time delay one by a dirac delta function \bar{\Lambda}(.) as a specific form of the kernel \Lambda_{i}(\varsigma) as [14]:

    \Lambda_{i}(\varsigma) = \bar{\Lambda}\left( \varsigma-\theta_{i}\right) , \ \ \ \ \ \theta_{i}\in \left[ 0, \kappa_{i}\right] , \ \ i = 1, 2, 3.

    The constants \theta_{i}\in \left[0, \kappa_{i}\right], i = 1, 2, 3 are discrete-time delays which are special cases of the three distributed-time delays presented in model (2.1). Let \kappa_{i} tends to \infty , then using the properties of Dirac delta function we get

    \int \limits_{0}^{\infty}\Lambda_{j}(\varsigma)d\varsigma = 1, \ \ \ \ \ \mathcal{H}_{j} = \int \limits_{0}^{\infty}\bar{\Lambda}\left( \varsigma-\theta_{j}\right) e^{-\hslash_{j}\varsigma}d\varsigma = e^{-\hslash_{j}\theta_{j}}, \ \ \ \ \ j = 1, 2, 3.

    Then, model (2.1) reduces to the following model with discrete-time delays:

    \begin{equation} \left \{ \begin{array} [c]{l} \dot{S}(t) = \yen (S(t))-\aleph_{1}(S(t), V(t))-\aleph_{2}(S(t), L(t))-\aleph _{3}(S(t), I(t)), \\ \dot{L}(t) = e^{-\hslash_{1}\theta_{1}}\left[ \aleph_{1}(S(t-\theta _{1}), V(t-\theta_{1}))+\aleph_{2}(S(t-\theta_{1}), L(t-\theta_{1}))\right. \\ {\left. +\aleph_{3}(S(t-\theta_{1}), I(t-\theta _{1}))\right] -\left( \lambda+\gamma \right) \mathcal{J}_{1}(L(t)), }\\ \dot{I}(t) = \lambda e^{-\hslash_{2}\theta_{2}}\mathcal{J}_{1}(L(t-\theta _{2}))-a\mathcal{J}_{2}(I(t))-\mu \mathcal{J}_{4}(C(t))\mathcal{J}_{2}(I(t)), \\ \dot{V}(t) = be^{-\hslash_{3}\theta_{3}}\mathcal{J}_{2}(I(t-\theta _{3}))-\varepsilon \mathcal{J}_{3}(V(t))-\varpi \mathcal{J}_{5}(A(t))\mathcal{J} _{3}(V(t)), \\ \dot{C}(t) = \sigma \mathcal{J}_{4}(C(t))\mathcal{J}_{2}(I(t))-\pi \mathcal{J} _{4}(C(t)), \\ \dot{A}(t) = \tau \mathcal{J}_{5}(A(t))\mathcal{J}_{3}(V(t))-\zeta \mathcal{J} _{5}(A(t)). \end{array} \right. \end{equation} (6.1)

    From Theorems 1-5, the corresponding stability results of system (6.1) reads as:

    Corollary 1. Let \Re_{i} , i = 0, 1, ..., 4 be defined as in (4.17). The following statements hold true.

    (i) If \Re_{0}\leq1 and conditions H1-H5 are satisfied, then Ð _{0} is G.A.S.

    (ii) If \Re_{1}\leq1 < \Re_{0}, \Re_{2}\leq1 and conditions H1 -H4, H6 are statisfied, then Ð _{1} is G.A.S.

    (iii) If \Re_{1} > 1, \Re_{4}\leq1 and conditions H1-H4, H6 are satisfied, then Ð _{2} is G.A.S.

    (iv) If \Re_{2} > 1 , \Re_{3}\leq1 and conditions H1-H4, H6 are satisfied, then Ð _{3} is G.A.S.

    (v) If \Re_{3} > 1 , \Re_{4} > 1 and conditions H1-H4, H6 are hold true, then Ð _{4} is G.A.S.

    Let us consider the following example:

    \begin{equation} \left \{ \begin{array} [c]{l} \dot{S} = \rho-\alpha S+pS\left( 1-\dfrac{S}{S_{\max}}\right) -\dfrac{S^{q} }{1+\delta S^{q}}\left( \dfrac{\eta_{1}V}{1+\beta_{1}V}+\dfrac{\eta_{2} L}{1+\beta_{2}L}+\dfrac{\eta_{3}I}{1+\beta_{3}I}\right) , \\ \dot{L} = \dfrac{e^{-\hslash_{1}\theta_{1}}S^{q}(t-\theta_{1})}{1+\delta S^{q}(t-\theta_{1})}\left( \dfrac{\eta_{1}V(t-\theta_{1})}{1+\beta _{1}V(t-\theta_{1})}+\dfrac{\eta_{2}L(t-\theta_{1})}{1+\beta_{2}L(t-\theta _{1})}+\dfrac{\eta_{3}I(t-\theta_{1})}{1+\beta_{3}I(t-\theta_{1})}\right) -\left( \lambda+\gamma \right) L, \\ \dot{I} = \lambda e^{-\hslash_{2}\theta_{2}}L(t-\theta_{2})-aI-\mu CI, \\ \dot{V} = be^{-\hslash_{3}\theta_{3}}I(t-\theta_{3})-\varepsilon V-\varpi AV, \\ \dot{C} = \sigma CI-\pi C, \\ \dot{A} = \tau AV-\zeta A. \end{array} \right. \end{equation} (6.2)

    This example is a special case of system (6.1) by considering the following particular forms:

    ● The intrinsic growth rate of healthy {\rm{CD}}{4^ + }{\rm{T}} cells is chosen as

    \yen (S) = \rho-\alpha S+pS\left( 1-\frac{S}{S_{\max}}\right) .

    Here we consider another source for producing healthy {\rm{CD}}{4^ + }{\rm{T}} cells which is the proliferation of existing healthy cells in the body [61]. The maximum proliferation rate of healthy {\rm{CD}}{4^ + }{\rm{T}} cells is given by p > 0 . It is well known that there is a maximum level of healthy {\rm{CD}}{4^ + }{\rm{T}} cell concentration in the body which is described by the parameter S_{\max} > 0 . If the concentration reaches S_{\max} , it should decrease. We assume that p < \alpha [62]. It is clear that \yen (0) = \rho > 0 and \yen (S_{0}) = 0 , where

    S_{0} = \frac{S_{\max}}{2p}\left( p-\alpha+\sqrt{(p-\alpha)^{2}+\frac{4\rho p}{S_{\max}}}\right) .

    In addition, we have

    \begin{equation} \yen ^{\prime}(S) = p-\alpha-\frac{2pS}{S_{\max}} \lt 0. \end{equation} (6.3)

    Clearly, \yen (S) > 0 whereas \yen ^{\prime}(S) < 0 for all S\in \lbrack0, S_{0}) . Hence, condition H1 is hold true.

    ● The virus-cell, silent infected cell-cell, and active infected cell-cell incidence rates of infection are, respectively, given by:

    \begin{align*} \aleph_{1}(S, V) & = \dfrac{\eta_{1}S^{q}V}{\left( 1+\delta S^{q}\right) \left( 1+\beta_{1}V\right) }, \\ \aleph_{2}(S, L) & = \dfrac{\eta_{2}S^{q}L}{\left( 1+\delta S^{q}\right) \left( 1+\beta_{2}L\right) }, \\ \aleph_{3}(S, I) & = \dfrac{\eta_{3}S^{q}I}{\left( 1+\delta S^{q}\right) \left( 1+\beta_{3}I\right) }. \end{align*}

    The parameters \eta_{i} > 0, i = 1, 2, 3 account for the infection rate constants. Parameters q, \delta, \beta_{i}, i = 1, 2, 3 are positive constants. It is clear that

    \begin{align*} \aleph_{1}(S, V) & \gt 0, \text{ }\aleph_{2}(S, L) \gt 0, \text{ }\aleph_{3} (S, I) \gt 0\text{ for all }S, L, I, V \gt 0, \\ \aleph_{1}(0, V) & = \aleph_{2}(0, L) = \aleph_{3}(0, I) = 0\text{ for all }L, I, V \gt 0, \\ \aleph_{1}(S, 0) & = \aleph_{2}(S, 0) = \aleph_{3}(S, 0) = 0\text{ for all }S \gt 0. \end{align*}

    Further, we have

    \begin{align*} \frac{\partial \aleph_{1}(S, V)}{\partial S} & = \frac{q\text{ $ \eta $ } _{1}S^{q-1}V}{\left( 1+\delta S^{q}\right) ^{2}(1+\text{ $ \beta $ }_{1} V)} \gt 0, \ \ \frac{\partial \aleph_{2}(S, L)}{\partial S} = \frac {q\text{ $ \eta $ }_{2}S^{q-1}L}{\left( 1+\delta S^{q}\right) ^{2} (1+\text{ $ \beta_{2} $ }L)} \gt 0, \\ \frac{\partial \aleph_{3}(S, I)}{\partial S} & = \frac{q\text{ $ \eta $ } _{3}S^{q-1}I}{\left( 1+\delta S^{q}\right) ^{2}(1+\text{ $ \beta_{3}I $ } )} \gt 0, \ \ \frac{\partial \aleph_{1}(S, V)}{\partial V} = \frac{\text{ $ \eta $ }_{1}S^{q}}{\left( 1+\delta S^{q}\right) (1+\text{ $ \beta $ }_{1}V)^{2}} \gt 0, \\ \frac{\partial \aleph_{2}(S, L)}{\partial L} & = \frac{\text{ $ \eta $ }_{2}S^{q} }{\left( 1+\delta S^{q}\right) (1+\text{ $ \beta_{2} $ }L)^{2}} \gt 0, \ \ \frac{\partial \aleph_{3}(S, I)}{\partial I} = \frac{\text{ $ \eta $ }_{3}S^{q} }{\left( 1+\delta S^{q}\right) (1+\text{ $ \beta_{3}I $ })^{2}} \gt 0, \\ \frac{\partial \aleph_{1}(S, 0)}{\partial V} & = \frac{\text{ $ \eta $ }_{1}S^{q} }{1+\delta S^{q}} \gt 0, \ \ \frac{\partial \aleph_{2}(S, 0)}{\partial L} = \frac{\text{ $ \eta $ }_{2}S^{q}}{1+\delta S^{q}} \gt 0, \ \ \frac {\partial \aleph_{3}(S, 0)}{\partial I} = \frac{\text{ $ \eta $ }_{3}S^{q}}{1+\delta S^{q}} \gt 0, \end{align*}

    for all S, L, I, V > 0 . Furthermore, we have

    \begin{align*} \dfrac{d}{dS}\left( \frac{\partial \aleph_{1}(S, 0)}{\partial V}\right) & = \frac{q\text{ $ \eta $ }_{1}S^{q-1}}{\left( 1+\delta S^{q}\right) ^{2}} \gt 0, \\ \dfrac{d}{dS}\left( \frac{\partial \aleph_{2}(S, 0)}{\partial L}\right) & = \frac{q\text{ $ \eta $ }_{2}S^{q-1}}{\left( 1+\delta S^{q}\right) ^{2}} \gt 0, \\ \dfrac{d}{dS}\left( \frac{\partial \aleph_{3}(S, 0)}{\partial I}\right) & = \frac{q\text{ $ \eta $ }_{3}S^{q-1}}{\left( 1+\delta S^{q}\right) ^{2} } \gt 0, \text{ for all }S \gt 0. \end{align*}

    All above discussion ensures that condition H2 is confirmed.

    ● The natural death rate of the silent/active HIV-infected cells, HIV particles, HIV-specific CTLs and HIV-specific antibodies are given by

    \mathcal{J}_{k}(x) = x, \ \ \ \ \ k = 1, 2, ..., 5.

    Obviously, condition H3 is valid.

    In addition, we have

    \begin{align*} \dfrac{\partial}{\partial V}\left( \dfrac{\aleph_{1}(S, V)}{\mathcal{J} _{3}(V)}\right) & = \dfrac{\partial}{\partial V}\left( \dfrac{\eta_{1} S^{q}}{\left( 1+\delta S^{q}\right) \left( 1+\beta_{1}V\right) }\right) = -\frac{\text{ $ \eta $ }_{1}\text{ $ \beta $ }\text{ $ _{1} $ }S^{q}}{(1+\text{ $ \beta $ }\text{ $ _{1} $ }V)^{2}\left( 1+\delta S^{q}\right) } \lt 0, \\ \dfrac{\partial}{\partial L}\left( \dfrac{\aleph_{2}(S, L)}{\mathcal{J} _{1}(L)}\right) & = \dfrac{\partial}{\partial L}\left( \dfrac{\eta_{2} S^{q}}{\left( 1+\delta S^{q}\right) \left( 1+\beta_{2}L\right) }\right) = -\frac{\text{ $ \eta $ }_{2}\text{ $ \beta $ }_{2}S^{q}}{(1+\text{ $ \beta $ }_{2} L)^{2}\left( 1+\delta S^{q}\right) } \lt 0, \\ \dfrac{\partial}{\partial I}\left( \dfrac{\aleph_{3}(S, I)}{\mathcal{J} _{2}(I)}\right) & = \dfrac{\partial}{\partial I}\left( \dfrac{\eta_{3} S^{q}}{\left( 1+\delta S^{q}\right) \left( 1+\beta_{3}I\right) }\right) = -\frac{\text{ $ \eta $ }_{3}\text{ $ \beta $ }_{3}S^{q}}{(1+\text{ $ \beta $ }_{3} I)^{2}\left( 1+\delta S^{q}\right) } \lt 0, \end{align*}

    for all S, L, I, V > 0 . Therefore, condition H4 is also verified. On the other hand, we have \mathcal{J}_{k}^{\prime}(x) = 1 and then

    \begin{align*} \digamma_{1}(S) & = \frac{\partial \aleph_{1}(S, 0)}{\partial V} = \frac {\text{ $ \eta $ }_{1}S^{q}}{1+\delta S^{q}}, \\ \digamma_{2}(S) & = \frac{\partial \aleph_{2}(S, 0)}{\partial L} = \frac {\text{ $ \eta $ }_{2}S^{q}}{1+\delta S^{q}}, \\ \digamma_{3}(S) & = \frac{\partial \aleph_{3}(S, 0)}{\partial L} = \frac {\text{ $ \eta $ }_{3}S^{q}}{1+\delta S^{q}}. \end{align*}

    Clearly, \dfrac{\digamma_{2}(S)}{\digamma_{1}(S)} = \dfrac{\eta_{2} }{\eta_{1}} and \dfrac{\digamma_{3}(S)}{\digamma_{1}(S)} = \dfrac{\eta_{3}}{\eta_{1}}, hence, condition H5 is satisfied. In addition,

    \begin{align*} \mathcal{G}_{i}^{L}(S, L) & = \frac{\aleph_{2}(S, L)}{\aleph_{1}(S, V_{i} )} = \frac{\text{ $ \eta $ }_{2}(1+\text{ $ \beta $ }_{1}V_{i})L}{\text{ $ \eta $ } _{1}(1+\text{ $ \beta $ }_{2}L)V_{i}}, \ \ \mathcal{G}_{i}^{L}(S_{i} , L_{i}) = \frac{\aleph_{2}(S_{i}, L_{i})}{\aleph_{1}(S_{i}, V_{i})} = \frac {\text{ $ \eta $ }_{2}(1+\text{ $ \beta $ }_{1}V_{i})L_{i}}{\text{ $ \eta $ } _{1}(1+\text{ $ \beta $ }_{2}L_{i})V_{i}}, \\ \mathcal{G}_{i}^{I}(S, I) & = \frac{\aleph_{3}(S, I)}{\aleph_{1}(S, V_{i} )} = \frac{\text{ $ \eta $ }_{3}(1+\text{ $ \beta $ }_{1}V_{i})I}{\text{ $ \eta $ } _{1}(1+\text{ $ \beta $ }_{3}I)V_{i}}, \ \ \mathcal{G}_{i}^{I}(S_{i} , I_{i}) = \frac{\aleph_{3}(S_{i}, I_{i})}{\aleph_{1}(S_{i}, V_{i})} = \frac {\text{ $ \eta $ }_{3}(1+\text{ $ \beta $ }_{1}V_{i})I_{i}}{\text{ $ \eta $ } _{1}(1+\text{ $ \beta $ }_{3}I_{i})V_{i}}, \end{align*}

    and

    \begin{align*} \left( \mathcal{G}_{i}^{L}(S, L)-\mathcal{G}_{i}^{L}(S_{i}, L_{i})\right) \left( \frac{\mathcal{G}_{i}^{L}(S, L)}{L}-\frac{\mathcal{G}_{i}^{L} (S_{i}, L_{i})}{L_{i}}\right) & = -\frac{\text{ $ \beta $ }\text{ $ _{2}\eta $ } _{2}^{2}(1+\text{ $ \beta $ }_{1}V_{i})^{2}(L-L_{i})^{2}}{\text{ $ \eta $ }_{1} ^{2}V_{i}^{2}(1+\text{ $ \beta $ }_{2}L_{i})^{2}(1+\text{ $ \beta $ }_{2}L)^{2}} \leq0, \\ \left( \mathcal{G}_{i}^{I}(S, I)-\mathcal{G}_{i}^{I}(S_{i}, I_{i})\right) \left( \frac{\mathcal{G}_{i}^{I}(S, I)}{I}-\frac{\mathcal{G}_{i}^{I} (S_{i}, I_{i})}{I_{i}}\right) & = -\frac{\text{ $ \beta $ }\text{ $ _{3}\eta $ } _{3}^{2}(1+\text{ $ \beta $ }_{1}V_{i})^{2}(I-I_{i})^{2}}{\text{ $ \eta $ }_{1} ^{2}V_{i}^{2}(1+\text{ $ \beta $ }_{3}I_{i})^{2}(1+\text{ $ \beta $ }_{3}I)^{2}}\leq0, \end{align*}

    for all L, I > 0, S\in \left(0, S_{0}\right), where i = 1, 2, 3, 4 . Hence, condition H6 is ensured. Consequently, the validity of conditions H1-H6 guarantees that the global stability results demonstrated in Theorems 1-5 are valid for this example. Thus, the threshold parameters for system (4.2) are given by:

    \begin{align} \Re_{0} & = \frac{e^{-\hslash_{1}\theta_{1}}S_{0}^{q}\left[ a\varepsilon \text{ $ \eta $ }_{2}+\lambda e^{-\hslash_{2}\theta_{2}}\left( b\text{ $ \eta $ } _{1}e^{-\hslash_{3}\theta_{3}}+\varepsilon \text{ $ \eta $ }_{3}\right) \right] }{a\varepsilon \left( \lambda+\gamma \right) \left( 1+\delta S_{0} ^{q}\right) }, \\ \Re_{1} & = \dfrac{\sigma \lambda e^{-\left( \hslash_{1}\theta_{1} +\hslash_{2}\theta_{2}\right) }S_{2}^{q}}{a\pi \left( \lambda+\gamma \right) \left( 1+\delta S_{2}^{q}\right) }\left( \dfrac{b\pi \eta_{1}e^{-\hslash _{3}\theta_{3}}}{\varepsilon \sigma+b\pi \beta_{1}e^{-\hslash_{3}\theta_{3}} }+\dfrac{\eta_{2}L_{2}}{1+\beta_{2}L_{2}}+\dfrac{\pi \eta_{3}}{\sigma+\pi \beta_{3}}\right) , \\ \Re_{2} & = \dfrac{\tau b\lambda e^{-\left( \hslash_{1}\theta_{1} +\hslash_{2}\theta_{2}+\hslash_{3}\theta_{3}\right) }S_{3}^{q}} {a\varepsilon \zeta \left( \lambda+\gamma \right) \left( 1+\delta S_{3} ^{q}\right) }\left( \dfrac{\zeta \eta_{1}}{\tau+\zeta \beta_{1}}+\dfrac {\eta_{2}L_{3}}{1+\beta_{2}L_{3}}+\dfrac{\eta_{3}I_{3}}{1+\beta_{3}I_{3} }\right) , \\ \Re_{3} & = \frac{\sigma \lambda e^{-\left( \hslash_{1}\theta_{1}+\hslash _{2}\theta_{2}\right) }S_{4}^{q}}{a\pi \left( \lambda+\gamma \right) \left( 1+\delta S_{4}^{q}\right) }\left( \dfrac{\zeta \eta_{1}}{\tau+\zeta \beta_{1} }+\dfrac{\eta_{2}L_{4}}{1+\beta_{2}L_{4}}+\dfrac{\pi \eta_{3}}{\sigma+\pi \beta_{3}}\right) , \\ \Re_{4} & = \dfrac{\tau b\pi e^{-\hslash_{3}\theta_{3}}}{\sigma \varepsilon \zeta}. \end{align} (6.4)

    To solve system (6.2) numerically we fix the values of some parameters (see Table 2) and the others will be varied. In the coming subsections, we present some numerical simulations for model (6.2) to illustrate the theoretical results. Moreover, we study the influence of time delays and silent HIV-infected CTCtransmission on the stability behavior of equilibria and HIV dynamics.

    Table 2.  Some values of the parameters of model (4.2).
    Parameter Value Parameter Value Parameter Value Parameter Value
    \rho 10 \eta_{3} Varied \beta_{1} 0.1 \hslash_{2} 0.1
    \alpha 0.01 a 0.5 \beta_{2} 0.2 \hslash_{3} 0.1
    p 0.005 \gamma 0.2 \beta_{3} 0.3 \theta_{1} Varied
    S_{\max} 1200 \lambda 0.2 \sigma Varied \theta_{2} Varied
    \delta 0.7 b 5 \varpi 0.3 \theta_{3} Varied
    q 2 \pi 0.1 \tau Varied
    \eta_{1} Varied \mu 0.2 \zeta 0.2
    \eta_{2} Varied \varepsilon 2 \hslash_{1} 0.1

     | Show Table
    DownLoad: CSV

    In this subsection, we illustrate the stability results given in Theorems 1-5. To do so, we fix the values \theta_{1} = 3, \theta_{2} = 2 and \theta_{3} = 1. We consider the following initial conditions for model (4.2):

    Initial-1: (S(\theta), L(\theta), I(\theta), V(\theta), C(\theta), A(\theta)) = (1000, 2.5, 0.5, 0.3, 1.75, 8) ,

    Initial-2: (S(\theta), L(\theta), I(\theta), V(\theta), C(\theta), A(\theta)) = (950, 2.75, 0.55, 0.5, 2.25, 11),

    Initial-3: (S(\theta), L(\theta), I(\theta), V(\theta), C(\theta), A(\theta)) = (850, 3, 0.6, 0.7, 2.8, 15) , where \theta \in \lbrack-3, 0].

    We choose the values \eta_{1} , \eta_{2} , \eta_{3}, \sigma and \tau as follows:

    Stability of Ð _{0} : \eta_{1} = 0.1, \eta_{2} = 0.05 , \eta_{3} = 0.2, \sigma = 0.02 and \tau = 0.004 . For this set of parameters, we have \Re_{0} = 0.50 < 1 . Figure 1 displays that the trajectories initiating with Initial-1, Initial-2 and Initial-3 reach the equilibrium Ð _{0} = (1061.32, 0, 0, 0, 0, 0) . This shows that Ð _{0} is G.A.S according to Theorem 1. In this case, the HIV particles will be cleared from the body.

    Figure 1.  The behavior of solution trajectories of system (4.2) in case of \Re_{0}\leq1 .

    Stability of Ð _{1} : \eta_{1} = 0.5, \eta_{2} = 0.3 , \eta_{3} = 0.7, \sigma = 0.02 and \tau = 0.004 . With such choice we get \Re_{1} = 0.89 < 1 < 2.38 = \Re_{0} and \Re_{2} = 0.27 < 1 . It is clear that the equilibrium point Ð _{1} exists with Ð _{1} = \left(456.98, 12.68, 4.15, 9.39, 0, 0\right) . Figure 2 displays that the trajectories initiating with Initial-1, Initial-2 and Initial-3 tend to Ð _{1} . Therefore, the numerical results supports Theorem 2. This case represents the persistence of the HIV infection but with unstimulated immune responses.

    Figure 2.  The behavior of solution trajectories of system (4.2) in case of \Re_{1}\leq1 < \Re_{0} and \Re_{2}\leq1. .

    Stability of Ð _{2} : \eta_{1} = 0.5, \eta_{2} = 0.3 , \eta_{3} = 0.7, \sigma = 0.2 and \tau = 0.04 . Then, we calculate \Re_{1} = 2.54 > 1 and \Re_{4} = 0.23 < 1 . In Figure 3 we show that Ð _{2} = \left(902.20, 3.88, 0.50, 1.13, 3.86, 0\right) exists and it is G.A.S and this agrees with Theorem 3. Hence, a chronic HIV infection with only CTL-mediated immune response is attained.

    Figure 3.  The behavior of solution trajectories of system (4.2) in case of \Re_{1} > 1 and \Re_{4}\leq1 .

    Stability of Ð _{3} . \eta_{1} = 0.5, \eta_{2} = 0.3 , \eta_{3} = 0.7, \sigma = 0.02 and \tau = 0.4 . Then, we calculate \Re_{2} = 6.37 > 1 and \Re_{3} = 0.43 < 1 . The numerical results plotted in Figure 4 show that Ð _{3} = \left(884.32, 4.30, 1.41, 0.50, 0, 35.77\right) exists and it is G.A.S and this agrees with Theorem 4. As a result, a chronic HIV infection with only antibody immune response is attained.

    Figure 4.  The behavior of solution trajectories of system (4.2) in case of \Re_{2} > 1 and \Re_{3}\leq1 .

    Stability of Ð _{4} . \eta_{1} = 0.5, \eta_{2} = 0.3 , \eta_{3} = 0.7, \sigma = 0.2 and \tau = 0.4 . Then, we calculate \Re_{3} = 1.89 > 1 and \Re_{4} = 2.26 > 1 . The numerical results displayed in Figure 5 show that Ð _{4} = \left(944.58, 2.89, 0.50, 0.50, 2.23, 8.41\right) exists and it is G.A.S according to Theorem 5. In this case, a chronic HIV infection is attained where both CTL-mediated and antibody immune responses are working.

    Figure 5.  The behavior of solution trajectories of system (4.2) in case of \Re_{3} > 1 and \Re_{4} > 1 .

    In this subsection, we investigate the influence of silent HIV-infected CTCtransmission on the HIV dynamics (4.2). We use the parameters given in Table 2 and fix the parameters \eta_{1} = 0.5, \eta_{3} = 0.7, \sigma = 0.1 , \tau = 0.4, \theta_{1} = 3, \theta_{2} = 2 , \theta_{3} = 1 . We consider the following initial condition:

    Initial-4: (S(\theta), L(\theta), I(\theta), V(\theta), C(\theta), A(\theta)) = (600, 10, 1, 0.5, 5, 15), where \theta \in \lbrack-3, 0].

    We vary the parameter \eta_{2} as shown in Table 3 which displays that as the silent cell-cell incidence rate constant \eta_{2} is changed the dynamical behavior is also changed. Figure 6 and Table 3 illustrate the effect of parameter \eta_{2} on the solution trajectories of the system. We observe that, as \eta_{2} is decreased, the concentration of the healthy cells is increased, while the concentrations of silent/active HIV-infected cells, free HIV particles, HIV-specific CTLs and HIV-specific antibodies are decreased.

    Figure 6.  The evolution of HIV dynamics (6.2) under different values of silent cell-cell incidence rate constant \eta_{2} .
    Table 3.  The equilibria related to different values of silent cell-cell incidence rate constant \eta_{2} .
    Value of \eta_{2} Equilibrium point
    1.5 Ð _{4}=\left(104.23, 17.48, 1, 0.50, 11.81, 23.49\right)
    1.0 Ð _{4}=\left(543.92, 11.20, 1, 0.50, 6.67, 23.49\right)
    0.5 Ð _{4}=\left(829.58, 5.53, 1, 0.50, 2.03, 23.49\right)
    0.1 Ð _{3}=\left(979.39, 2.05, 0.67, 0.50, 0, 13.57\right)
    0.0 Ð _{3}=\left(1007.59, 1.36, 0.44, 0.50, 0, 6.72\right)

     | Show Table
    DownLoad: CSV
    Figure 7.  The evolution of HIV dynamics (6.2) under different values of silent cell-cell incidence rate constant \eta_{2} . (cont.).

    In this subsection, we study the influence of time delays \theta_{1}, \theta_{2} and \theta_{3} on the stability of the equilibria. We fix the parameters \eta_{1} = 0.6, \eta_{2} = 0.5 , \eta_{3} = 0.7 , \sigma = 0.1 and \tau = 0.2 and the remaining values will be used as given in Table 2. We observe from Eq. (6.4) that the threshold parameter \Re_{0} depends on the delay parameters which leads to a significant change in the stability of the equilibria. To illustrate this situation, we consider the following initial condition:

    Initial-5: (S(\theta), L(\theta), I(\theta), V(\theta), C(\theta), A(\theta)) = (900, 4, 0.7, 0.5, 3, 10), where \theta \in \lbrack-\max \left \{ \theta_{1}, \theta_{2}, \theta_{3}\right \}, 0].

    Further, we choose the following sets of parameters \theta_{1}, \theta_{2} and \theta_{3} :

    Set (I): \theta_{1} = \theta_{2} = \theta_{3} = 0 ,

    Set (II): \theta_{1} = 4, \theta_{2} = 3 and \theta_{3} = 2 ,

    Set (III): \theta_{1} = 8, \theta_{2} = 7 and \theta_{3} = 6 ,

    Set (IV): \theta_{1} = 15, \theta_{2} = 14 and \theta_{3} = 13 .

    Table 4 demonstrates that as the delay parameters \theta_{1}, \theta_{2} and \theta_{3} are increased the threshold parameter \Re_{0} is decreased and the stability behavior of the infection-free equilibrium Ð _{0} is changed. Figure 7 shows the effect of time delay on the solution trajectories of the system. We observe that as time delays are increased, the concentration of the healthy cells is increased, while the concentrations of silent/active HIV-infected cells, free HIV particles, HIV-specific CTLs and HIV-specific antibodies are decreased. Let us fix the parameters \theta_{2} and \theta_{3} . Using Eq. (6.4) we can define the threshold parameter \Re_{0} as a function of \theta_{1} as:

    \begin{equation} \Re_{0}(\theta_{1}) = \frac{e^{-\hslash_{1}\theta_{1}}S_{0}^{q}\left[ a\varepsilon \text{ $ \eta $ }_{2}+\lambda e^{-\hslash_{2}\theta_{2}}\left( b\text{ $ \eta $ }_{1}e^{-\hslash_{3}\theta_{3}}+\varepsilon \text{ $ \eta $ } _{3}\right) \right] }{a\varepsilon \left( \lambda+\gamma \right) \left( 1+\delta S_{0}^{q}\right) }.\nonumber \end{equation}
    Table 4.  The values of \Re_{0} for selected values of delay parameters.
    Value of delay parameters Threshold parameter \Re_{0} Equilibrium point
    \theta_{1}=\theta_{2}=\theta_{3}=0 4.92857 Ð _{4}=\left(749.53, 9.78, 1, 1, 7.28, 10\right)
    \theta_{1}=3, \theta_{2}=0 , \theta_{3}=0 3.65117 Ð _{4}=\left(778.18, 6.64, 1, 1, 4.14, 10\right)
    \theta_{1}=3, \theta_{2}=0 , \theta_{3}=1 3.5001 Ð _{4}=\left(778.18, 6.64, 1, 1, 4.14, 8.41\right)
    \theta_{1}=3, \theta_{2}=2 , \theta_{3}=1 3.10544 Ð _{4}=\left(778.18, 6.64, 1, 1, 2.94, 8.41\right)
    \theta_{1}=4, \theta_{2}=3 , \theta_{3}=2 2.5648 Ð _{4}=\left(788.38, 5.81, 1, 1, 1.81, 6.98\right)
    \theta_{1}=5, \theta_{2}=4 , \theta_{3}=3 2.13507 Ð _{4}=\left(798.77, 5.08, 1, 1, 0.90, 5.68\right)
    \theta_{1}=6, \theta_{2}=5 , \theta_{3}=4 1.79103 Ð _{4}=\left(809.23, 4.43, 1, 1, 0.18, 4.51\right)
    \theta_{1}=7, \theta_{2}=6 , \theta_{3}=5 1.5135 Ð _{3}=\left(834.56, 3.63, 0.80, 1, 0, 1.39\right)
    \theta_{1}=8, \theta_{2}=7 , \theta_{3}=6 1.28791 Ð _{1}=\left(911.73, 2.22, 0.44, 0.61, 0, 0\right)
    \theta_{1}=10, \theta_{2}=9 , \theta_{3}=8 0.950507 Ð _{0}=\left(1061.32, 0, 0, 0, 0, 0\right)
    \theta_{1}=15, \theta_{2}=14 , \theta_{3}=13 0.485603 Ð _{0}=\left(1061.32, 0, 0, 0, 0, 0\right)

     | Show Table
    DownLoad: CSV

    When \Re_{0}\left(\theta_{1}\right) \leq1 , we obtain

    \begin{equation} \theta_{1}\geq \theta_{1}^{\min}, \text{ where }\theta_{1}^{\min} = \max \left \{ 0, \frac{1}{\hslash_{1}}\ln \left( \frac{S_{0}^{q}\left \{ a\varepsilon \text{ $ \eta $ }_{2}+\lambda e^{-\hslash_{2}\theta_{2}}\left( b\text{ $ \eta $ } _{1}e^{-\hslash_{3}\theta_{3}}+\varepsilon \text{ $ \eta $ }_{3}\right) \right \} }{a\varepsilon \left( \lambda+\gamma \right) \left( 1+\delta S_{0} ^{q}\right) }\right) \right \} .\nonumber \end{equation}

    Therefore, if \theta_{1}\geq \theta_{1}^{\min} , then the infection-free equilibrium Ð _{0} is G.A.S. We select the values \theta_{2} = 7 and \theta_{3} = 6 to compute \theta_{1}^{\min} as \theta_{1}^{\min} = 10.5302 . As a result, we have the following scenarios:

    (i) If \theta_{1}\geq10.5302 , then \Re_{0}(\theta_{1})\leq1 and Ð _{0} is G.A.S,

    (ii) If \theta_{1} < 10.5302 , then \Re_{0}(\theta_{1}) > 1 and one of the other equilibria is G.A.S.

    The above discussion gives us a significant insights that the increase of time delays period can play the same influence as antiviral treatment

    In this paper, we formulated an HIV dynamics model with three types of distributed-time delays. Both CTL and antibody immune responses were considered. The model incorporated two routes of transmission, VTC and CTC. The CTC transmission is due to (i) the contact between healthy {\rm{CD}}{4^ + }{\rm{T}} cells and silent HIV-infected cells, and (ii) the contact between healthy {\rm{CD}}{4^ + }{\rm{T}} cells and active HIV-infected cells. We proved that the solutions of the model are nonnegative and bounded. We showed that the model has five possible equilibria, and their existence is determined by five threshold parameters. The global asymptotic stability of all equilibria was investigated by constructing Lyapunov functionals and utilizing LaSalle's invariance principle. Theorems 1-5 and Corollary 1 extend many existing results in the literature. We performed numerical simulations to support our theoretical results. We studied the effect of the time delay and CTC transmission on the HIV dynamics. We showed that the inclusion of time delay can significantly increase the concentration of the healthy CD4 ^{+} T cells and reduce the concentrations of the infected cells and free HIV particles. This gives us a significant observation that increasing the delay period can play the same influence of antiviral treatment. We showed that the presence of CTC transmission reduces the number of healthy CD4 ^{+} T cells and raises the numbers of infected cells and free HIV particles. We observed that the presence of silent and active HIV-infected CTC transmissions into the HIV infection model increases the basic HIV reproduction number \Re_{0} , since \Re_{0} = \sum_{i = 1}^{3}\Re_{0i} > \Re_{01} . Therefore, neglecting the CTC transmission will lead to under-evaluated basic HIV reproduction number. Our proposed HIV dynamics model can be generalized and extended to incorporate different biological phenomena such as reaction-diffusion [63,64,65,66,67,68] and stochastic interactions [69].

    This project was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, Saudi Arabia under grant no. (KEP-PhD-20-130-41). The authors, therefore, acknowledge with thanks DSR technical and financial support.

    The authors declare that they have no conflict interests.

    In this appendix we present the proof of Theorems 1-5.

    Proof of Theorem 1. Constructing a Lyapunov functional candidate:

    \begin{align*} \Phi_{0}(S, L, I, V, C, A) & = S-S_{0}-\int_{S_{0}}^{S}\frac{\digamma_{1}(S_{0} )}{\digamma_{1}(\theta)}d\theta+\frac{1}{\mathcal{H}_{1}}L+\frac {b\mathcal{H}_{3}\digamma_{1}(S_{0})+\varepsilon \digamma_{3}(S_{0} )}{a\varepsilon}I\\ & +\frac{\digamma_{1}(S_{0})}{\varepsilon}V+\frac{\mu \left[ b\mathcal{H} _{3}\digamma_{1}(S_{0})+\varepsilon \digamma_{3}(S_{0})\right] }{\sigma a\varepsilon}C+\frac{\varpi \digamma_{1}(S_{0})}{\tau \varepsilon}A\\ & +\frac{1}{\mathcal{H}_{1}}\int \limits_{0}^{\kappa_{1}}\mathcal{\bar{H}} _{1}(\theta)\int \limits_{t-\theta}^{t}\left[ \aleph_{1}(S(\varkappa ), V(\varkappa))+\aleph_{2}(S(\varkappa), L(\varkappa))+\aleph_{3} (S(\varkappa), I(\varkappa))\right] d\varkappa d\theta \\ & +\frac{\lambda \left[ b\mathcal{H}_{3}\digamma_{1}(S_{0})+\varepsilon \digamma_{3}(S_{0})\right] }{a\varepsilon}\int \limits_{0}^{\kappa_{2} }\mathcal{\bar{H}}_{2}(\theta)\int \limits_{t-\theta}^{t}\mathcal{J} _{1}(L(\varkappa))d\varkappa d\theta \\ & +\frac{b\digamma_{1}(S_{0})}{\varepsilon}\int \limits_{0}^{\kappa_{3} }\mathcal{\bar{H}}_{3}(\theta)\int \limits_{t-\theta}^{t}\mathcal{J} _{2}(I(\varkappa))d\varkappa d\theta. \end{align*}

    We note that, \Phi_{0}(S, L, I, V, C, A) > 0 for all S, L, I, V, C, A > 0, and \Phi_{0}(S_{0}, 0, 0, 0, 0, 0) = 0 . We calculate \frac{d\Phi_{0}}{dt} along the solutions of model (2.1) as:

    \begin{align} \frac{d\Phi_{0}}{dt} & = \left( 1-\frac{\digamma_{1}(S_{0})}{\digamma _{1}(S)}\right) \left( \yen (S)-\aleph_{1}(S, V)-\aleph_{2}(S, L)-\aleph _{3}(S, I)\right) +\frac{1}{\mathcal{H}_{1}}\left[ \int \limits_{0} ^{\kappa_{1}}\mathcal{\bar{H}}_{1}(\theta)\right. \\ & \left. \times \left \{ \aleph_{1}(S(t-\theta), V(t-\theta))+\aleph _{2}(S(t-\theta), L(t-\theta))+\aleph_{3}(S(t-\theta), I(t-\theta))\right \} d\theta \right. \\ & \left. -\left( \lambda+\gamma \right) \mathcal{J}_{1}(L)\right] +\frac{b\mathcal{H}_{3}\digamma_{1}(S_{0})+\varepsilon \digamma_{3}(S_{0} )}{a\varepsilon}\left[ \lambda \int \limits_{0}^{\kappa_{2}}\mathcal{\bar{H} }_{2}(\theta)\mathcal{J}_{1}(L(t-\theta))d\theta-a\mathcal{J}_{2}(I)\right. \\ & \left. -\mu \mathcal{J}_{4}(C)\mathcal{J}_{2}(I)\right] +\frac {\digamma_{1}(S_{0})}{\varepsilon}\left[ b\int \limits_{0}^{\kappa_{3} }\mathcal{\bar{H}}_{3}(\theta)\mathcal{J}_{2}(I(t-\theta))d\theta -\varepsilon \mathcal{J}_{3}(V)-\varpi \mathcal{J}_{5}(A)\mathcal{J} _{3}(V)\right] \\ & +\frac{\mu \left[ b\mathcal{H}_{3}\digamma_{1}(S_{0})+\varepsilon \digamma_{3}(S_{0})\right] }{\sigma a\varepsilon}\left( \sigma \mathcal{J}_{4}(C)\mathcal{J}_{2}(I)-\pi \mathcal{J}_{4}(C)\right) +\frac{\varpi \digamma_{1}(S_{0})}{\tau \varepsilon} \\ & \times \left( \tau \mathcal{J}_{5}(A)\mathcal{J}_{3}(V)-\zeta \mathcal{J} _{5}(A)\right) +\frac{1}{\mathcal{H}_{1}}\int \limits_{0}^{\kappa_{1} }\mathcal{\bar{H}}_{1}(\theta)\left[ \aleph_{1}(S, V)+\aleph_{2} (S, L)+\aleph_{3}(S, I)\right] d\theta \\ & -\frac{1}{\mathcal{H}_{1}}\int \limits_{0}^{\kappa_{1}}\mathcal{\bar{H}} _{1}(\theta)\left[ \aleph_{1}(S(t-\theta), V(t-\theta))+\aleph_{2} (S(t-\theta), L(t-\theta))\right. \\ & \left. +\aleph_{3}(S(t-\theta), I(t-\theta))\right] d\theta+\frac {\lambda \left[ b\mathcal{H}_{3}\digamma_{1}(S_{0})+\varepsilon \digamma _{3}(S_{0})\right] }{a\varepsilon}\int \limits_{0}^{\kappa_{2}}\mathcal{\bar {H}}_{2}(\theta) \\ & \times \left[ \mathcal{J}_{1}(L)-\mathcal{J}_{1}(L(t-\theta))\right] d\theta+\frac{b\digamma_{1}(S_{0})}{\varepsilon}\int \limits_{0}^{\kappa_{3} }\mathcal{\bar{H}}_{3}(\theta)\left[ \mathcal{J}_{2}(I)-\mathcal{J} _{2}(I(t-\theta))\right] d\theta. \end{align} (8.1)

    Collecting terms of Eq. (8.1), we get

    \begin{align} \frac{d\Phi_{0}}{dt} & = \yen (S)\left( 1-\frac{\digamma_{1}(S_{0} )}{\digamma_{1}(S)}\right) +\aleph_{1}(S, V)\frac{\digamma_{1}(S_{0} )}{\digamma_{1}(S)}+\aleph_{2}(S, L)\frac{\digamma_{1}(S_{0})}{\digamma_{1} (S)}+\aleph_{3}(S, I)\frac{\digamma_{1}(S_{0})}{\digamma_{1}(S)} \\ & -\frac{\lambda+\gamma}{\mathcal{H}_{1}}\mathcal{J}_{1}(L)+\frac {\lambda \mathcal{H}_{2}\left[ b\mathcal{H}_{3}\digamma_{1}(S_{0} )+\varepsilon \digamma_{3}(S_{0})\right] }{a\varepsilon}\mathcal{J} _{1}(L)-\digamma_{3}(S_{0})\mathcal{J}_{2}(I) \\ & -\digamma_{1}(S_{0})\mathcal{J}_{3}(V)-\frac{\mu \pi \left[ b\mathcal{H} _{3}\digamma_{1}(S_{0})+\varepsilon \digamma_{3}(S_{0})\right] }{\sigma a\varepsilon}\mathcal{J}_{4}(C)-\frac{\varpi \zeta \digamma_{1}(S_{0})} {\tau \varepsilon}\mathcal{J}_{5}(A). \end{align} (8.2)

    From condition H4 and Eq. (5.1), we get

    \begin{align*} \frac{\aleph_{1}(S, V)}{\mathcal{J}_{3}(V)} & \leq \lim \limits_{V\rightarrow 0^{+}}\frac{\aleph_{1}(S, V)}{\mathcal{J}_{3}(V)} = \digamma_{1}(S)\text{, }\\ \frac{\aleph_{2}(S, L)}{\mathcal{J}_{1}(L)} & \leq \lim \limits_{L\rightarrow 0^{+}}\frac{\aleph_{2}(S, L)}{\mathcal{J}_{1}(L)} = \digamma_{2}(S), \\ \frac{\aleph_{3}(S, I)}{\mathcal{J}_{2}(I)} & \leq \lim \limits_{I\rightarrow 0^{+}}\frac{\aleph_{3}(S, I)}{\mathcal{J}_{2}(I)} = \digamma_{3}(S). \end{align*}

    Then,

    \aleph_{1}(S, V)\leq \digamma_{1}(S)\mathcal{J}_{3}(V), \ \ \ \ \ \aleph_{2}(S, L)\leq \digamma_{2}(S)\mathcal{J}_{1}(L), \ \ \ \ \ \aleph_{3}(S, I)\leq \digamma_{3}(S)\mathcal{J}_{2}(I).

    Therefore, Eq. (8.2) will become

    \begin{align} \frac{d\Phi_{0}}{dt} & \leq \yen (S)\left( 1-\frac{\digamma_{1}(S_{0} )}{\digamma_{1}(S)}\right) +\frac{\digamma_{1}(S_{0})\digamma_{2} (S)}{\digamma_{1}(S)}\mathcal{J}_{1}(L)+\frac{\digamma_{1}(S_{0})\digamma _{3}(S)}{\digamma_{1}(S)}\mathcal{J}_{2}(I) \\ & -\frac{\lambda+\gamma}{\mathcal{H}_{1}}\mathcal{J}_{1}(L)+\frac {\lambda \mathcal{H}_{2}\left[ b\mathcal{H}_{3}\digamma_{1}(S_{0} )+\varepsilon \digamma_{3}(S_{0})\right] }{a\varepsilon}\mathcal{J} _{1}(L)-\digamma_{3}(S_{0})\mathcal{J}_{2}(I) \\ & -\frac{\mu \pi \left[ b\mathcal{H}_{3}\digamma_{1}(S_{0})+\varepsilon \digamma_{3}(S_{0})\right] }{\sigma a\varepsilon}\mathcal{J}_{4} (C)-\frac{\varpi \zeta \digamma_{1}(S_{0})}{\tau \varepsilon}\mathcal{J} _{5}(A) \\ & = \yen (S)\left( 1-\frac{\digamma_{1}(S_{0})}{\digamma_{1}(S)}\right) +\left[ \frac{\digamma_{1}(S_{0})\digamma_{3}(S)}{\digamma_{1}(S)} -\digamma_{3}(S_{0})\right] \mathcal{J}_{2}(I) \\ & +\frac{\lambda+\gamma}{\mathcal{H}_{1}}\left[ \frac{\mathcal{H} _{1}\digamma_{1}(S_{0})\digamma_{2}(S)}{\left( \lambda+\gamma \right) \digamma_{1}(S)}+\frac{\lambda \mathcal{H}_{1}\mathcal{H}_{2}\left \{ b\mathcal{H}_{3}\digamma_{1}(S_{0})+\varepsilon \digamma_{3}(S_{0})\right \} }{a\varepsilon \left( \lambda+\gamma \right) }-1\right] \mathcal{J} _{1}(L) \\ & -\frac{\mu \pi \left[ b\mathcal{H}_{3}\digamma_{1}(S_{0})+\varepsilon \digamma_{3}(S_{0})\right] }{\sigma a\varepsilon}\mathcal{J}_{4} (C)-\frac{\varpi \zeta \digamma_{1}(S_{0})}{\tau \varepsilon}\mathcal{J}_{5}(A). \end{align} (8.3)

    Condition H5 implies that

    \begin{align} \frac{\digamma_{1}(S_{0})\digamma_{2}(S)}{\digamma_{1}(S)} & \leq \digamma_{1}(S_{0})\frac{\digamma_{2}(S_{0})}{\digamma_{1}(S_{0})} = \digamma_{2}(S_{0})\text{, } \\ \frac{\digamma_{1}(S_{0})\digamma_{3}(S)}{\digamma_{1}(S)} & \leq \digamma_{1}(S_{0})\frac{\digamma_{3}(S_{0})}{\digamma_{1}(S_{0})} = \digamma_{3}(S_{0})\text{ for }0 \lt S\leq S_{0}. \end{align} (8.4)

    Substituting inequality (8.4) into Eq. (8.3) and using \yen (S_{0}) = 0 , we get

    \begin{align*} \frac{d\Phi_{0}}{dt} & \leq \left( \yen (S)-\yen (S_{0})\right) \left( 1-\frac{\digamma_{1}(S_{0})}{\digamma_{1}(S)}\right) \\ & +\frac{\lambda+\gamma}{\mathcal{H}_{1}}\left[ \frac{b\lambda \mathcal{H}_{1}\mathcal{H}_{2}\mathcal{H}_{3}\digamma_{1}(S_{0})} {a\varepsilon \left( \lambda+\gamma \right) }+\frac{\mathcal{H}_{1} \digamma_{2}(S_{0})}{\lambda+\gamma}+\frac{\lambda \mathcal{H}_{1} \mathcal{H}_{2}\digamma_{3}(S_{0})}{a\left( \lambda+\gamma \right) }-1\right] \mathcal{J}_{1}(L)\\ & -\frac{\mu \pi \left[ b\mathcal{H}_{3}\digamma_{1}(S_{0})+\varepsilon \digamma_{3}(S_{0})\right] }{\sigma a\varepsilon}\mathcal{J}_{4} (C)-\frac{\varpi \zeta \digamma_{1}(S_{0})}{\tau \varepsilon}\mathcal{J}_{5}(A)\\ & = \left( \yen (S)-\yen (S_{0})\right) \left( 1-\frac{\digamma_{1}(S_{0} )}{\digamma_{1}(S)}\right) +\frac{\lambda+\gamma}{\mathcal{H}_{1}}\left( \Re_{0}-1\right) \mathcal{J}_{1}(L)\\ & -\frac{\mu \pi \left[ b\mathcal{H}_{3}\digamma_{1}(S_{0})+\varepsilon \digamma_{3}(S_{0})\right] }{\sigma a\varepsilon}\mathcal{J}_{4} (C)-\frac{\varpi \zeta \digamma_{1}(S_{0})}{\tau \varepsilon}\mathcal{J}_{5}(A). \end{align*}

    Conditions H1, H2 and Eq. (5.2) provide that \yen (S) is a strictly decreasing function of S , while \digamma_{1}(S) is a strictly increasing function of S . Then,

    \left( \yen (S)-\yen (S_{0})\right) \left( 1-\frac{\digamma_{1}(S_{0} )}{\digamma_{1}(S)}\right) \leq0.

    Therefore, \frac{d\Phi_{0}}{dt}\leq0 for all S, L, I, V, C, A > 0 with equality holding when S = S_{0} and L = C = A = 0. Let \Upsilon_{0} = \left \{ (S, L, I, V, C, A):\frac{d\Phi_{0}}{dt} = 0\right \} and \Upsilon_{0}^{^{\prime}} be the largest invariant subset of \Upsilon_{0} . Therefore, the solutions of system (2.1) converge to \Upsilon_{0}^{^{\prime}} [49]. The set \Upsilon_{0}^{^{\prime}} is invariant and contains elements which satisfy S(t) = S_{0} and L(t) = C(t) = A(t) = 0 . According to LaSalle's invariance principle we have \lim \limits_{t\rightarrow \infty} S(t) = S_{0} and \lim \limits_{t\rightarrow \infty} L(t) = \lim \limits_{t\rightarrow \infty }C(t) = \lim \limits_{t\rightarrow \infty}A(t) = 0 . Then, \dot{S}(t) = 0 and \dot{L}(t) = \dot{C}(t) = \dot{A}(t) = 0. From the third and fourth equations of system (2.1), we have

    \begin{align} \dot{I} & = -a\mathcal{J}_{2}(I), \end{align} (8.5)
    \begin{align} \dot{V} & = b\int \limits_{0}^{\kappa_{3}}\mathcal{\bar{H}}_{3}(\theta )\mathcal{J}_{2}(I(t-\theta))d\theta-\varepsilon \mathcal{J}_{3}(V). \end{align} (8.6)

    Let us define a Lyapunov function as follows:

    \tilde{\Phi}_{0} = I(t)+\frac{a}{2b\mathcal{H}_{3}}V(t)+\frac{a}{2\mathcal{H} _{3}}\int \limits_{0}^{\kappa_{3}}\mathcal{\bar{H}}_{3}(\theta)\int \limits_{t-\theta}^{t}\mathcal{J}_{2}(I(\varkappa))d\varkappa d\theta.

    Therefore, the time derivative of \tilde{\Phi}_{0} along the solutions of system (8.5)-(8.6) can be calculated as follows:

    \frac{d\tilde{\Phi}_{0}}{dt} = -\frac{a}{2}\left( \mathcal{J}_{2} (I)+\frac{\varepsilon}{b\mathcal{H}_{3}}\mathcal{J}_{3}(V)\right) \leq0.

    Utilizing condition H3it is clear that \frac{d\tilde{\Phi}_{0}} {dt} = 0 if and only if I(t) = V(t) = 0 for all t . Let \Upsilon_{0} ^{^{^{\prime \prime}}} = \left \{ (S, L, I, V, C, A)\in \Upsilon_{0}^{^{\prime}} :\frac{d\tilde{\Phi}_{0}}{dt} = 0\right \} . Then, \Upsilon_{0}^{^{^{\prime \prime}}} = \left \{ (S, L, I, V, C, A)\in \Upsilon_{0}^{^{\prime}}:S = S_{0}, L = I = V = C = A = 0\right \} = \left \{ \text{\DJ }_{0}\right \} . Hence, all solutions trajectories approach Ð _{0} and this means that Ð _{0} is G.A.S [49].

    Proof of Theorem 2. Define \Phi_{1}(S, L, I, V, C, A) as:

    \begin{align*} \Phi_{1} & = S-S_{1}-\int_{S_{1}}^{S}\frac{\aleph_{1}(S_{1}, V_{1})} {\aleph_{1}(\varkappa, V_{1})}d\varkappa+\frac{1}{\mathcal{H}_{1}}\left( L-L_{1}-\int_{L_{1}}^{L}\frac{\mathcal{J}_{1}(L_{1})}{\mathcal{J} _{1}(\varkappa)}d\varkappa \right) \\ & +\frac{b\mathcal{H}_{3}\mathcal{J}_{2}(I_{1})\aleph_{1}(S_{1} , V_{1})+\varepsilon \mathcal{J}_{3}(V_{1})\aleph_{3}(S_{1}, I_{1})} {a\varepsilon \mathcal{J}_{2}(I_{1})\mathcal{J}_{3}(V_{1})}\left( I-I_{1} -\int_{I_{1}}^{I}\frac{\mathcal{J}_{2}(I_{1})}{\mathcal{J}_{2}(\varkappa )}d\varkappa \right) \\ & +\frac{\aleph_{1}(S_{1}, V_{1})}{\varepsilon \mathcal{J}_{3}(V_{1})}\left( V-V_{1}-\int_{V_{1}}^{V}\frac{\mathcal{J}_{3}(V_{1})}{\mathcal{J} _{3}(\varkappa)}d\varkappa \right) \\ & +\frac{\mu \left[ b\mathcal{H}_{3}\mathcal{J}_{2}(I_{1})\aleph_{1} (S_{1}, V_{1})+\varepsilon \mathcal{J}_{3}(V_{1})\aleph_{3}(S_{1}, I_{1})\right] }{\sigma a\varepsilon \mathcal{J}_{2}(I_{1})\mathcal{J}_{3}(V_{1})} C+\frac{\varpi \aleph_{1}(S_{1}, V_{1})}{\tau \varepsilon \mathcal{J}_{3}(V_{1} )}A\\ & +\frac{\aleph_{1}(S_{1}, V_{1})}{\mathcal{H}_{1}}\int \limits_{0}^{\kappa _{1}}\mathcal{\bar{H}}_{1}(\theta)\int \limits_{t-\theta}^{t}\mathcal{K}\left( \frac{\aleph_{1}(S(\varkappa), V(\varkappa))}{\aleph_{1}(S_{1}, V_{1})}\right) d\varkappa d\theta \\ & +\frac{\aleph_{2}(S_{1}, L_{1})}{\mathcal{H}_{1}}\int \limits_{0}^{\kappa _{1}}\mathcal{\bar{H}}_{1}(\theta)\int \limits_{t-\theta}^{t}\mathcal{K}\left( \frac{\aleph_{2}(S(\varkappa), L(\varkappa))}{\aleph_{2}(S_{1}, L_{1})}\right) d\varkappa d\theta \\ & +\frac{\aleph_{3}(S_{1}, I_{1})}{\mathcal{H}_{1}}\int \limits_{0}^{\kappa _{1}}\mathcal{\bar{H}}_{1}(\theta)\int \limits_{t-\theta}^{t}\mathcal{K}\left( \frac{\aleph_{3}(S(\varkappa), I(\varkappa))}{\aleph_{3}(S_{1}, I_{1})}\right) d\varkappa d\theta \\ & +\frac{\lambda \left[ b\mathcal{H}_{3}\mathcal{J}_{2}(I_{1})\aleph _{1}(S_{1}, V_{1})+\varepsilon \mathcal{J}_{3}(V_{1})\aleph_{3}(S_{1} , I_{1})\right] \mathcal{J}_{1}(L_{1})}{a\varepsilon \mathcal{J}_{2} (I_{1})\mathcal{J}_{3}(V_{1})}\int \limits_{0}^{\kappa_{2}}\mathcal{\bar{H} }_{2}(\theta)\\ & \times \int \limits_{t-\theta}^{t}\mathcal{K}\left( \frac{\mathcal{J} _{1}(L(\varkappa))}{\mathcal{J}_{1}(L_{1})}\right) d\varkappa d\theta +\frac{b\aleph_{1}(S_{1}, V_{1})\mathcal{J}_{2}(I_{1})}{\varepsilon \mathcal{J}_{3}(V_{1})}\int \limits_{0}^{\kappa_{3}}\mathcal{\bar{H}} _{3}(\theta)\int \limits_{t-\theta}^{t}\mathcal{K}\left( \frac{\mathcal{J} _{2}(I(\varkappa))}{\mathcal{J}_{2}(I_{1})}\right) d\varkappa d\theta. \end{align*}

    Calculating \frac{d\Phi_{1}}{dt} as:

    \begin{align} \frac{d\Phi_{1}}{dt} & = \left( 1-\frac{\aleph_{1}(S_{1}, V_{1})}{\aleph _{1}(S, V_{1})}\right) \left( \yen (S)-\aleph_{1}(S, V)-\aleph_{2} (S, L)-\aleph_{3}(S, I)\right) +\frac{1}{\mathcal{H}_{1}}\left( 1-\frac {\mathcal{J}_{1}(L_{1})}{\mathcal{J}_{1}(L)}\right) \\ & \times \left[ \int \limits_{0}^{\kappa_{1}}\mathcal{\bar{H}}_{1} (\theta)\left \{ \aleph_{1}(S(t-\theta), V(t-\theta))+\aleph_{2}(S(t-\theta ), L(t-\theta))+\aleph_{3}(S(t-\theta), I(t-\theta))\right \} d\theta \right. \\ & \left. -\left( \lambda+\gamma \right) \mathcal{J}_{1}(L)\right] +\frac{b\mathcal{H}_{3}\mathcal{J}_{2}(I_{1})\aleph_{1}(S_{1}, V_{1} )+\varepsilon \mathcal{J}_{3}(V_{1})\aleph_{3}(S_{1}, I_{1})}{a\varepsilon \mathcal{J}_{2}(I_{1})\mathcal{J}_{3}(V_{1})}\left( 1-\frac{\mathcal{J} _{2}(I_{1})}{\mathcal{J}_{2}(I)}\right) \\ & \times \left[ \lambda \int \limits_{0}^{\kappa_{2}}\mathcal{\bar{H}} _{2}(\theta)\mathcal{J}_{1}(L(t-\theta))d\theta-a\mathcal{J}_{2} (I)-\mu \mathcal{J}_{4}(C)\mathcal{J}_{2}(I)\right] +\frac{\aleph_{1} (S_{1}, V_{1})}{\varepsilon \mathcal{J}_{3}(V_{1})} \\ & \times \left( 1-\frac{\mathcal{J}_{3}(V_{1})}{\mathcal{J}_{3}(V)}\right) \left[ b\int \limits_{0}^{\kappa_{3}}\mathcal{\bar{H}}_{3}(\theta )\mathcal{J}_{2}(I(t-\theta))d\theta-\varepsilon \mathcal{J}_{3}(V)-\varpi \mathcal{J}_{5}(A)\mathcal{J}_{3}(V)\right] \\ & +\frac{\mu \left[ b\mathcal{H}_{3}\mathcal{J}_{2}(I_{1})\aleph_{1} (S_{1}, V_{1})+\varepsilon \mathcal{J}_{3}(V_{1})\aleph_{3}(S_{1}, I_{1})\right] }{\sigma a\varepsilon \mathcal{J}_{2}(I_{1})\mathcal{J}_{3}(V_{1})}\left( \sigma \mathcal{J}_{4}(C)\mathcal{J}_{2}(I)-\pi \mathcal{J}_{4}(C)\right) \\ & +\frac{\varpi \aleph_{1}(S_{1}, V_{1})}{\tau \varepsilon \mathcal{J}_{3} (V_{1})}\left( \tau \mathcal{J}_{5}(A)\mathcal{J}_{3}(V)-\zeta \mathcal{J} _{5}(A)\right) +\frac{\aleph_{1}(S_{1}, V_{1})}{\mathcal{H}_{1}} \int \limits_{0}^{\kappa_{1}}\mathcal{\bar{H}}_{1}(\theta)\left[ \frac {\aleph_{1}(S, V)}{\aleph_{1}(S_{1}, V_{1})}\right. \\ & \left. -\frac{\aleph_{1}(S(t-\theta), V(t-\theta))}{\aleph_{1}(S_{1} , V_{1})}+\ln \left( \frac{\aleph_{1}(S(t-\theta), V(t-\theta))}{\aleph _{1}(S, V)}\right) \right] d\theta+\frac{\aleph_{2}(S_{1}, L_{1})} {\mathcal{H}_{1}} \\ & \times \int \limits_{0}^{\kappa_{1}}\mathcal{\bar{H}}_{1}(\theta)\left[ \frac{\aleph_{2}(S, L)}{\aleph_{2}(S_{1}, L_{1})}-\frac{\aleph_{2} (S(t-\theta), L(t-\theta))}{\aleph_{2}(S_{1}, L_{1})}+\ln \left( \frac {\aleph_{2}(S(t-\theta), L(t-\theta))}{\aleph_{2}(S, L)}\right) \right] d\theta \\ & +\frac{\aleph_{3}(S_{1}, I_{1})}{\mathcal{H}_{1}}\int \limits_{0}^{\kappa _{1}}\mathcal{\bar{H}}_{1}(\theta)\left[ \frac{\aleph_{3}(S, I)}{\aleph _{3}(S_{1}, I_{1})}-\frac{\aleph_{3}(S(t-\theta), I(t-\theta))}{\aleph_{3} (S_{1}, I_{1})}\right. \\ & \left. +\ln \left( \frac{\aleph_{3}(S(t-\theta), I(t-\theta))}{\aleph _{3}(S, I)}\right) \right] d\theta+\frac{\lambda \left[ b\mathcal{H} _{3}\mathcal{J}_{2}(I_{1})\aleph_{1}(S_{1}, V_{1})+\varepsilon \mathcal{J} _{3}(V_{1})\aleph_{3}(S_{1}, I_{1})\right] \mathcal{J}_{1}(L_{1} )}{a\varepsilon \mathcal{J}_{2}(I_{1})\mathcal{J}_{3}(V_{1})} \\ & \times \int \limits_{0}^{\kappa_{2}}\mathcal{\bar{H}}_{2}(\theta)\left[ \frac{\mathcal{J}_{1}(L)}{\mathcal{J}_{1}(L_{1})}-\frac{\mathcal{J} _{1}(L(t-\theta))}{\mathcal{J}_{1}(L_{1})}+\ln \left( \frac{\mathcal{J} _{1}(L(t-\theta))}{\mathcal{J}_{1}(L)}\right) \right] d\theta \\ & +\frac{b\aleph_{1}(S_{1}, V_{1})\mathcal{J}_{2}(I_{1})}{\varepsilon \mathcal{J}_{3}(V_{1})}\int \limits_{0}^{\kappa_{3}}\mathcal{\bar{H}} _{3}(\theta)\left[ \frac{\mathcal{J}_{2}(I)}{\mathcal{J}_{2}(I_{1})} -\frac{\mathcal{J}_{2}(I(t-\theta))}{\mathcal{J}_{2}(I_{1})}+\ln \left( \frac{\mathcal{J}_{2}(I(t-\theta))}{\mathcal{J}_{2}(I)}\right) \right] d\theta. \end{align} (8.7)

    Collecting terms of Eq. (8.7), we derive

    \begin{align*} \frac{d\Phi_{1}}{dt} & = \yen (S)\left( 1-\frac{\aleph_{1}(S_{1}, V_{1} )}{\aleph_{1}(S, V_{1})}\right) +\aleph_{1}(S, V)\frac{\aleph_{1}(S_{1}, V_{1} )}{\aleph_{1}(S, V_{1})}+\aleph_{2}(S, L)\frac{\aleph_{1}(S_{1}, V_{1})} {\aleph_{1}(S, V_{1})}\\ & +\aleph_{3}(S, I)\frac{\aleph_{1}(S_{1}, V_{1})}{\aleph_{1}(S, V_{1})} -\frac{\lambda+\gamma}{\mathcal{H}_{1}}\mathcal{J}_{1}(L)-\frac{1} {\mathcal{H}_{1}}\int \limits_{0}^{\kappa_{1}}\mathcal{\bar{H}}_{1} (\theta)\frac{\aleph_{1}(S(t-\theta), V(t-\theta))\mathcal{J}_{1}(L_{1} )}{\mathcal{J}_{1}(L)}d\theta \\ & -\frac{1}{\mathcal{H}_{1}}\int \limits_{0}^{\kappa_{1}}\mathcal{\bar{H}} _{1}(\theta)\frac{\aleph_{2}(S(t-\theta), L(t-\theta))\mathcal{J}_{1}(L_{1} )}{\mathcal{J}_{1}(L)}d\theta-\frac{1}{\mathcal{H}_{1}}\int \limits_{0} ^{\kappa_{1}}\mathcal{\bar{H}}_{1}(\theta)\\ & \times \frac{\aleph_{3}(S(t-\theta), I(t-\theta))\mathcal{J}_{1}(L_{1} )}{\mathcal{J}_{1}(L)}d\theta+\frac{\lambda+\gamma}{\mathcal{H}_{1} }\mathcal{J}_{1}(L_{1})-\aleph_{3}(S_{1}, I_{1})\frac{\mathcal{J}_{2} (I)}{\mathcal{J}_{2}(I_{1})}\\ & -\frac{\lambda \left[ b\mathcal{H}_{3}\mathcal{J}_{2}(I_{1})\aleph _{1}(S_{1}, V_{1})+\varepsilon \mathcal{J}_{3}(V_{1})\aleph_{3}(S_{1} , I_{1})\right] }{a\varepsilon \mathcal{J}_{2}(I_{1})\mathcal{J}_{3}(V_{1} )}\int \limits_{0}^{\kappa_{2}}\mathcal{\bar{H}}_{2}(\theta)\frac {\mathcal{J}_{1}(L(t-\theta))\mathcal{J}_{2}(I_{1})}{\mathcal{J}_{2} (I)}d\theta \\ & +\frac{b\mathcal{H}_{3}\mathcal{J}_{2}(I_{1})\aleph_{1}(S_{1} , V_{1})+\varepsilon \mathcal{J}_{3}(V_{1})\aleph_{3}(S_{1}, I_{1})} {\varepsilon \mathcal{J}_{2}(I_{1})\mathcal{J}_{3}(V_{1})}\mathcal{J}_{2} (I_{1})\\ & +\frac{\mu \left[ b\mathcal{H}_{3}\mathcal{J}_{2}(I_{1})\aleph_{1} (S_{1}, V_{1})+\varepsilon \mathcal{J}_{3}(V_{1})\aleph_{3}(S_{1}, I_{1})\right] }{a\varepsilon \mathcal{J}_{2}(I_{1})\mathcal{J}_{3}(V_{1})}\mathcal{J} _{4}(C)\mathcal{J}_{2}(I_{1})\\ & -\aleph_{1}(S_{1}, V_{1})\frac{\mathcal{J}_{3}(V)}{\mathcal{J}_{3}(V_{1} )}-\frac{b\aleph_{1}(S_{1}, V_{1})}{\varepsilon \mathcal{J}_{3}(V_{1})} \int \limits_{0}^{\kappa_{3}}\mathcal{\bar{H}}_{3}(\theta)\frac{\mathcal{J} _{2}(I(t-\theta))\mathcal{J}_{3}(V_{1})}{\mathcal{J}_{3}(V)}d\theta+\aleph _{1}(S_{1}, V_{1})\\ & +\frac{\varpi \aleph_{1}(S_{1}, V_{1})}{\varepsilon \mathcal{J}_{3}(V_{1} )}\mathcal{J}_{5}(A)\mathcal{J}_{3}(V_{1})-\frac{\mu \pi \left[ b\mathcal{H} _{3}\mathcal{J}_{2}(I_{1})\aleph_{1}(S_{1}, V_{1})+\varepsilon \mathcal{J} _{3}(V_{1})\aleph_{3}(S_{1}, I_{1})\right] }{\sigma a\varepsilon \mathcal{J}_{2}(I_{1})\mathcal{J}_{3}(V_{1})}\mathcal{J}_{4}(C)\\ & -\frac{\varpi \zeta \aleph_{1}(S_{1}, V_{1})}{\tau \varepsilon \mathcal{J} _{3}(V_{1})}\mathcal{J}_{5}(A)+\frac{\aleph_{1}(S_{1}, V_{1})}{\mathcal{H}_{1} }\int \limits_{0}^{\kappa_{1}}\mathcal{\bar{H}}_{1}(\theta)\ln \left( \frac{\aleph_{1}(S(t-\theta), V(t-\theta))}{\aleph_{1}(S, V)}\right) d\theta \\ & +\frac{\aleph_{2}(S_{1}, L_{1})}{\mathcal{H}_{1}}\int \limits_{0}^{\kappa _{1}}\mathcal{\bar{H}}_{1}(\theta)\ln \left( \frac{\aleph_{2}(S(t-\theta ), L(t-\theta))}{\aleph_{2}(S, L)}\right) d\theta+\frac{\aleph_{3}(S_{1} , I_{1})}{\mathcal{H}_{1}}\int \limits_{0}^{\kappa_{1}}\mathcal{\bar{H}} _{1}(\theta)\\ & \times \ln \left( \frac{\aleph_{3}(S(t-\theta), I(t-\theta))}{\aleph _{3}(S, I)}\right) d\theta+\frac{\lambda \mathcal{H}_{2}\left[ b\mathcal{H} _{3}\mathcal{J}_{2}(I_{1})\aleph_{1}(S_{1}, V_{1})+\varepsilon \mathcal{J} _{3}(V_{1})\aleph_{3}(S_{1}, I_{1})\right] }{a\varepsilon \mathcal{J}_{2} (I_{1})\mathcal{J}_{3}(V_{1})}\\ & \times \mathcal{J}_{1}(L)+\frac{\lambda \left[ b\mathcal{H}_{3} \mathcal{J}_{2}(I_{1})\aleph_{1}(S_{1}, V_{1})+\varepsilon \mathcal{J}_{3} (V_{1})\aleph_{3}(S_{1}, I_{1})\right] \mathcal{J}_{1}(L_{1})}{a\varepsilon \mathcal{J}_{2}(I_{1})\mathcal{J}_{3}(V_{1})}\int \limits_{0}^{\kappa_{2} }\mathcal{\bar{H}}_{2}(\theta)\\ & \times \ln \left( \frac{\mathcal{J}_{1}(L(t-\theta))}{\mathcal{J}_{1} (L)}\right) d\theta+\frac{b\aleph_{1}(S_{1}, V_{1})\mathcal{J}_{2}(I_{1} )}{\varepsilon \mathcal{J}_{3}(V_{1})}\int \limits_{0}^{\kappa_{3}} \mathcal{\bar{H}}_{3}(\theta)\ln \left( \frac{\mathcal{J}_{2}(I(t-\theta ))}{\mathcal{J}_{2}(I)}\right) d\theta. \end{align*}

    Using the equilibrium conditions for Ð _{1} , we get

    \begin{align*} & \left. \yen (S_{1}) = \aleph_{1}(S_{1}, V_{1})+\aleph_{2}(S_{1}, L_{1} )+\aleph_{3}(S_{1}, I_{1}) = \frac{\lambda+\gamma}{\mathcal{H}_{1}} \mathcal{J}_{1}(L_{1}), \right. \\ & \left. \frac{\lambda \mathcal{H}_{2}\mathcal{J}_{1}(L_{1})}{a} = \mathcal{J}_{2}(I_{1}), \ \ \ \ \ \mathcal{J}_{3}(V_{1}) = \frac {b\mathcal{H}_{3}\mathcal{J}_{2}(I_{1})}{\varepsilon}.\right. \end{align*}

    In addition,

    \begin{align*} \aleph_{1}(S_{1}, V_{1})+\aleph_{3}(S_{1}, I_{1}) & = \frac{b\mathcal{H} _{3}\mathcal{J}_{2}(I_{1})\aleph_{1}(S_{1}, V_{1})+\varepsilon \mathcal{J} _{3}(V_{1})\aleph_{3}(S_{1}, I_{1})}{\varepsilon \mathcal{J}_{2}(I_{1} )\mathcal{J}_{3}(V_{1})}\mathcal{J}_{2}(I_{1})\\ & = \frac{\lambda \mathcal{H}_{2}\left[ b\mathcal{H}_{3}\mathcal{J}_{2} (I_{1})\aleph_{1}(S_{1}, V_{1})+\varepsilon \mathcal{J}_{3}(V_{1})\aleph _{3}(S_{1}, I_{1})\right] }{a\varepsilon \mathcal{J}_{2}(I_{1})\mathcal{J} _{3}(V_{1})}\mathcal{J}_{1}(L_{1}). \end{align*}

    Then, we obtain

    \begin{align*} \frac{d\Phi_{1}}{dt} & = \left( \yen (S)-\yen (S_{1})\right) \left( 1-\frac{\aleph_{1}(S_{1}, V_{1})}{\aleph_{1}(S, V_{1})}\right) +\left( \aleph_{1}(S_{1}, V_{1})+\aleph_{2}(S_{1}, L_{1})+\aleph_{3}(S_{1}, I_{1})\right) \\ & \times \left( 1-\frac{\aleph_{1}(S_{1}, V_{1})}{\aleph_{1}(S, V_{1})}\right) +\aleph_{1}(S_{1}, V_{1})\frac{\aleph_{1}(S, V)}{\aleph_{1}(S, V_{1})}+\aleph _{2}(S_{1}, L_{1})\frac{\aleph_{2}(S, L)\aleph_{1}(S_{1}, V_{1})}{\aleph _{2}(S_{1}, L_{1})\aleph_{1}(S, V_{1})}\\ & +\aleph_{3}(S_{1}, I_{1})\frac{\aleph_{3}(S, I)\aleph_{1}(S_{1}, V_{1} )}{\aleph_{3}(S_{1}, I_{1})\aleph_{1}(S, V_{1})}-\aleph_{2}(S_{1}, L_{1} )\frac{\mathcal{J}_{1}(L)}{\mathcal{J}_{1}(L_{1})}-\frac{\aleph_{1} (S_{1}, V_{1})}{\mathcal{H}_{1}}\int \limits_{0}^{\kappa_{1}}\mathcal{\bar{H} }_{1}(\theta)\\ & \times \frac{\aleph_{1}(S(t-\theta), V(t-\theta))\mathcal{J}_{1}(L_{1} )}{\aleph_{1}(S_{1}, V_{1})\mathcal{J}_{1}(L)}d\theta-\frac{\aleph_{2} (S_{1}, L_{1})}{\mathcal{H}_{1}}\int \limits_{0}^{\kappa_{1}}\mathcal{\bar{H} }_{1}(\theta)\frac{\aleph_{2}(S(t-\theta), L(t-\theta))\mathcal{J}_{1}(L_{1} )}{\aleph_{2}(S_{1}, L_{1})\mathcal{J}_{1}(L)}d\theta \\ & -\frac{\aleph_{3}(S_{1}, I_{1})}{\mathcal{H}_{1}}\int \limits_{0}^{\kappa _{1}}\mathcal{\bar{H}}_{1}(\theta)\frac{\aleph_{3}(S(t-\theta), I(t-\theta ))\mathcal{J}_{1}(L_{1})}{\aleph_{3}(S_{1}, I_{1})\mathcal{J}_{1}(L)} d\theta+\aleph_{1}(S_{1}, V_{1})+\aleph_{2}(S_{1}, L_{1})\\ & +\aleph_{3}(S_{1}, I_{1})-\aleph_{3}(S_{1}, I_{1})\frac{\mathcal{J}_{2} (I)}{\mathcal{J}_{2}(I_{1})}-\frac{\aleph_{1}(S_{1}, V_{1})+\aleph_{3} (S_{1}, I_{1})}{\mathcal{H}_{2}}\int \limits_{0}^{\kappa_{2}}\mathcal{\bar{H} }_{2}(\theta)\frac{\mathcal{J}_{1}(L(t-\theta))\mathcal{J}_{2}(I_{1} )}{\mathcal{J}_{1}(L_{1})\mathcal{J}_{2}(I)}d\theta \\ & +\aleph_{1}(S_{1}, V_{1})+\aleph_{3}(S_{1}, I_{1})+\frac{\mu \left[ b\mathcal{H}_{3}\mathcal{J}_{2}(I_{1})\aleph_{1}(S_{1}, V_{1})+\varepsilon \mathcal{J}_{3}(V_{1})\aleph_{3}(S_{1}, I_{1})\right] }{a\varepsilon \mathcal{J}_{2}(I_{1})\mathcal{J}_{3}(V_{1})}\mathcal{J}_{4}(C)\mathcal{J} _{2}(I_{1})\\ & -\aleph_{1}(S_{1}, V_{1})\frac{\mathcal{J}_{3}(V)}{\mathcal{J}_{3}(V_{1} )}-\frac{\aleph_{1}(S_{1}, V_{1})}{\mathcal{H}_{3}}\int \limits_{0}^{\kappa_{3} }\mathcal{\bar{H}}_{3}(\theta)\frac{\mathcal{J}_{2}(I(t-\theta))\mathcal{J} _{3}(V_{1})}{\mathcal{J}_{2}(I_{1})\mathcal{J}_{3}(V)}d\theta+\aleph_{1} (S_{1}, V_{1})\\ & +\frac{\varpi \aleph_{1}(S_{1}, V_{1})}{\varepsilon \mathcal{J}_{3}(V_{1} )}\mathcal{J}_{5}(A)\mathcal{J}_{3}(V_{1})-\frac{\mu \pi \left[ b\mathcal{H} _{3}\mathcal{J}_{2}(I_{1})\aleph_{1}(S_{1}, V_{1})+\varepsilon \mathcal{J} _{3}(V_{1})\aleph_{3}(S_{1}, I_{1})\right] }{\sigma a\varepsilon \mathcal{J}_{2}(I_{1})\mathcal{J}_{3}(V_{1})}\mathcal{J}_{4}(C)\\ & -\frac{\varpi \zeta \aleph_{1}(S_{1}, V_{1})}{\tau \varepsilon \mathcal{J} _{3}(V_{1})}\mathcal{J}_{5}(A)+\frac{\aleph_{1}(S_{1}, V_{1})}{\mathcal{H}_{1} }\int \limits_{0}^{\kappa_{1}}\mathcal{\bar{H}}_{1}(\theta)\ln \left( \frac{\aleph_{1}(S(t-\theta), V(t-\theta))}{\aleph_{1}(S, V)}\right) d\theta \\ & +\frac{\aleph_{2}(S_{1}, L_{1})}{\mathcal{H}_{1}}\int \limits_{0}^{\kappa _{1}}\mathcal{\bar{H}}_{1}(\theta)\ln \left( \frac{\aleph_{2}(S(t-\theta ), L(t-\theta))}{\aleph_{2}(S, L)}\right) d\theta+\frac{\aleph_{3}(S_{1} , I_{1})}{\mathcal{H}_{1}}\int \limits_{0}^{\kappa_{1}}\mathcal{\bar{H}} _{1}(\theta)\\ & \times \ln \left( \frac{\aleph_{3}(S(t-\theta), I(t-\theta))}{\aleph _{3}(S, I)}\right) d\theta+\frac{\aleph_{1}(S_{1}, V_{1})+\aleph_{3} (S_{1}, I_{1})}{\mathcal{H}_{2}}\int \limits_{0}^{\kappa_{2}}\mathcal{\bar{H} }_{2}(\theta)\\ & \times \ln \left( \frac{\mathcal{J}_{1}(L(t-\theta))}{\mathcal{J}_{1} (L)}\right) d\theta+\frac{\aleph_{1}(S_{1}, V_{1})}{\mathcal{H}_{3}} \int \limits_{0}^{\kappa_{3}}\mathcal{\bar{H}}_{3}(\theta)\ln \left( \frac{\mathcal{J}_{2}(I(t-\theta))}{\mathcal{J}_{2}(I)}\right) d\theta. \end{align*}

    Considering the equalities given by (5.6) in case of n = 1 and after some calculations we get

    \begin{align*} \frac{d\Phi_{1}}{dt} & = \left( \yen (S)-\yen (S_{1})\right) \left( 1-\frac{\aleph_{1}(S_{1}, V_{1})}{\aleph_{1}(S, V_{1})}\right) -\left( \aleph_{1}(S_{1}, V_{1})+\aleph_{2}(S_{1}, L_{1})+\aleph_{3}(S_{1}, I_{1})\right) \\ & \times \left[ \frac{\aleph_{1}(S_{1}, V_{1})}{\aleph_{1}(S, V_{1})} -1-\ln \left( \frac{\aleph_{1}(S_{1}, V_{1})}{\aleph_{1}(S, V_{1})}\right) \right] -\frac{\aleph_{1}(S_{1}, V_{1})}{\mathcal{H}_{1}}\int \limits_{0} ^{\kappa_{1}}\mathcal{\bar{H}}_{1}(\theta)\\ & \times \left[ \frac{\aleph_{1}(S(t-\theta), V(t-\theta))\mathcal{J} _{1}(L_{1})}{\aleph_{1}(S_{1}, V_{1})\mathcal{J}_{1}(L)}-1-\ln \left( \frac{\aleph_{1}(S(t-\theta), V(t-\theta))\mathcal{J}_{1}(L_{1})}{\aleph _{1}(S_{1}, V_{1})\mathcal{J}_{1}(L)}\right) \right] d\theta \\ & -\frac{\aleph_{2}(S_{1}, L_{1})}{\mathcal{H}_{1}}\int \limits_{0}^{\kappa _{1}}\mathcal{\bar{H}}_{1}(\theta)\left[ \frac{\aleph_{2}(S(t-\theta ), L(t-\theta))\mathcal{J}_{1}(L_{1})}{\aleph_{2}(S_{1}, L_{1})\mathcal{J} _{1}(L)}-1\right. \\ & \left. -\ln \left( \frac{\aleph_{2}(S(t-\theta), L(t-\theta))\mathcal{J} _{1}(L_{1})}{\aleph_{2}(S_{1}, L_{1})\mathcal{J}_{1}(L)}\right) \right] d\theta-\frac{\aleph_{3}(S_{1}, I_{1})}{\mathcal{H}_{1}}\int \limits_{0} ^{\kappa_{1}}\mathcal{\bar{H}}_{1}(\theta)\\ & \times \left[ \frac{\aleph_{3}(S(t-\theta), I(t-\theta))\mathcal{J} _{1}(L_{1})}{\aleph_{3}(S_{1}, I_{1})\mathcal{J}_{1}(L)}-1-\ln \left( \frac{\aleph_{3}(S(t-\theta), I(t-\theta))\mathcal{J}_{1}(L_{1})}{\aleph _{3}(S_{1}, I_{1})\mathcal{J}_{1}(L)}\right) \right] d\theta \\ & -\frac{\aleph_{1}(S_{1}, V_{1})+\aleph_{3}(S_{1}, I_{1})}{\mathcal{H}_{2} }\int \limits_{0}^{\kappa_{2}}\mathcal{\bar{H}}_{2}(\theta)\left[ \frac{\mathcal{J}_{1}(L(t-\theta))\mathcal{J}_{2}(I_{1})}{\mathcal{J} _{1}(L_{1})\mathcal{J}_{2}(I)}-1\right. \\ & \left. -\ln \left( \frac{\mathcal{J}_{1}(L(t-\theta))\mathcal{J}_{2} (I_{1})}{\mathcal{J}_{1}(L_{1})\mathcal{J}_{2}(I)}\right) \right] d\theta-\frac{\aleph_{1}(S_{1}, V_{1})}{\mathcal{H}_{3}}\int \limits_{0} ^{\kappa_{3}}\mathcal{\bar{H}}_{3}(\theta)\\ & \times \left[ \frac{\mathcal{J}_{2}(I(t-\theta))\mathcal{J}_{3}(V_{1} )}{\mathcal{J}_{2}(I_{1})\mathcal{J}_{3}(V)}-1-\ln \left( \frac{\mathcal{J} _{2}(I(t-\theta))\mathcal{J}_{3}(V_{1})}{\mathcal{J}_{2}(I_{1})\mathcal{J} _{3}(V)}\right) \right] d\theta \\ & -\aleph_{1}(S_{1}, V_{1})\left[ \frac{\aleph_{1}(S, V_{1})\mathcal{J} _{3}(V)}{\aleph_{1}(S, V)\mathcal{J}_{3}(V_{1})}-1-\ln \left( \frac{\aleph _{1}(S, V_{1})\mathcal{J}_{3}(V)}{\aleph_{1}(S, V)\mathcal{J}_{3}(V_{1} )}\right) \right] \\ & -\aleph_{2}(S_{1}, L_{1})\left[ \frac{\aleph_{1}(S, V_{1})\aleph_{2} (S_{1}, L_{1})\mathcal{J}_{1}(L)}{\aleph_{1}(S_{1}, V_{1})\aleph_{2} (S, L)\mathcal{J}_{1}(L_{1})}-1-\ln \left( \frac{\aleph_{1}(S, V_{1})\aleph _{2}(S_{1}, L_{1})\mathcal{J}_{1}(L)}{\aleph_{1}(S_{1}, V_{1})\aleph _{2}(S, L)\mathcal{J}_{1}(L_{1})}\right) \right] \\ & -\aleph_{3}(S_{1}, I_{1})\left[ \frac{\aleph_{1}(S, V_{1})\aleph_{3} (S_{1}, I_{1})\mathcal{J}_{2}(I)}{\aleph_{1}(S_{1}, V_{1})\aleph_{3} (S, I)\mathcal{J}_{2}(I_{1})}-1-\ln \left( \frac{\aleph_{1}(S, V_{1})\aleph _{3}(S_{1}, I_{1})\mathcal{J}_{2}(I)}{\aleph_{1}(S_{1}, V_{1})\aleph _{3}(S, I)\mathcal{J}_{2}(I_{1})}\right) \right] \\ & +\aleph_{1}(S_{1}, V_{1})\left[ \frac{\aleph_{1}(S, V)}{\aleph_{1}(S, V_{1} )}-\frac{\mathcal{J}_{3}(V)}{\mathcal{J}_{3}(V_{1})}-1+\frac{\aleph _{1}(S, V_{1})\mathcal{J}_{3}(V)}{\aleph_{1}(S, V)\mathcal{J}_{3}(V_{1})}\right] \\ & +\aleph_{2}(S_{1}, L_{1})\left[ \frac{\aleph_{2}(S, L)\aleph_{1}(S_{1} , V_{1})}{\aleph_{2}(S_{1}, L_{1})\aleph_{1}(S, V_{1})}-\frac{\mathcal{J}_{1} (L)}{\mathcal{J}_{1}(L_{1})}-1+\frac{\aleph_{1}(S, V_{1})\aleph_{2}(S_{1} , L_{1})\mathcal{J}_{1}(L)}{\aleph_{1}(S_{1}, V_{1})\aleph_{2}(S, L)\mathcal{J} _{1}(L_{1})}\right] \\ & +\aleph_{3}(S_{1}, I_{1})\left[ \frac{\aleph_{3}(S, I)\aleph_{1}(S_{1} , V_{1})}{\aleph_{3}(S_{1}, I_{1})\aleph_{1}(S, V_{1})}-\frac{\mathcal{J}_{2} (I)}{\mathcal{J}_{2}(I_{1})}-1+\frac{\aleph_{1}(S, V_{1})\aleph_{3}(S_{1} , I_{1})\mathcal{J}_{2}(I)}{\aleph_{1}(S_{1}, V_{1})\aleph_{3}(S, I)\mathcal{J} _{2}(I_{1})}\right] \\ & +\frac{\mu \left[ b\mathcal{H}_{3}\mathcal{J}_{2}(I_{1})\aleph_{1} (S_{1}, V_{1})+\varepsilon \mathcal{J}_{3}(V_{1})\aleph_{3}(S_{1}, I_{1})\right] }{a\varepsilon \mathcal{J}_{2}(I_{1})\mathcal{J}_{3}(V_{1})}\left( \mathcal{J}_{2}(I_{1})-\frac{\pi}{\sigma}\right) \mathcal{J}_{4}(C)\\ & +\frac{\varpi \aleph_{1}(S_{1}, V_{1})}{\varepsilon \mathcal{J}_{3}(V_{1} )}\left( \mathcal{J}_{3}(V_{1})-\frac{\zeta}{\tau}\right) \mathcal{J} _{5}(A). \end{align*}

    Using the definition of \mathcal{G}_{1}^{U}(S, U) given in (5.4), we obtain

    \begin{align*} & \frac{\aleph_{2}(S, L)\aleph_{1}(S_{1}, V_{1})}{\aleph_{2}(S_{1}, L_{1} )\aleph_{1}(S, V_{1})}-\frac{\mathcal{J}_{1}(L)}{\mathcal{J}_{1}(L_{1} )}-1+\frac{\aleph_{1}(S, V_{1})\aleph_{2}(S_{1}, L_{1})\mathcal{J}_{1} (L)}{\aleph_{1}(S_{1}, V_{1})\aleph_{2}(S, L)\mathcal{J}_{1}(L_{1})}\\ & = \frac{\mathcal{G}_{1}^{L}(S, L)}{\mathcal{G}_{1}^{L}(S_{1}, L_{1})} -\frac{\mathcal{J}_{1}(L)}{\mathcal{J}_{1}(L_{1})}-1+\frac{\mathcal{J} _{1}(L)\mathcal{G}_{1}^{L}(S_{1}, L_{1})}{\mathcal{J}_{1}(L_{1})\mathcal{G} _{1}^{L}(S, L)}, \end{align*}

    and

    \begin{align*} & \frac{\aleph_{3}(S, I)\aleph_{1}(S_{1}, V_{1})}{\aleph_{3}(S_{1}, I_{1} )\aleph_{1}(S, V_{1})}-\frac{\mathcal{J}_{2}(I)}{\mathcal{J}_{2}(I_{1} )}-1+\frac{\aleph_{1}(S, V_{1})\aleph_{3}(S_{1}, I_{1})\mathcal{J}_{2} (I)}{\aleph_{1}(S_{1}, V_{1})\aleph_{3}(S, I)\mathcal{J}_{2}(I_{1})}\\ & = \frac{\mathcal{G}_{1}^{I}(S, I)}{\mathcal{G}_{1}^{I}(S_{1}, I_{1})} -\frac{\mathcal{J}_{2}(I)}{\mathcal{J}_{2}(I_{1})}-1+\frac{\mathcal{J} _{2}(I)\mathcal{G}_{1}^{I}(S_{1}, I_{1})}{\mathcal{J}_{2}(I_{1})\mathcal{G} _{1}^{I}(S, I)}. \end{align*}

    Then,

    \begin{align} \frac{d\Phi_{1}}{dt} & = \left( \yen (S)-\yen (S_{1})\right) \left( 1-\frac{\aleph_{1}(S_{1}, V_{1})}{\aleph_{1}(S, V_{1})}\right) -\frac {\aleph_{1}(S_{1}, V_{1})}{\mathcal{H}_{1}}\int \limits_{0}^{\kappa_{1} }\mathcal{\bar{H}}_{1}(\theta)\left[ \mathcal{K}\left( \frac{\aleph _{1}(S_{1}, V_{1})}{\aleph_{1}(S, V_{1})}\right) \right. \\ & \left. +\mathcal{K}\left( \frac{\aleph_{1}(S(t-\theta), V(t-\theta ))\mathcal{J}_{1}(L_{1})}{\aleph_{1}(S_{1}, V_{1})\mathcal{J}_{1}(L)}\right) +\mathcal{K}\left( \frac{\aleph_{1}(S, V_{1})\mathcal{J}_{3}(V)}{\aleph _{1}(S, V)\mathcal{J}_{3}(V_{1})}\right) \right] d\theta \\ & -\frac{\aleph_{2}(S_{1}, L_{1})}{\mathcal{H}_{1}}\int \limits_{0}^{\kappa _{1}}\mathcal{\bar{H}}_{1}(\theta)\left[ \mathcal{K}\left( \frac{\aleph _{1}(S_{1}, V_{1})}{\aleph_{1}(S, V_{1})}\right) +\mathcal{K}\left( \frac{\aleph_{2}(S(t-\theta), L(t-\theta))\mathcal{J}_{1}(L_{1})}{\aleph _{2}(S_{1}, L_{1})\mathcal{J}_{1}(L)}\right) \right. \\ & \left. +\mathcal{K}\left( \frac{\aleph_{1}(S, V_{1})\aleph_{2}(S_{1} , L_{1})\mathcal{J}_{1}(L)}{\aleph_{1}(S_{1}, V_{1})\aleph_{2}(S, L)\mathcal{J} _{1}(L_{1})}\right) \right] d\theta-\frac{\aleph_{3}(S_{1}, I_{1} )}{\mathcal{H}_{1}}\int \limits_{0}^{\kappa_{1}}\mathcal{\bar{H}}_{1} (\theta)\left[ \mathcal{K}\left( \frac{\aleph_{1}(S_{1}, V_{1})}{\aleph _{1}(S, V_{1})}\right) \right. \\ & \left. +\mathcal{K}\left( \frac{\aleph_{3}(S(t-\theta), I(t-\theta ))\mathcal{J}_{1}(L_{1})}{\aleph_{3}(S_{1}, I_{1})\mathcal{J}_{1}(L)}\right) +\mathcal{K}\left( \frac{\aleph_{1}(S, V_{1})\aleph_{3}(S_{1}, I_{1} )\mathcal{J}_{2}(I)}{\aleph_{1}(S_{1}, V_{1})\aleph_{3}(S, I)\mathcal{J} _{2}(I_{1})}\right) \right] d\theta \\ & -\frac{\aleph_{1}(S_{1}, V_{1})+\aleph_{3}(S_{1}, I_{1})}{\mathcal{H}_{2} }\int \limits_{0}^{\kappa_{2}}\mathcal{\bar{H}}_{2}(\theta)\mathcal{K}\left( \frac{\mathcal{J}_{1}(L(t-\theta))\mathcal{J}_{2}(I_{1})}{\mathcal{J} _{1}(L_{1})\mathcal{J}_{2}(I)}\right) d\theta-\frac{\aleph_{1}(S_{1}, V_{1} )}{\mathcal{H}_{3}}\int \limits_{0}^{\kappa_{3}}\mathcal{\bar{H}}_{3} (\theta) \\ & \times \mathcal{K}\left( \frac{\mathcal{J}_{2}(I(t-\theta))\mathcal{J} _{3}(V_{1})}{\mathcal{J}_{2}(I_{1})\mathcal{J}_{3}(V)}\right) d\theta +\aleph_{1}(S_{1}, V_{1})\left( 1-\frac{\aleph_{1}(S, V_{1})}{\aleph_{1} (S, V)}\right) \left( \frac{\aleph_{1}(S, V)}{\aleph_{1}(S, V_{1})} -\frac{\mathcal{J}_{3}(V)}{\mathcal{J}_{3}(V_{1})}\right) \\ & +\aleph_{2}(S_{1}, L_{1})\left( 1-\frac{\mathcal{G}_{1}^{L}(S_{1}, L_{1} )}{\mathcal{G}_{1}^{L}(S, L)}\right) \left( \frac{\mathcal{G}_{1}^{L} (S, L)}{\mathcal{G}_{1}^{L}(S_{1}, L_{1})}-\frac{\mathcal{J}_{1}(L)} {\mathcal{J}_{1}(L_{1})}\right) +\aleph_{3}(S_{1}, I_{1})\left( 1-\frac{\mathcal{G}_{1}^{I}(S_{1}, I_{1})}{\mathcal{G}_{1}^{I}(S, I)}\right) \\ & \times \left( \frac{\mathcal{G}_{1}^{I}(S, I)}{\mathcal{G}_{1}^{I} (S_{1}, I_{1})}-\frac{\mathcal{J}_{2}(I)}{\mathcal{J}_{2}(I_{1})}\right) +\frac{\mu \left[ b\mathcal{H}_{3}\mathcal{J}_{2}(I_{1})\aleph_{1}(S_{1} , V_{1})+\varepsilon \mathcal{J}_{3}(V_{1})\aleph_{3}(S_{1}, I_{1})\right] }{a\varepsilon \mathcal{J}_{2}(I_{1})\mathcal{J}_{3}(V_{1})} \\ & \times \left( \mathcal{J}_{2}(I_{1})-\mathcal{J}_{2}(I_{2})\right) \mathcal{J}_{4}(C)+\frac{\varpi \aleph_{1}(S_{1}, V_{1})}{\varepsilon \mathcal{J}_{3}(V_{1})}\left( \mathcal{J}_{3}(V_{1})-\mathcal{J}_{3} (V_{3})\right) \mathcal{J}_{5}(A). \end{align} (8.8)

    We have C_{2} = \mathcal{J}_{4}^{-1}\left(\dfrac{a}{\mu}\left(\Re _{1}-1\right) \right) \leq0 when \Re_{1}\leq1 . It follows that \dot {C}(t) = \sigma \left(\mathcal{J}_{2}(I(t))-\dfrac{\pi}{\sigma}\right) \mathcal{J}_{4}(C(t)) = \sigma \left(\mathcal{J}_{2}(I(t))-\mathcal{J} _{2}(I_{2})\right) \mathcal{J}_{4}(C(t))\leq0 for all C > 0 , which implies that \mathcal{J}_{2}(I_{1})\leq \mathcal{J}_{2}(I_{2}) . Further, A_{3} = \mathcal{J}_{5}^{-1}\left(\dfrac{\varepsilon}{\varpi}(\Re _{2}-1)\right) \leq0 when \Re_{2}\leq1 . This implies that \dot{A} (t) = \tau \left(\mathcal{J}_{3}(V(t))-\dfrac{\zeta}{\tau}\right) \mathcal{J}_{5}(A(t)) = \tau \left(\mathcal{J}_{3}(V(t))-\mathcal{J}_{3} (V_{3})\right) \mathcal{J}_{5}(A(t))\leq0 for all A > 0 , which ensures the inequality \mathcal{J}_{3}(V_{1})\leq \mathcal{J}_{3}(V_{3}) . Furthermore, \Phi_{1} is always positive and approaches its global minimum at Ð _{1} . Therefore, from Eq. (8.8) we have \frac{d\Phi_{1}}{dt}\leq0 for all S, L, I, V, C, A > 0 with equality holding when S = S_{1}, L(t) = L_{1} , I(t) = I_{1}, V(t) = V_{1} and C = A = 0. Let \Upsilon_{1}^{\prime} be the largest invariant subset of \Upsilon_{1} = \left \{ (S, L, I, V, C, A):\frac {d\Phi_{1}}{dt} = 0\right \} . The solutions of system (2.1) are confined to \Upsilon_{1}^{^{\prime}} . It can be seen that \Upsilon_{1}^{\prime } = \left \{ \text{ $Ð_{1}$ }\right \} and Ð _{1} is G.A.S using LaSalle's invariance principle.

    Proof of Theorem 3. Define a function \Phi_{2}(S, L, I, V, C, A) as:

    \begin{align*} \Phi_{2} & = S-S_{2}-\int_{S_{2}}^{S}\frac{\aleph_{1}(S_{2}, V_{2})} {\aleph_{1}(\varkappa, V_{2})}d\varkappa+\frac{1}{\mathcal{H}_{1}}\left( L-L_{2}-\int_{L_{2}}^{L}\frac{\mathcal{J}_{1}(L_{2})}{\mathcal{J} _{1}(\varkappa)}d\varkappa \right) \\ & +\frac{b\mathcal{H}_{3}\mathcal{J}_{2}(I_{2})\aleph_{1}(S_{2} , V_{2})+\varepsilon \mathcal{J}_{3}(V_{2})\aleph_{3}(S_{2}, I_{2})} {\varepsilon \left( a+\mu \mathcal{J}_{4}(C_{2})\right) \mathcal{J}_{2} (I_{2})\mathcal{J}_{3}(V_{2})}\left( I-I_{2}-\int_{I_{2}}^{I}\frac {\mathcal{J}_{2}(I_{2})}{\mathcal{J}_{2}(\varkappa)}d\varkappa \right) \\ & +\frac{\aleph_{1}(S_{2}, V_{2})}{\varepsilon \mathcal{J}_{3}(V_{2})}\left( V-V_{2}-\int_{V_{2}}^{V}\frac{\mathcal{J}_{3}(V_{2})}{\mathcal{J} _{3}(\varkappa)}d\varkappa \right) \\ & +\frac{\mu \left[ b\mathcal{H}_{3}\mathcal{J}_{2}(I_{2})\aleph_{1} (S_{2}, V_{2})+\varepsilon \mathcal{J}_{3}(V_{2})\aleph_{3}(S_{2}, I_{2})\right] }{\sigma \varepsilon \left( a+\mu \mathcal{J}_{4}(C_{2})\right) \mathcal{J} _{2}(I_{2})\mathcal{J}_{3}(V_{2})}\left( C-C_{2}-\int_{C_{2}}^{C} \frac{\mathcal{J}_{4}(C_{2})}{\mathcal{J}_{4}(\varkappa)}d\varkappa \right) \\ & +\frac{\varpi \aleph_{1}(S_{2}, V_{2})}{\tau \varepsilon \mathcal{J}_{3} (V_{2})}A+\frac{\aleph_{1}(S_{2}, V_{2})}{\mathcal{H}_{1}}\int \limits_{0} ^{\kappa_{1}}\mathcal{\bar{H}}_{1}(\theta)\int \limits_{t-\theta} ^{t}\mathcal{K}\left( \frac{\aleph_{1}(S(\varkappa), V(\varkappa))}{\aleph _{1}(S_{2}, V_{2})}\right) d\varkappa d\theta \\ & +\frac{\aleph_{2}(S_{2}, L_{2})}{\mathcal{H}_{1}}\int \limits_{0}^{\kappa _{1}}\mathcal{\bar{H}}_{1}(\theta)\int \limits_{t-\theta}^{t}\mathcal{K}\left( \frac{\aleph_{2}(S(\varkappa), L(\varkappa))}{\aleph_{2}(S_{2}, L_{2})}\right) d\varkappa d\theta+\frac{\aleph_{3}(S_{2}, I_{2})}{\mathcal{H}_{1}} \int \limits_{0}^{\kappa_{1}}\mathcal{\bar{H}}_{1}(\theta)\\ & \times \int \limits_{t-\theta}^{t}\mathcal{K}\left( \frac{\aleph _{3}(S(\varkappa), I(\varkappa))}{\aleph_{3}(S_{2}, I_{2})}\right) d\varkappa d\theta+\frac{\lambda \left[ b\mathcal{H}_{3}\mathcal{J}_{2}(I_{2})\aleph _{1}(S_{2}, V_{2})+\varepsilon \mathcal{J}_{3}(V_{2})\aleph_{3}(S_{2} , I_{2})\right] \mathcal{J}_{1}(L_{2})}{\varepsilon \left( a+\mu \mathcal{J}_{4}(C_{2})\right) \mathcal{J}_{2}(I_{2})\mathcal{J}_{3}(V_{2})}\\ & \times \int \limits_{0}^{\kappa_{2}}\mathcal{\bar{H}}_{2}(\theta )\int \limits_{t-\theta}^{t}\mathcal{K}\left( \frac{\mathcal{J}_{1} (L(\varkappa))}{\mathcal{J}_{1}(L_{2})}\right) d\varkappa d\theta +\frac{b\aleph_{1}(S_{2}, V_{2})\mathcal{J}_{2}(I_{2})}{\varepsilon \mathcal{J}_{3}(V_{2})}\int \limits_{0}^{\kappa_{3}}\mathcal{\bar{H}} _{3}(\theta)\int \limits_{t-\theta}^{t}\mathcal{K}\left( \frac{\mathcal{J} _{2}(I(\varkappa))}{\mathcal{J}_{2}(I_{2})}\right) d\varkappa d\theta. \end{align*}

    We calculate \frac{d\Phi_{2}}{dt} as:

    \begin{align} \frac{d\Phi_{2}}{dt} & = \left( 1-\frac{\aleph_{1}(S_{2}, V_{2})}{\aleph _{1}(S, V_{2})}\right) \left( \yen (S)-\aleph_{1}(S, V)-\aleph_{2} (S, L)-\aleph_{3}(S, I)\right) +\frac{1}{\mathcal{H}_{1}}\left( 1-\frac {\mathcal{J}_{1}(L_{2})}{\mathcal{J}_{1}(L)}\right) \\ & \times \left[ \int \limits_{0}^{\kappa_{1}}\mathcal{\bar{H}}_{1} (\theta)\left \{ \aleph_{1}(S(t-\theta), V(t-\theta))+\aleph_{2}(S(t-\theta ), L(t-\theta))+\aleph_{3}(S(t-\theta), I(t-\theta))\right \} d\theta \right. \\ & \left. -\left( \lambda+\gamma \right) \mathcal{J}_{1}(L)\right] +\frac{b\mathcal{H}_{3}\mathcal{J}_{2}(I_{2})\aleph_{1}(S_{2}, V_{2} )+\varepsilon \mathcal{J}_{3}(V_{2})\aleph_{3}(S_{2}, I_{2})}{\varepsilon \left( a+\mu \mathcal{J}_{4}(C_{2})\right) \mathcal{J}_{2}(I_{2})\mathcal{J} _{3}(V_{2})}\left( 1-\frac{\mathcal{J}_{2}(I_{2})}{\mathcal{J}_{2}(I)}\right) \\ & \times \left[ \lambda \int \limits_{0}^{\kappa_{2}}\mathcal{\bar{H}} _{2}(\theta)\mathcal{J}_{1}(L(t-\theta))d\theta-a\mathcal{J}_{2} (I)-\mu \mathcal{J}_{4}(C)\mathcal{J}_{2}(I)\right] +\frac{\aleph_{1} (S_{2}, V_{2})}{\varepsilon \mathcal{J}_{3}(V_{2})} \\ & \times \left( 1-\frac{\mathcal{J}_{3}(V_{2})}{\mathcal{J}_{3}(V)}\right) \left[ b\int \limits_{0}^{\kappa_{3}}\mathcal{\bar{H}}_{3}(\theta )\mathcal{J}_{2}(I(t-\theta))d\theta-\varepsilon \mathcal{J}_{3}(V)-\varpi \mathcal{J}_{5}(A)\mathcal{J}_{3}(V)\right] \\ & +\frac{\mu \left[ b\mathcal{H}_{3}\mathcal{J}_{2}(I_{2})\aleph_{1} (S_{2}, V_{2})+\varepsilon \mathcal{J}_{3}(V_{2})\aleph_{3}(S_{2}, I_{2})\right] }{\sigma \varepsilon \left( a+\mu \mathcal{J}_{4}(C_{2})\right) \mathcal{J} _{2}(I_{2})\mathcal{J}_{3}(V_{2})}\left( 1-\frac{\mathcal{J}_{4}(C_{2} )}{\mathcal{J}_{4}(C)}\right) \left( \sigma \mathcal{J}_{4}(C)\mathcal{J} _{2}(I)-\pi \mathcal{J}_{4}(C)\right) \\ & +\frac{\varpi \aleph_{1}(S_{2}, V_{2})}{\tau \varepsilon \mathcal{J}_{3} (V_{2})}\left( \tau \mathcal{J}_{5}(A)\mathcal{J}_{3}(V)-\zeta \mathcal{J} _{5}(A)\right) +\frac{\aleph_{1}(S_{2}, V_{2})}{\mathcal{H}_{1}} \int \limits_{0}^{\kappa_{1}}\mathcal{\bar{H}}_{1}(\theta)\left[ \frac {\aleph_{1}(S, V)}{\aleph_{1}(S_{2}, V_{2})}\right. \\ & \left. -\frac{\aleph_{1}(S(t-\theta), V(t-\theta))}{\aleph_{1}(S_{2} , V_{2})}+\ln \left( \frac{\aleph_{1}(S(t-\theta), V(t-\theta))}{\aleph _{1}(S, V)}\right) \right] d\theta+\frac{\aleph_{2}(S_{2}, L_{2})} {\mathcal{H}_{1}} \\ & \times \int \limits_{0}^{\kappa_{1}}\mathcal{\bar{H}}_{1}(\theta)\left[ \frac{\aleph_{2}(S, L)}{\aleph_{2}(S_{2}, L_{2})}-\frac{\aleph_{2} (S(t-\theta), L(t-\theta))}{\aleph_{2}(S_{2}, L_{2})}+\ln \left( \frac {\aleph_{2}(S(t-\theta), L(t-\theta))}{\aleph_{2}(S, L)}\right) \right] d\theta \\ & +\frac{\aleph_{3}(S_{2}, I_{2})}{\mathcal{H}_{1}}\int \limits_{0}^{\kappa _{1}}\mathcal{\bar{H}}_{1}(\theta)\left[ \frac{\aleph_{3}(S, I)}{\aleph _{3}(S_{2}, I_{2})}-\frac{\aleph_{3}(S(t-\theta), I(t-\theta))}{\aleph_{3} (S_{2}, I_{2})}\right. \\ & \left. +\ln \left( \frac{\aleph_{3}(S(t-\theta), I(t-\theta))}{\aleph _{3}(S, I)}\right) \right] d\theta+\frac{\lambda \left[ b\mathcal{H} _{3}\mathcal{J}_{2}(I_{2})\aleph_{1}(S_{2}, V_{2})+\varepsilon \mathcal{J} _{3}(V_{2})\aleph_{3}(S_{2}, I_{2})\right] \mathcal{J}_{1}(L_{2})} {\varepsilon \left( a+\mu \mathcal{J}_{4}(C_{2})\right) \mathcal{J}_{2} (I_{2})\mathcal{J}_{3}(V_{2})} \\ & \times \int \limits_{0}^{\kappa_{2}}\mathcal{\bar{H}}_{2}(\theta)\left[ \frac{\mathcal{J}_{1}(L)}{\mathcal{J}_{1}(L_{2})}-\frac{\mathcal{J} _{1}(L(t-\theta))}{\mathcal{J}_{1}(L_{2})}+\ln \left( \frac{\mathcal{J} _{1}(L(t-\theta))}{\mathcal{J}_{1}(L)}\right) \right] d\theta \\ & +\frac{b\aleph_{1}(S_{2}, V_{2})\mathcal{J}_{2}(I_{2})}{\varepsilon \mathcal{J}_{3}(V_{2})}\int \limits_{0}^{\kappa_{3}}\mathcal{\bar{H}} _{3}(\theta)\left[ \frac{\mathcal{J}_{2}(I)}{\mathcal{J}_{2}(I_{2})} -\frac{\mathcal{J}_{2}(I(t-\theta))}{\mathcal{J}_{2}(I_{2})}+\ln \left( \frac{\mathcal{J}_{2}(I(t-\theta))}{\mathcal{J}_{2}(I)}\right) \right] d\theta. \end{align} (8.9)

    Collecting terms of Eq. (8.9), we derive

    \begin{align*} \frac{d\Phi_{2}}{dt} & = \yen (S)\left( 1-\frac{\aleph_{1}(S_{2}, V_{2} )}{\aleph_{1}(S, V_{2})}\right) +\aleph_{1}(S, V)\frac{\aleph_{1}(S_{2}, V_{2} )}{\aleph_{1}(S, V_{2})}+\aleph_{2}(S, L)\frac{\aleph_{1}(S_{2}, V_{2})} {\aleph_{1}(S, V_{2})}\\ & +\aleph_{3}(S, I)\frac{\aleph_{1}(S_{2}, V_{2})}{\aleph_{1}(S, V_{2})} -\frac{\lambda+\gamma}{\mathcal{H}_{1}}\mathcal{J}_{1}(L)-\frac{1} {\mathcal{H}_{1}}\int \limits_{0}^{\kappa_{1}}\mathcal{\bar{H}}_{1} (\theta)\frac{\aleph_{1}(S(t-\theta), V(t-\theta))\mathcal{J}_{1}(L_{2} )}{\mathcal{J}_{1}(L)}d\theta \\ & -\frac{1}{\mathcal{H}_{1}}\int \limits_{0}^{\kappa_{1}}\mathcal{\bar{H}} _{1}(\theta)\frac{\aleph_{2}(S(t-\theta), L(t-\theta))\mathcal{J}_{1}(L_{2} )}{\mathcal{J}_{1}(L)}d\theta-\frac{1}{\mathcal{H}_{1}}\int \limits_{0} ^{\kappa_{1}}\mathcal{\bar{H}}_{1}(\theta)\frac{\aleph_{3}(S(t-\theta ), I(t-\theta))\mathcal{J}_{1}(L_{2})}{\mathcal{J}_{1}(L)}d\theta \\ & +\frac{\lambda+\gamma}{\mathcal{H}_{1}}\mathcal{J}_{1}(L_{2})-\frac {a\left[ b\mathcal{H}_{3}\mathcal{J}_{2}(I_{2})\aleph_{1}(S_{2} , V_{2})+\varepsilon \mathcal{J}_{3}(V_{2})\aleph_{3}(S_{2}, I_{2})\right] }{\varepsilon \left( a+\mu \mathcal{J}_{4}(C_{2})\right) \mathcal{J}_{2} (I_{2})\mathcal{J}_{3}(V_{2})}\mathcal{J}_{2}(I)\\ & -\frac{\lambda \left[ b\mathcal{H}_{3}\mathcal{J}_{2}(I_{2})\aleph _{1}(S_{2}, V_{2})+\varepsilon \mathcal{J}_{3}(V_{2})\aleph_{3}(S_{2} , I_{2})\right] }{\varepsilon \left( a+\mu \mathcal{J}_{4}(C_{2})\right) \mathcal{J}_{2}(I_{2})\mathcal{J}_{3}(V_{2})}\int \limits_{0}^{\kappa_{2} }\mathcal{\bar{H}}_{2}(\theta)\frac{\mathcal{J}_{1}(L(t-\theta))\mathcal{J} _{2}(I_{2})}{\mathcal{J}_{2}(I)}d\theta \\ & +\frac{a\left[ b\mathcal{H}_{3}\mathcal{J}_{2}(I_{2})\aleph_{1} (S_{2}, V_{2})+\varepsilon \mathcal{J}_{3}(V_{2})\aleph_{3}(S_{2}, I_{2})\right] }{\varepsilon \left( a+\mu \mathcal{J}_{4}(C_{2})\right) \mathcal{J}_{2} (I_{2})\mathcal{J}_{3}(V_{2})}\mathcal{J}_{2}(I_{2})\\ & +\frac{\mu \left[ b\mathcal{H}_{3}\mathcal{J}_{2}(I_{2})\aleph_{1} (S_{2}, V_{2})+\varepsilon \mathcal{J}_{3}(V_{2})\aleph_{3}(S_{2}, I_{2})\right] }{\varepsilon \left( a+\mu \mathcal{J}_{4}(C_{2})\right) \mathcal{J}_{2} (I_{2})\mathcal{J}_{3}(V_{2})}\mathcal{J}_{4}(C)\mathcal{J}_{2}(I_{2} )-\aleph_{1}(S_{2}, V_{2})\frac{\mathcal{J}_{3}(V)}{\mathcal{J}_{3}(V_{2})}\\ & -\frac{b\aleph_{1}(S_{2}, V_{2})}{\varepsilon \mathcal{J}_{3}(V_{2})} \int \limits_{0}^{\kappa_{3}}\mathcal{\bar{H}}_{3}(\theta)\frac{\mathcal{J} _{2}(I(t-\theta))\mathcal{J}_{3}(V_{2})}{\mathcal{J}_{3}(V)}d\theta+\aleph _{1}(S_{2}, V_{2})+\frac{\varpi \aleph_{1}(S_{2}, V_{2})}{\varepsilon \mathcal{J}_{3}(V_{2})}\mathcal{J}_{5}(A)\mathcal{J}_{3}(V_{2})\\ & -\frac{\mu \pi \left[ b\mathcal{H}_{3}\mathcal{J}_{2}(I_{2})\aleph_{1} (S_{2}, V_{2})+\varepsilon \mathcal{J}_{3}(V_{2})\aleph_{3}(S_{2}, I_{2})\right] }{\sigma \varepsilon \left( a+\mu \mathcal{J}_{4}(C_{2})\right) \mathcal{J} _{2}(I_{2})\mathcal{J}_{3}(V_{2})}\mathcal{J}_{4}(C)\\ & -\frac{\mu \left[ b\mathcal{H}_{3}\mathcal{J}_{2}(I_{2})\aleph_{1} (S_{2}, V_{2})+\varepsilon \mathcal{J}_{3}(V_{2})\aleph_{3}(S_{2}, I_{2})\right] }{\varepsilon \left( a+\mu \mathcal{J}_{4}(C_{2})\right) \mathcal{J}_{2} (I_{2})\mathcal{J}_{3}(V_{2})}\mathcal{J}_{2}(I)\mathcal{J}_{4}(C_{2})\\ & +\frac{\mu \pi \left[ b\mathcal{H}_{3}\mathcal{J}_{2}(I_{2})\aleph_{1} (S_{2}, V_{2})+\varepsilon \mathcal{J}_{3}(V_{2})\aleph_{3}(S_{2}, I_{2})\right] }{\sigma \varepsilon \left( a+\mu \mathcal{J}_{4}(C_{2})\right) \mathcal{J} _{2}(I_{2})\mathcal{J}_{3}(V_{2})}\mathcal{J}_{4}(C_{2})-\frac{\varpi \zeta \aleph_{1}(S_{2}, V_{2})}{\tau \varepsilon \mathcal{J}_{3}(V_{2} )}\mathcal{J}_{5}(A)\\ & +\frac{\aleph_{1}(S_{2}, V_{2})}{\mathcal{H}_{1}}\int \limits_{0}^{\kappa _{1}}\mathcal{\bar{H}}_{1}(\theta)\ln \left( \frac{\aleph_{1}(S(t-\theta ), V(t-\theta))}{\aleph_{1}(S, V)}\right) d\theta+\frac{\aleph_{2}(S_{2} , L_{2})}{\mathcal{H}_{1}}\int \limits_{0}^{\kappa_{1}}\mathcal{\bar{H}} _{1}(\theta)\\ & \times \ln \left( \frac{\aleph_{2}(S(t-\theta), L(t-\theta))}{\aleph _{2}(S, L)}\right) d\theta+\frac{\aleph_{3}(S_{2}, I_{2})}{\mathcal{H}_{1}} \int \limits_{0}^{\kappa_{1}}\mathcal{\bar{H}}_{1}(\theta)\ln \left( \frac{\aleph_{3}(S(t-\theta), I(t-\theta))}{\aleph_{3}(S, I)}\right) d\theta \\ & +\frac{\lambda \mathcal{H}_{2}\left[ b\mathcal{H}_{3}\mathcal{J}_{2} (I_{2})\aleph_{1}(S_{2}, V_{2})+\varepsilon \mathcal{J}_{3}(V_{2})\aleph _{3}(S_{2}, I_{2})\right] }{\varepsilon \left( a+\mu \mathcal{J}_{4} (C_{2})\right) \mathcal{J}_{2}(I_{2})\mathcal{J}_{3}(V_{2})}\mathcal{J} _{1}(L)\\ & +\frac{\lambda \left[ b\mathcal{H}_{3}\mathcal{J}_{2}(I_{2})\aleph _{1}(S_{2}, V_{2})+\varepsilon \mathcal{J}_{3}(V_{2})\aleph_{3}(S_{2} , I_{2})\right] \mathcal{J}_{1}(L_{2})}{\varepsilon \left( a+\mu \mathcal{J}_{4}(C_{2})\right) \mathcal{J}_{2}(I_{2})\mathcal{J}_{3}(V_{2} )}\int \limits_{0}^{\kappa_{2}}\mathcal{\bar{H}}_{2}(\theta)\ln \left( \frac{\mathcal{J}_{1}(L(t-\theta))}{\mathcal{J}_{1}(L)}\right) d\theta \\ & +\frac{b\aleph_{1}(S_{2}, V_{2})}{\varepsilon \mathcal{J}_{3}(V_{2} )}\mathcal{J}_{2}(I)+\frac{b\aleph_{1}(S_{2}, V_{2})\mathcal{J}_{2}(I_{2} )}{\varepsilon \mathcal{J}_{3}(V_{2})}\int \limits_{0}^{\kappa_{3}} \mathcal{\bar{H}}_{3}(\theta)\ln \left( \frac{\mathcal{J}_{2}(I(t-\theta ))}{\mathcal{J}_{2}(I)}\right) d\theta. \end{align*}

    Using the equilibrium conditions for Ð _{2} :

    \begin{align*} & \left. \yen (S_{2}) = \aleph_{1}(S_{2}, V_{2})+\aleph_{2}(S_{2}, L_{2} )+\aleph_{3}(S_{2}, I_{2}) = \frac{\lambda+\gamma}{\mathcal{H}_{1}} \mathcal{J}_{1}(L_{2}), \right. \\ & \left. \lambda \mathcal{H}_{2}\mathcal{J}_{1}(L_{2}) = \left( a+\mu \mathcal{J}_{4}(C_{2})\right) \mathcal{J}_{2}(I_{2}), \ \ \ \ \ \mathcal{J}_{2}(I_{2}) = \frac{\pi}{\sigma}, \ \ \ \ \ \mathcal{J}_{3} (V_{2}) = \frac{b\mathcal{H}_{3}\mathcal{J}_{2}(I_{2})}{\varepsilon}.\right. \end{align*}

    Moreover,

    \begin{align*} \aleph_{1}(S_{2}, V_{2})+\aleph_{3}(S_{2}, I_{2}) & = \frac{b\mathcal{H} _{3}\mathcal{J}_{2}(I_{2})\aleph_{1}(S_{2}, V_{2})+\varepsilon \mathcal{J} _{3}(V_{2})\aleph_{3}(S_{2}, I_{2})}{\varepsilon \mathcal{J}_{2}(I_{2} )\mathcal{J}_{3}(V_{2})}\mathcal{J}_{2}(I_{2})\\ & = \frac{\lambda \mathcal{H}_{2}\left[ b\mathcal{H}_{3}\mathcal{J}_{2} (I_{2})\aleph_{1}(S_{2}, V_{2})+\varepsilon \mathcal{J}_{3}(V_{2})\aleph _{3}(S_{2}, I_{2})\right] }{\varepsilon \left( a+\mu \mathcal{J}_{4} (C_{2})\right) \mathcal{J}_{2}(I_{2})\mathcal{J}_{3}(V_{2})}\mathcal{J} _{1}(L_{2}). \end{align*}

    Therefore, we obtain

    \begin{align*} \frac{d\Phi_{2}}{dt} & = \left( \yen (S)-\yen (S_{2})\right) \left( 1-\frac{\aleph_{1}(S_{2}, V_{2})}{\aleph_{1}(S, V_{2})}\right) +\left( \aleph_{1}(S_{2}, V_{2})+\aleph_{2}(S_{2}, L_{2})+\aleph_{3}(S_{2}, I_{2})\right) \\ & \times \left( 1-\frac{\aleph_{1}(S_{2}, V_{2})}{\aleph_{1}(S, V_{2})}\right) +\aleph_{1}(S_{2}, V_{2})\frac{\aleph_{1}(S, V)}{\aleph_{1}(S, V_{2})}+\aleph _{2}(S_{2}, L_{2})\frac{\aleph_{2}(S, L)\aleph_{1}(S_{2}, V_{2})}{\aleph _{2}(S_{2}, L_{2})\aleph_{1}(S, V_{2})}\\ & +\aleph_{3}(S_{2}, I_{2})\frac{\aleph_{3}(S, I)\aleph_{1}(S_{2}, V_{2} )}{\aleph_{3}(S_{2}, I_{2})\aleph_{1}(S, V_{2})}-\aleph_{2}(S_{2}, L_{2} )\frac{\mathcal{J}_{1}(L)}{\mathcal{J}_{1}(L_{2})}-\frac{\aleph_{1} (S_{2}, V_{2})}{\mathcal{H}_{1}}\int \limits_{0}^{\kappa_{1}}\mathcal{\bar{H} }_{1}(\theta)\\ & \times \frac{\aleph_{1}(S(t-\theta), V(t-\theta))\mathcal{J}_{1}(L_{2} )}{\aleph_{1}(S_{2}, V_{2})\mathcal{J}_{1}(L)}d\theta-\frac{\aleph_{2} (S_{2}, L_{2})}{\mathcal{H}_{1}}\int \limits_{0}^{\kappa_{1}}\mathcal{\bar{H} }_{1}(\theta)\frac{\aleph_{2}(S(t-\theta), L(t-\theta))\mathcal{J}_{1}(L_{2} )}{\aleph_{2}(S_{2}, L_{2})\mathcal{J}_{1}(L)}d\theta \\ & -\frac{\aleph_{3}(S_{2}, I_{2})}{\mathcal{H}_{1}}\int \limits_{0}^{\kappa _{1}}\mathcal{\bar{H}}_{1}(\theta)\frac{\aleph_{3}(S(t-\theta), I(t-\theta ))\mathcal{J}_{1}(L_{2})}{\aleph_{3}(S_{2}, I_{2})\mathcal{J}_{1}(L)} d\theta+\aleph_{1}(S_{2}, V_{2})+\aleph_{2}(S_{2}, L_{2})+\aleph_{3}(S_{2} , I_{2})\\ & -\aleph_{3}(S_{2}, I_{2})\frac{\mathcal{J}_{2}(I)}{\mathcal{J}_{2}(I_{2} )}-\frac{\aleph_{1}(S_{2}, V_{2})+\aleph_{3}(S_{2}, I_{2})}{\mathcal{H}_{2}} \int \limits_{0}^{\kappa_{2}}\mathcal{\bar{H}}_{2}(\theta)\frac{\mathcal{J} _{1}(L(t-\theta))\mathcal{J}_{2}(I_{2})}{\mathcal{J}_{1}(L_{2})\mathcal{J} _{2}(I)}d\theta+\aleph_{1}(S_{2}, V_{2})\\ & +\aleph_{3}(S_{2}, I_{2})-\aleph_{1}(S_{2}, V_{2})\frac{\mathcal{J}_{3} (V)}{\mathcal{J}_{3}(V_{2})}-\frac{\aleph_{1}(S_{2}, V_{2})}{\mathcal{H}_{3} }\int \limits_{0}^{\kappa_{3}}\mathcal{\bar{H}}_{3}(\theta)\frac{\mathcal{J} _{2}(I(t-\theta))\mathcal{J}_{3}(V_{2})}{\mathcal{J}_{2}(I_{2})\mathcal{J} _{3}(V)}d\theta+\aleph_{1}(S_{2}, V_{2})\\ & +\frac{\varpi \aleph_{1}(S_{2}, V_{2})}{\varepsilon \mathcal{J}_{3}(V_{2} )}\mathcal{J}_{5}(A)\mathcal{J}_{3}(V_{2})-\frac{\varpi \zeta \aleph_{1} (S_{2}, V_{2})}{\tau \varepsilon \mathcal{J}_{3}(V_{2})}\mathcal{J}_{5} (A)+\frac{\aleph_{1}(S_{2}, V_{2})}{\mathcal{H}_{1}}\int \limits_{0}^{\kappa _{1}}\mathcal{\bar{H}}_{1}(\theta)\\ & \times \ln \left( \frac{\aleph_{1}(S(t-\theta), V(t-\theta))}{\aleph _{1}(S, V)}\right) d\theta+\frac{\aleph_{2}(S_{2}, L_{2})}{\mathcal{H}_{1}} \int \limits_{0}^{\kappa_{1}}\mathcal{\bar{H}}_{1}(\theta)\ln \left( \frac{\aleph_{2}(S(t-\theta), L(t-\theta))}{\aleph_{2}(S, L)}\right) d\theta \\ & +\frac{\aleph_{3}(S_{2}, I_{2})}{\mathcal{H}_{1}}\int \limits_{0}^{\kappa _{1}}\mathcal{\bar{H}}_{1}(\theta)\ln \left( \frac{\aleph_{3}(S(t-\theta ), I(t-\theta))}{\aleph_{3}(S, I)}\right) d\theta+\frac{\aleph_{1}(S_{2} , V_{2})+\aleph_{3}(S_{2}, I_{2})}{\mathcal{H}_{2}}\int \limits_{0}^{\kappa_{2} }\mathcal{\bar{H}}_{2}(\theta)\\ & \times \ln \left( \frac{\mathcal{J}_{1}(L(t-\theta))}{\mathcal{J}_{1} (L)}\right) d\theta+\frac{\aleph_{1}(S_{2}, V_{2})}{\mathcal{H}_{3}} \int \limits_{0}^{\kappa_{3}}\mathcal{\bar{H}}_{3}(\theta)\ln \left( \frac{\mathcal{J}_{2}(I(t-\theta))}{\mathcal{J}_{2}(I)}\right) d\theta. \end{align*}

    Considering the equalities given by (5.6) in case of n = 2 and after some calculations we get

    \begin{align*} \frac{d\Phi_{2}}{dt} & = \left( \yen (S)-\yen (S_{2})\right) \left( 1-\frac{\aleph_{1}(S_{2}, V_{2})}{\aleph_{1}(S, V_{2})}\right) -\left( \aleph_{1}(S_{2}, V_{2})+\aleph_{2}(S_{2}, L_{2})+\aleph_{3}(S_{2}, I_{2})\right) \\ & \times \left[ \frac{\aleph_{1}(S_{2}, V_{2})}{\aleph_{1}(S, V_{2})} -1-\ln \left( \frac{\aleph_{1}(S_{2}, V_{2})}{\aleph_{1}(S, V_{2})}\right) \right] -\frac{\aleph_{1}(S_{2}, V_{2})}{\mathcal{H}_{1}}\int \limits_{0} ^{\kappa_{1}}\mathcal{\bar{H}}_{1}(\theta)\\ & \times \left[ \frac{\aleph_{1}(S(t-\theta), V(t-\theta))\mathcal{J} _{1}(L_{2})}{\aleph_{1}(S_{2}, V_{2})\mathcal{J}_{1}(L)}-1-\ln \left( \frac{\aleph_{1}(S(t-\theta), V(t-\theta))\mathcal{J}_{1}(L_{2})}{\aleph _{1}(S_{2}, V_{2})\mathcal{J}_{1}(L)}\right) \right] d\theta \\ & -\frac{\aleph_{2}(S_{2}, L_{2})}{\mathcal{H}_{1}}\int \limits_{0}^{\kappa _{1}}\mathcal{\bar{H}}_{1}(\theta)\left[ \frac{\aleph_{2}(S(t-\theta ), L(t-\theta))\mathcal{J}_{1}(L_{2})}{\aleph_{2}(S_{2}, L_{2})\mathcal{J} _{1}(L)}-1\right. \\ & \left. -\ln \left( \frac{\aleph_{2}(S(t-\theta), L(t-\theta))\mathcal{J} _{1}(L_{2})}{\aleph_{2}(S_{2}, L_{2})\mathcal{J}_{1}(L)}\right) \right] d\theta-\frac{\aleph_{3}(S_{2}, I_{2})}{\mathcal{H}_{1}}\int \limits_{0} ^{\kappa_{1}}\mathcal{\bar{H}}_{1}(\theta)\\ & \times \left[ \frac{\aleph_{3}(S(t-\theta), I(t-\theta))\mathcal{J} _{1}(L_{2})}{\aleph_{3}(S_{2}, I_{2})\mathcal{J}_{1}(L)}-1-\ln \left( \frac{\aleph_{3}(S(t-\theta), I(t-\theta))\mathcal{J}_{1}(L_{2})}{\aleph _{3}(S_{2}, I_{2})\mathcal{J}_{1}(L)}\right) \right] d\theta \\ & -\frac{\aleph_{1}(S_{2}, V_{2})+\aleph_{3}(S_{2}, I_{2})}{\mathcal{H}_{2} }\int \limits_{0}^{\kappa_{2}}\mathcal{\bar{H}}_{2}(\theta)\left[ \frac{\mathcal{J}_{1}(L(t-\theta))\mathcal{J}_{2}(I_{2})}{\mathcal{J} _{1}(L_{2})\mathcal{J}_{2}(I)}-1\right. \\ & \left. -\ln \left( \frac{\mathcal{J}_{1}(L(t-\theta))\mathcal{J}_{2} (I_{2})}{\mathcal{J}_{1}(L_{2})\mathcal{J}_{2}(I)}\right) \right] d\theta-\frac{\aleph_{1}(S_{2}, V_{2})}{\mathcal{H}_{3}}\int \limits_{0} ^{\kappa_{3}}\mathcal{\bar{H}}_{3}(\theta)\\ & \times \left[ \frac{\mathcal{J}_{2}(I(t-\theta))\mathcal{J}_{3}(V_{2} )}{\mathcal{J}_{2}(I_{2})\mathcal{J}_{3}(V)}-1-\ln \left( \frac{\mathcal{J} _{2}(I(t-\theta))\mathcal{J}_{3}(V_{2})}{\mathcal{J}_{2}(I_{2})\mathcal{J} _{3}(V)}\right) \right] d\theta \\ & -\aleph_{1}(S_{2}, V_{2})\left[ \frac{\aleph_{1}(S, V_{2})\mathcal{J} _{3}(V)}{\aleph_{1}(S, V)\mathcal{J}_{3}(V_{2})}-1-\ln \left( \frac{\aleph _{1}(S, V_{2})\mathcal{J}_{3}(V)}{\aleph_{1}(S, V)\mathcal{J}_{3}(V_{2} )}\right) \right] \\ & -\aleph_{2}(S_{2}, L_{2})\left[ \frac{\aleph_{1}(S, V_{2})\aleph_{2} (S_{2}, L_{2})\mathcal{J}_{1}(L)}{\aleph_{1}(S_{2}, V_{2})\aleph_{2} (S, L)\mathcal{J}_{1}(L_{2})}-1-\ln \left( \frac{\aleph_{1}(S, V_{2})\aleph _{2}(S_{2}, L_{2})\mathcal{J}_{1}(L)}{\aleph_{1}(S_{2}, V_{2})\aleph _{2}(S, L)\mathcal{J}_{1}(L_{2})}\right) \right] \\ & -\aleph_{3}(S_{2}, I_{2})\left[ \frac{\aleph_{1}(S, V_{2})\aleph_{3} (S_{2}, I_{2})\mathcal{J}_{2}(I)}{\aleph_{1}(S_{2}, V_{2})\aleph_{3} (S, I)\mathcal{J}_{2}(I_{2})}-1-\ln \left( \frac{\aleph_{1}(S, V_{2})\aleph _{3}(S_{2}, I_{2})\mathcal{J}_{2}(I)}{\aleph_{1}(S_{2}, V_{2})\aleph _{3}(S, I)\mathcal{J}_{2}(I_{2})}\right) \right] \\ & +\aleph_{1}(S_{2}, V_{2})\left[ \frac{\aleph_{1}(S, V)}{\aleph_{1}(S, V_{2} )}-\frac{\mathcal{J}_{3}(V)}{\mathcal{J}_{3}(V_{2})}-1+\frac{\aleph _{1}(S, V_{2})\mathcal{J}_{3}(V)}{\aleph_{1}(S, V)\mathcal{J}_{3}(V_{2})}\right] \\ & +\aleph_{2}(S_{2}, L_{2})\left[ \frac{\aleph_{2}(S, L)\aleph_{1}(S_{2} , V_{2})}{\aleph_{2}(S_{2}, L_{2})\aleph_{1}(S, V_{2})}-\frac{\mathcal{J}_{1} (L)}{\mathcal{J}_{1}(L_{2})}-1+\frac{\aleph_{1}(S, V_{2})\aleph_{2}(S_{2} , L_{2})\mathcal{J}_{1}(L)}{\aleph_{1}(S_{2}, V_{2})\aleph_{2}(S, L)\mathcal{J} _{1}(L_{2})}\right] \\ & +\aleph_{3}(S_{2}, I_{2})\left[ \frac{\aleph_{3}(S, I)\aleph_{1}(S_{2} , V_{2})}{\aleph_{3}(S_{2}, I_{2})\aleph_{1}(S, V_{2})}-\frac{\mathcal{J}_{2} (I)}{\mathcal{J}_{2}(I_{2})}-1+\frac{\aleph_{1}(S, V_{2})\aleph_{3}(S_{2} , I_{2})\mathcal{J}_{2}(I)}{\aleph_{1}(S_{2}, V_{2})\aleph_{3}(S, I)\mathcal{J} _{2}(I_{2})}\right] \\ & +\frac{\varpi \aleph_{1}(S_{2}, V_{2})}{\varepsilon \mathcal{J}_{3}(V_{2} )}\left( \mathcal{J}_{3}(V_{2})-\frac{\zeta}{\tau}\right) \mathcal{J} _{5}(A). \end{align*}

    Using the definition of \mathcal{G}_{2}^{U}(S, U) given in (5.4), we obtain

    \begin{align*} & \frac{\aleph_{2}(S, L)\aleph_{1}(S_{2}, V_{2})}{\aleph_{2}(S_{2}, L_{2} )\aleph_{1}(S, V_{2})}-\frac{\mathcal{J}_{1}(L)}{\mathcal{J}_{1}(L_{2} )}-1+\frac{\aleph_{1}(S, V_{2})\aleph_{2}(S_{2}, L_{2})\mathcal{J}_{1} (L)}{\aleph_{1}(S_{2}, V_{2})\aleph_{2}(S, L)\mathcal{J}_{1}(L_{2})}\\ & = \frac{\mathcal{G}_{2}^{L}(S, L)}{\mathcal{G}_{2}^{L}(S_{2}, L_{2})} -\frac{\mathcal{J}_{1}(L)}{\mathcal{J}_{1}(L_{2})}-1+\frac{\mathcal{J} _{1}(L)\mathcal{G}_{2}^{L}(S_{2}, L_{2})}{\mathcal{J}_{1}(L_{2})\mathcal{G} _{2}^{L}(S, L)}, \end{align*}

    and

    \begin{align*} & \frac{\aleph_{3}(S, I)\aleph_{1}(S_{2}, V_{2})}{\aleph_{3}(S_{2}, I_{2} )\aleph_{1}(S, V_{2})}-\frac{\mathcal{J}_{2}(I)}{\mathcal{J}_{2}(I_{2} )}-1+\frac{\aleph_{1}(S, V_{2})\aleph_{3}(S_{2}, I_{2})\mathcal{J}_{2} (I)}{\aleph_{1}(S_{2}, V_{2})\aleph_{3}(S, I)\mathcal{J}_{2}(I_{2})}\\ & = \frac{\mathcal{G}_{2}^{I}(S, I)}{\mathcal{G}_{2}^{I}(S_{2}, I_{2})} -\frac{\mathcal{J}_{2}(I)}{\mathcal{J}_{2}(I_{2})}-1+\frac{\mathcal{J} _{2}(I)\mathcal{G}_{2}^{I}(S_{2}, I_{2})}{\mathcal{J}_{2}(I_{2})\mathcal{G} _{2}^{I}(S, I)}. \end{align*}

    Then,

    \begin{align} \frac{d\Phi_{2}}{dt} & = \left( \yen (S)-\yen (S_{2})\right) \left( 1-\frac{\aleph_{1}(S_{2}, V_{2})}{\aleph_{1}(S, V_{2})}\right) -\frac {\aleph_{1}(S_{2}, V_{2})}{\mathcal{H}_{1}}\int \limits_{0}^{\kappa_{1} }\mathcal{\bar{H}}_{1}(\theta)\left[ \mathcal{K}\left( \frac{\aleph _{1}(S_{2}, V_{2})}{\aleph_{1}(S, V_{2})}\right) \right. \\ & \left. +\mathcal{K}\left( \frac{\aleph_{1}(S(t-\theta), V(t-\theta ))\mathcal{J}_{1}(L_{2})}{\aleph_{1}(S_{2}, V_{2})\mathcal{J}_{1}(L)}\right) +\mathcal{K}\left( \frac{\aleph_{1}(S, V_{2})\mathcal{J}_{3}(V)}{\aleph _{1}(S, V)\mathcal{J}_{3}(V_{2})}\right) \right] d\theta \\ & -\frac{\aleph_{2}(S_{2}, L_{2})}{\mathcal{H}_{1}}\int \limits_{0}^{\kappa _{1}}\mathcal{\bar{H}}_{1}(\theta)\left[ \mathcal{K}\left( \frac{\aleph _{1}(S_{2}, V_{2})}{\aleph_{1}(S, V_{2})}\right) +\mathcal{K}\left( \frac{\aleph_{2}(S(t-\theta), L(t-\theta))\mathcal{J}_{1}(L_{2})}{\aleph _{2}(S_{2}, L_{2})\mathcal{J}_{1}(L)}\right) \right. \\ & \left. +\mathcal{K}\left( \frac{\aleph_{1}(S, V_{2})\aleph_{2}(S_{2} , L_{2})\mathcal{J}_{1}(L)}{\aleph_{1}(S_{2}, V_{2})\aleph_{2}(S, L)\mathcal{J} _{1}(L_{2})}\right) \right] d\theta-\frac{\aleph_{3}(S_{2}, I_{2} )}{\mathcal{H}_{1}}\int \limits_{0}^{\kappa_{1}}\mathcal{\bar{H}}_{1} (\theta)\left[ \mathcal{K}\left( \frac{\aleph_{1}(S_{2}, V_{2})}{\aleph _{1}(S, V_{2})}\right) \right. \\ & \left. +\mathcal{K}\left( \frac{\aleph_{3}(S(t-\theta), I(t-\theta ))\mathcal{J}_{1}(L_{2})}{\aleph_{3}(S_{2}, I_{2})\mathcal{J}_{1}(L)}\right) +\mathcal{K}\left( \frac{\aleph_{1}(S, V_{2})\aleph_{3}(S_{2}, I_{2} )\mathcal{J}_{2}(I)}{\aleph_{1}(S_{2}, V_{2})\aleph_{3}(S, I)\mathcal{J} _{2}(I_{2})}\right) \right] d\theta \\ & -\frac{\aleph_{1}(S_{2}, V_{2})+\aleph_{3}(S_{2}, I_{2})}{\mathcal{H}_{2} }\int \limits_{0}^{\kappa_{2}}\mathcal{\bar{H}}_{2}(\theta)\mathcal{K}\left( \frac{\mathcal{J}_{1}(L(t-\theta))\mathcal{J}_{2}(I_{2})}{\mathcal{J} _{1}(L_{2})\mathcal{J}_{2}(I)}\right) d\theta-\frac{\aleph_{1}(S_{2}, V_{2} )}{\mathcal{H}_{3}}\int \limits_{0}^{\kappa_{3}}\mathcal{\bar{H}}_{3} (\theta) \\ & \times \mathcal{K}\left( \frac{\mathcal{J}_{2}(I(t-\theta))\mathcal{J} _{3}(V_{2})}{\mathcal{J}_{2}(I_{2})\mathcal{J}_{3}(V)}\right) d\theta +\aleph_{1}(S_{2}, V_{2})\left( 1-\frac{\aleph_{1}(S, V_{2})}{\aleph_{1} (S, V)}\right) \left( \frac{\aleph_{1}(S, V)}{\aleph_{1}(S, V_{2})} -\frac{\mathcal{J}_{3}(V)}{\mathcal{J}_{3}(V_{2})}\right) \\ & +\aleph_{2}(S_{2}, L_{2})\left( 1-\frac{\mathcal{G}_{2}^{L}(S_{2}, L_{2} )}{\mathcal{G}_{2}^{L}(S, L)}\right) \left( \frac{\mathcal{G}_{2}^{L} (S, L)}{\mathcal{G}_{2}^{L}(S_{2}, L_{2})}-\frac{\mathcal{J}_{1}(L)} {\mathcal{J}_{1}(L_{2})}\right) +\aleph_{3}(S_{2}, I_{2})\left( 1-\frac{\mathcal{G}_{2}^{I}(S_{2}, I_{2})}{\mathcal{G}_{2}^{I}(S, I)}\right) \\ & \times \left( \frac{\mathcal{G}_{2}^{I}(S, I)}{\mathcal{G}_{2}^{I} (S_{2}, I_{2})}-\frac{\mathcal{J}_{2}(I)}{\mathcal{J}_{2}(I_{2})}\right) +\frac{\varpi \aleph_{1}(S_{2}, V_{2})}{\varepsilon \mathcal{J}_{3}(V_{2} )}\left( \mathcal{J}_{3}(V_{2})-\mathcal{J}_{3}(V_{4})\right) \mathcal{J} _{5}(A). \end{align} (8.10)

    Hence, if \Re_{4}\leq1 , then Ð _{4} does not exists since A_{4} = \mathcal{J}_{5}^{-1}\left(\dfrac{\varepsilon}{\varpi}\left(\Re _{4}-1\right) \right) \leq0 . This implies that, \dot{A}(t) = \tau \left(\mathcal{J}_{3}(V(t))-\frac{\zeta}{\tau}\right) \mathcal{J}_{5} (A(t)) = \tau \left(\mathcal{J}_{3}(V(t))-\mathcal{J}_{3}(V_{4})\right) \mathcal{J}_{5}(A(t))\leq0 for all A > 0 , which ensures the inequality \mathcal{J}_{3}(V_{2})\leq \mathcal{J}_{3}(V_{4}) . Hence, if \Re_{1} > 1 , then \frac{d\Phi_{2}}{dt}\leq0 for all S, L, I, V, C, A > 0 and \frac{d\Phi_{2} }{dt} = 0 when S = S_{2}, L(t) = L_{2}, I(t) = I_{2} , V(t) = V_{2} and A = 0. Define \Upsilon_{2} = \left \{ (S, L, I, V, C, A):\frac{d\Phi_{2}}{dt} = 0\right \} and \Upsilon_{2}^{^{\prime}} is the largest invariant subset of \Upsilon_{2} . The solutions of system (2.1) converge to \Upsilon _{2}^{^{\prime}} which contains elements with L(t) = L_{2} and I(t) = I_{2} . Hence, \dot{I}(t) = 0 and from the third equation of system (2.1), we have 0 = \dot{I}(t) = \lambda \mathcal{H}_{2}\mathcal{J}_{1}(L_{2})-a\mathcal{J} _{2}(I_{2})-\mu \mathcal{J}_{4}(C(t))\mathcal{J}_{2}(I_{2}) , which gives C(t) = C_{2} for all t. Therefore, \Upsilon_{2}^{^{\prime}} = \left \{ \text{ $Ð_{2}$ }\right \} . Applying LaSalle's invariance principle we get that Ð _{2} is G.A.S.

    Proof of Theorem 4. Define a function \Phi_{3}(S, L, I, V, C, A) as:

    \begin{align*} \Phi_{3} & = S-S_{3}-\int_{S_{3}}^{S}\frac{\aleph_{1}(S_{3}, V_{3})} {\aleph_{1}(\varkappa, V_{3})}d\varkappa+\frac{1}{\mathcal{H}_{1}}\left( L-L_{3}-\int_{L_{3}}^{L}\frac{\mathcal{J}_{1}(L_{3})}{\mathcal{J} _{1}(\varkappa)}d\varkappa \right) \\ & +\frac{b\mathcal{H}_{3}\mathcal{J}_{2}(I_{3})\aleph_{1}(S_{3} , V_{3})+\left( \varepsilon+\varpi \mathcal{J}_{5}(A_{3})\right) \mathcal{J}_{3}(V_{3})\aleph_{3}(S_{3}, I_{3})}{a\left( \varepsilon +\varpi \mathcal{J}_{5}(A_{3})\right) \mathcal{J}_{2}(I_{3})\mathcal{J} _{3}(V_{3})}\left( I-I_{3}-\int_{I_{3}}^{I}\frac{\mathcal{J}_{2}(I_{3} )}{\mathcal{J}_{2}(\varkappa)}d\varkappa \right) \\ & +\frac{\aleph_{1}(S_{3}, V_{3})}{\left( \varepsilon+\varpi \mathcal{J} _{5}(A_{3})\right) \mathcal{J}_{3}(V_{3})}\left( V-V_{3}-\int_{V_{3}} ^{V}\frac{\mathcal{J}_{3}(V_{3})}{\mathcal{J}_{3}(\varkappa)}d\varkappa \right) \\ & +\frac{\mu \left[ b\mathcal{H}_{3}\mathcal{J}_{2}(I_{3})\aleph_{1} (S_{3}, V_{3})+\left( \varepsilon+\varpi \mathcal{J}_{5}(A_{3})\right) \mathcal{J}_{3}(V_{3})\aleph_{3}(S_{3}, I_{3})\right] }{\sigma a\left( \varepsilon+\varpi \mathcal{J}_{5}(A_{3})\right) \mathcal{J}_{2} (I_{3})\mathcal{J}_{3}(V_{3})}C\\ & +\frac{\varpi \aleph_{1}(S_{3}, V_{3})}{\tau \left( \varepsilon +\varpi \mathcal{J}_{5}(A_{3})\right) \mathcal{J}_{3}(V_{3})}\left( A-A_{3}-\int_{A_{3}}^{A}\frac{\mathcal{J}_{5}(A_{3})}{\mathcal{J} _{5}(\varkappa)}d\varkappa \right) +\frac{\aleph_{1}(S_{3}, V_{3})} {\mathcal{H}_{1}}\int \limits_{0}^{\kappa_{1}}\mathcal{\bar{H}}_{1}(\theta)\\ & \times \int \limits_{t-\theta}^{t}\mathcal{K}\left( \frac{\aleph _{1}(S(\varkappa), V(\varkappa))}{\aleph_{1}(S_{3}, V_{3})}\right) d\varkappa d\theta+\frac{\aleph_{2}(S_{3}, L_{3})}{\mathcal{H}_{1}}\int \limits_{0} ^{\kappa_{1}}\mathcal{\bar{H}}_{1}(\theta)\int \limits_{t-\theta} ^{t}\mathcal{K}\left( \frac{\aleph_{2}(S(\varkappa), L(\varkappa))}{\aleph _{2}(S_{3}, L_{3})}\right) d\varkappa d\theta \\ & +\frac{\aleph_{3}(S_{3}, I_{3})}{\mathcal{H}_{1}}\int \limits_{0}^{\kappa _{1}}\mathcal{\bar{H}}_{1}(\theta)\int \limits_{t-\theta}^{t}\mathcal{K}\left( \frac{\aleph_{3}(S(\varkappa), I(\varkappa))}{\aleph_{3}(S_{3}, I_{3})}\right) d\varkappa d\theta \\ & +\frac{\lambda \left[ b\mathcal{H}_{3}\mathcal{J}_{2}(I_{3})\aleph _{1}(S_{3}, V_{3})+\left( \varepsilon+\varpi \mathcal{J}_{5}(A_{3})\right) \mathcal{J}_{3}(V_{3})\aleph_{3}(S_{3}, I_{3})\right] \mathcal{J}_{1}(L_{3} )}{a\left( \varepsilon+\varpi \mathcal{J}_{5}(A_{3})\right) \mathcal{J} _{2}(I_{3})\mathcal{J}_{3}(V_{3})}\int \limits_{0}^{\kappa_{2}}\mathcal{\bar {H}}_{2}(\theta)\\ & \times \int \limits_{t-\theta}^{t}\mathcal{K}\left( \frac{\mathcal{J} _{1}(L(\varkappa))}{\mathcal{J}_{1}(L_{3})}\right) d\varkappa d\theta +\frac{b\aleph_{1}(S_{3}, V_{3})\mathcal{J}_{2}(I_{3})}{\left( \varepsilon +\varpi \mathcal{J}_{5}(A_{3})\right) \mathcal{J}_{3}(V_{3})}\int \limits_{0}^{\kappa_{3}}\mathcal{\bar{H}}_{3}(\theta)\int \limits_{t-\theta }^{t}\mathcal{K}\left( \frac{\mathcal{J}_{2}(I(\varkappa))}{\mathcal{J} _{2}(I_{3})}\right) d\varkappa d\theta. \end{align*}

    Calculating \frac{d\Phi_{3}}{dt} as:

    \begin{align} \frac{d\Phi_{3}}{dt} & = \left( 1-\frac{\aleph_{1}(S_{3}, V_{3})}{\aleph _{1}(S, V_{3})}\right) \left( \yen (S)-\aleph_{1}(S, V)-\aleph_{2} (S, L)-\aleph_{3}(S, I)\right) +\frac{1}{\mathcal{H}_{1}}\left( 1-\frac {\mathcal{J}_{1}(L_{3})}{\mathcal{J}_{1}(L)}\right) \\ & \times \left[ \int \limits_{0}^{\kappa_{1}}\mathcal{\bar{H}}_{1} (\theta)\left \{ \aleph_{1}(S(t-\theta), V(t-\theta))+\aleph_{2}(S(t-\theta ), L(t-\theta))+\aleph_{3}(S(t-\theta), I(t-\theta))\right \} d\theta \right. \\ & \left. -\left( \lambda+\gamma \right) \mathcal{J}_{1}(L)\right] +\frac{b\mathcal{H}_{3}\mathcal{J}_{2}(I_{3})\aleph_{1}(S_{3}, V_{3})+\left( \varepsilon+\varpi \mathcal{J}_{5}(A_{3})\right) \mathcal{J}_{3}(V_{3} )\aleph_{3}(S_{3}, I_{3})}{a\left( \varepsilon+\varpi \mathcal{J}_{5} (A_{3})\right) \mathcal{J}_{2}(I_{3})\mathcal{J}_{3}(V_{3})} \\ & \times \left( 1-\frac{\mathcal{J}_{2}(I_{3})}{\mathcal{J}_{2}(I)}\right) \left[ \lambda \int \limits_{0}^{\kappa_{2}}\mathcal{\bar{H}}_{2} (\theta)\mathcal{J}_{1}(L(t-\theta))d\theta-a\mathcal{J}_{2}(I)-\mu \mathcal{J}_{4}(C)\mathcal{J}_{2}(I)\right] \\ & +\frac{\aleph_{1}(S_{3}, V_{3})}{\left( \varepsilon+\varpi \mathcal{J} _{5}(A_{3})\right) \mathcal{J}_{3}(V_{3})}\left( 1-\frac{\mathcal{J} _{3}(V_{3})}{\mathcal{J}_{3}(V)}\right) \left[ b\int \limits_{0}^{\kappa_{3} }\mathcal{\bar{H}}_{3}(\theta)\mathcal{J}_{2}(I(t-\theta))d\theta -\varepsilon \mathcal{J}_{3}(V)\right. \\ & \left. -\varpi \mathcal{J}_{5}(A)\mathcal{J}_{3}(V)\right] +\frac {\mu \left[ b\mathcal{H}_{3}\mathcal{J}_{2}(I_{3})\aleph_{1}(S_{3} , V_{3})+\left( \varepsilon+\varpi \mathcal{J}_{5}(A_{3})\right) \mathcal{J}_{3}(V_{3})\aleph_{3}(S_{3}, I_{3})\right] }{\sigma a\left( \varepsilon+\varpi \mathcal{J}_{5}(A_{3})\right) \mathcal{J}_{2} (I_{3})\mathcal{J}_{3}(V_{3})} \\ & \times \left( \sigma \mathcal{J}_{4}(C)\mathcal{J}_{2}(I)-\pi \mathcal{J} _{4}(C)\right) +\frac{\varpi \aleph_{1}(S_{3}, V_{3})}{\tau \left( \varepsilon+\varpi \mathcal{J}_{5}(A_{3})\right) \mathcal{J}_{3}(V_{3} )}\left( 1-\frac{\mathcal{J}_{5}(A_{3})}{\mathcal{J}_{5}(A)}\right) \\ & \times \left( \tau \mathcal{J}_{5}(A)\mathcal{J}_{3}(V)-\zeta \mathcal{J} _{5}(A)\right) +\frac{\aleph_{1}(S_{3}, V_{3})}{\mathcal{H}_{1}} \int \limits_{0}^{\kappa_{1}}\mathcal{\bar{H}}_{1}(\theta)\left[ \frac {\aleph_{1}(S, V)}{\aleph_{1}(S_{3}, V_{3})}\right. \\ & \left. -\frac{\aleph_{1}(S(t-\theta), V(t-\theta))}{\aleph_{1}(S_{3} , V_{3})}+\ln \left( \frac{\aleph_{1}(S(t-\theta), V(t-\theta))}{\aleph _{1}(S, V)}\right) \right] d\theta+\frac{\aleph_{2}(S_{3}, L_{3})} {\mathcal{H}_{1}}\int \limits_{0}^{\kappa_{1}}\mathcal{\bar{H}}_{1} (\theta) \\ & \times \left[ \frac{\aleph_{2}(S, L)}{\aleph_{2}(S_{3}, L_{3})}-\frac {\aleph_{2}(S(t-\theta), L(t-\theta))}{\aleph_{2}(S_{3}, L_{3})}+\ln \left( \frac{\aleph_{2}(S(t-\theta), L(t-\theta))}{\aleph_{2}(S, L)}\right) \right] d\theta+\frac{\aleph_{3}(S_{3}, I_{3})}{\mathcal{H}_{1}} \\ & \times \int \limits_{0}^{\kappa_{1}}\mathcal{\bar{H}}_{1}(\theta)\left[ \frac{\aleph_{3}(S, I)}{\aleph_{3}(S_{3}, I_{3})}-\frac{\aleph_{3} (S(t-\theta), I(t-\theta))}{\aleph_{3}(S_{3}, I_{3})}+\ln \left( \frac {\aleph_{3}(S(t-\theta), I(t-\theta))}{\aleph_{3}(S, I)}\right) \right] d\theta \\ & +\frac{\lambda \left[ b\mathcal{H}_{3}\mathcal{J}_{2}(I_{3})\aleph _{1}(S_{3}, V_{3})+\left( \varepsilon+\varpi \mathcal{J}_{5}(A_{3})\right) \mathcal{J}_{3}(V_{3})\aleph_{3}(S_{3}, I_{3})\right] \mathcal{J}_{1}(L_{3} )}{a\left( \varepsilon+\varpi \mathcal{J}_{5}(A_{3})\right) \mathcal{J} _{2}(I_{3})\mathcal{J}_{3}(V_{3})} \\ & \times \int \limits_{0}^{\kappa_{2}}\mathcal{\bar{H}}_{2}(\theta)\left[ \frac{\mathcal{J}_{1}(L)}{\mathcal{J}_{1}(L_{3})}-\frac{\mathcal{J} _{1}(L(t-\theta))}{\mathcal{J}_{1}(L_{3})}+\ln \left( \frac{\mathcal{J} _{1}(L(t-\theta))}{\mathcal{J}_{1}(L)}\right) \right] d\theta \\ & +\frac{b\aleph_{1}(S_{3}, V_{3})\mathcal{J}_{2}(I_{3})}{\left( \varepsilon+\varpi \mathcal{J}_{5}(A_{3})\right) \mathcal{J}_{3}(V_{3})} \int \limits_{0}^{\kappa_{3}}\mathcal{\bar{H}}_{3}(\theta)\left[ \frac{\mathcal{J}_{2}(I)}{\mathcal{J}_{2}(I_{3})}-\frac{\mathcal{J} _{2}(I(t-\theta))}{\mathcal{J}_{2}(I_{3})}+\ln \left( \frac{\mathcal{J} _{2}(I(t-\theta))}{\mathcal{J}_{2}(I)}\right) \right] d\theta. \end{align} (8.11)

    Collecting terms of Eq. (8.11), we derive

    \begin{align*} \frac{d\Phi_{3}}{dt} & = \yen (S)\left( 1-\frac{\aleph_{1}(S_{3}, V_{3} )}{\aleph_{1}(S, V_{3})}\right) +\aleph_{1}(S, V)\frac{\aleph_{1}(S_{3}, V_{3} )}{\aleph_{1}(S, V_{3})}+\aleph_{2}(S, L)\frac{\aleph_{1}(S_{3}, V_{3})} {\aleph_{1}(S, V_{3})}\\ & +\aleph_{3}(S, I)\frac{\aleph_{1}(S_{3}, V_{3})}{\aleph_{1}(S, V_{3})} -\frac{\lambda+\gamma}{\mathcal{H}_{1}}\mathcal{J}_{1}(L)-\frac{1} {\mathcal{H}_{1}}\int \limits_{0}^{\kappa_{1}}\mathcal{\bar{H}}_{1} (\theta)\frac{\aleph_{1}(S(t-\theta), V(t-\theta))\mathcal{J}_{1}(L_{3} )}{\mathcal{J}_{1}(L)}d\theta \\ & -\frac{1}{\mathcal{H}_{1}}\int \limits_{0}^{\kappa_{1}}\mathcal{\bar{H}} _{1}(\theta)\frac{\aleph_{2}(S(t-\theta), L(t-\theta))\mathcal{J}_{1}(L_{3} )}{\mathcal{J}_{1}(L)}d\theta-\frac{1}{\mathcal{H}_{1}}\int \limits_{0} ^{\kappa_{1}}\mathcal{\bar{H}}_{1}(\theta)\\ & \times \frac{\aleph_{3}(S(t-\theta), I(t-\theta))\mathcal{J}_{1}(L_{3} )}{\mathcal{J}_{1}(L)}d\theta+\frac{\lambda+\gamma}{\mathcal{H}_{1} }\mathcal{J}_{1}(L_{3})-\aleph_{3}(S_{3}, I_{3})\frac{\mathcal{J}_{2} (I)}{\mathcal{J}_{2}(I_{3})}\\ & -\frac{\lambda \left[ b\mathcal{H}_{3}\mathcal{J}_{2}(I_{3})\aleph _{1}(S_{3}, V_{3})+\left( \varepsilon+\varpi \mathcal{J}_{5}(A_{3})\right) \mathcal{J}_{3}(V_{3})\aleph_{3}(S_{3}, I_{3})\right] }{a\left( \varepsilon+\varpi \mathcal{J}_{5}(A_{3})\right) \mathcal{J}_{2} (I_{3})\mathcal{J}_{3}(V_{3})}\int \limits_{0}^{\kappa_{2}}\mathcal{\bar{H} }_{2}(\theta)\frac{\mathcal{J}_{1}(L(t-\theta))\mathcal{J}_{2}(I_{3} )}{\mathcal{J}_{2}(I)}d\theta \\ & +\frac{b\mathcal{H}_{3}\mathcal{J}_{2}(I_{3})\aleph_{1}(S_{3} , V_{3})+\left( \varepsilon+\varpi \mathcal{J}_{5}(A_{3})\right) \mathcal{J}_{3}(V_{3})\aleph_{3}(S_{3}, I_{3})}{\left( \varepsilon +\varpi \mathcal{J}_{5}(A_{3})\right) \mathcal{J}_{2}(I_{3})\mathcal{J} _{3}(V_{3})}\mathcal{J}_{2}(I_{3})\\ & +\frac{\mu \left[ b\mathcal{H}_{3}\mathcal{J}_{2}(I_{3})\aleph_{1} (S_{3}, V_{3})+\left( \varepsilon+\varpi \mathcal{J}_{5}(A_{3})\right) \mathcal{J}_{3}(V_{3})\aleph_{3}(S_{3}, I_{3})\right] }{a\left( \varepsilon+\varpi \mathcal{J}_{5}(A_{3})\right) \mathcal{J}_{2} (I_{3})\mathcal{J}_{3}(V_{3})}\mathcal{J}_{4}(C)\mathcal{J}_{2}(I_{3})\\ & -\frac{\varepsilon \aleph_{1}(S_{3}, V_{3})}{\left( \varepsilon +\varpi \mathcal{J}_{5}(A_{3})\right) \mathcal{J}_{3}(V_{3})}\mathcal{J} _{3}(V)-\frac{b\aleph_{1}(S_{3}, V_{3})}{\left( \varepsilon+\varpi \mathcal{J}_{5}(A_{3})\right) \mathcal{J}_{3}(V_{3})}\int \limits_{0} ^{\kappa_{3}}\mathcal{\bar{H}}_{3}(\theta)\frac{\mathcal{J}_{2}(I(t-\theta ))\mathcal{J}_{3}(V_{3})}{\mathcal{J}_{3}(V)}d\theta \\ & +\frac{\varepsilon \aleph_{1}(S_{3}, V_{3})}{\left( \varepsilon +\varpi \mathcal{J}_{5}(A_{3})\right) \mathcal{J}_{3}(V_{3})}\mathcal{J} _{3}(V_{3})+\frac{\varpi \aleph_{1}(S_{3}, V_{3})}{\left( \varepsilon +\varpi \mathcal{J}_{5}(A_{3})\right) \mathcal{J}_{3}(V_{3})}\mathcal{J} _{5}(A)\mathcal{J}_{3}(V_{3})\\ & -\frac{\mu \pi \left[ b\mathcal{H}_{3}\mathcal{J}_{2}(I_{3})\aleph_{1} (S_{3}, V_{3})+\left( \varepsilon+\varpi \mathcal{J}_{5}(A_{3})\right) \mathcal{J}_{3}(V_{3})\aleph_{3}(S_{3}, I_{3})\right] }{\sigma a\left( \varepsilon+\varpi \mathcal{J}_{5}(A_{3})\right) \mathcal{J}_{2} (I_{3})\mathcal{J}_{3}(V_{3})}\mathcal{J}_{4}(C)\\ & -\frac{\varpi \zeta \aleph_{1}(S_{3}, V_{3})}{\tau \left( \varepsilon +\varpi \mathcal{J}_{5}(A_{3})\right) \mathcal{J}_{3}(V_{3})}\mathcal{J} _{5}(A)-\frac{\varpi \aleph_{1}(S_{3}, V_{3})}{\left( \varepsilon +\varpi \mathcal{J}_{5}(A_{3})\right) \mathcal{J}_{3}(V_{3})}\mathcal{J} _{5}(A_{3})\mathcal{J}_{3}(V)\\ & +\frac{\varpi \zeta \aleph_{1}(S_{3}, V_{3})}{\tau \left( \varepsilon +\varpi \mathcal{J}_{5}(A_{3})\right) \mathcal{J}_{3}(V_{3})}\mathcal{J} _{5}(A_{3})+\frac{\aleph_{1}(S_{3}, V_{3})}{\mathcal{H}_{1}}\int \limits_{0} ^{\kappa_{1}}\mathcal{\bar{H}}_{1}(\theta)\ln \left( \frac{\aleph _{1}(S(t-\theta), V(t-\theta))}{\aleph_{1}(S, V)}\right) d\theta \\ & +\frac{\aleph_{2}(S_{3}, L_{3})}{\mathcal{H}_{1}}\int \limits_{0}^{\kappa _{1}}\mathcal{\bar{H}}_{1}(\theta)\ln \left( \frac{\aleph_{2}(S(t-\theta ), L(t-\theta))}{\aleph_{2}(S, L)}\right) d\theta+\frac{\aleph_{3}(S_{3} , I_{3})}{\mathcal{H}_{1}}\int \limits_{0}^{\kappa_{1}}\mathcal{\bar{H}} _{1}(\theta)\\ & \times \ln \left( \frac{\aleph_{3}(S(t-\theta), I(t-\theta))}{\aleph _{3}(S, I)}\right) d\theta+\frac{\lambda \mathcal{H}_{2}\left[ b\mathcal{H} _{3}\mathcal{J}_{2}(I_{3})\aleph_{1}(S_{3}, V_{3})+\left( \varepsilon +\varpi \mathcal{J}_{5}(A_{3})\right) \mathcal{J}_{3}(V_{3})\aleph_{3} (S_{3}, I_{3})\right] }{a\left( \varepsilon+\varpi \mathcal{J}_{5} (A_{3})\right) \mathcal{J}_{2}(I_{3})\mathcal{J}_{3}(V_{3})}\\ & \times \mathcal{J}_{1}(L)+\frac{\lambda \left[ b\mathcal{H}_{3} \mathcal{J}_{2}(I_{3})\aleph_{1}(S_{3}, V_{3})+\left( \varepsilon +\varpi \mathcal{J}_{5}(A_{3})\right) \mathcal{J}_{3}(V_{3})\aleph_{3} (S_{3}, I_{3})\right] \mathcal{J}_{1}(L_{3})}{a\left( \varepsilon +\varpi \mathcal{J}_{5}(A_{3})\right) \mathcal{J}_{2}(I_{3})\mathcal{J} _{3}(V_{3})}\int \limits_{0}^{\kappa_{2}}\mathcal{\bar{H}}_{2}(\theta)\\ & \times \ln \left( \frac{\mathcal{J}_{1}(L(t-\theta))}{\mathcal{J}_{1} (L)}\right) d\theta+\frac{b\aleph_{1}(S_{3}, V_{3})\mathcal{J}_{2}(I_{3} )}{\left( \varepsilon+\varpi \mathcal{J}_{5}(A_{3})\right) \mathcal{J} _{3}(V_{3})}\int \limits_{0}^{\kappa_{3}}\mathcal{\bar{H}}_{3}(\theta )\ln \left( \frac{\mathcal{J}_{2}(I(t-\theta))}{\mathcal{J}_{2}(I)}\right) d\theta. \end{align*}

    Using the equilibrium conditions for Ð _{3} , we get

    \begin{align*} & \left. \yen (S_{3}) = \aleph_{1}(S_{3}, V_{3})+\aleph_{2}(S_{3}, L_{3} )+\aleph_{3}(S_{3}, I_{3}) = \frac{\lambda+\gamma}{\mathcal{H}_{1}} \mathcal{J}_{1}(L_{3}), \right. \\ & \left. \frac{\lambda \mathcal{H}_{2}\mathcal{J}_{1}(L_{3})}{a} = \mathcal{J}_{2}(I_{3}), \ \ \ \ \ \mathcal{J}_{3}(V_{3}) = \frac{\zeta} {\tau}, \ \ b\mathcal{H}_{3}\mathcal{J}_{2}(I_{3}) = \left( \varepsilon+\varpi \mathcal{J}_{5}(A_{3})\right) \mathcal{J}_{3} (V_{3}).\right. \end{align*}

    In addition,

    \begin{align*} \aleph_{1}(S_{3}, V_{3})+\aleph_{3}(S_{3}, I_{3}) & = \frac{b\mathcal{H} _{3}\mathcal{J}_{2}(I_{3})\aleph_{1}(S_{3}, V_{3})+\left( \varepsilon +\varpi \mathcal{J}_{5}(A_{3})\right) \mathcal{J}_{3}(V_{3})\aleph_{3} (S_{3}, I_{3})}{\left( \varepsilon+\varpi \mathcal{J}_{5}(A_{3})\right) \mathcal{J}_{2}(I_{3})\mathcal{J}_{3}(V_{3})}\mathcal{J}_{2}(I_{3})\\ & = \frac{\lambda \mathcal{H}_{2}\left[ b\mathcal{H}_{3}\mathcal{J}_{2} (I_{3})\aleph_{1}(S_{3}, V_{3})+\left( \varepsilon+\varpi \mathcal{J}_{5} (A_{3})\right) \mathcal{J}_{3}(V_{3})\aleph_{3}(S_{3}, I_{3})\right] }{a\left( \varepsilon+\varpi \mathcal{J}_{5}(A_{3})\right) \mathcal{J} _{2}(I_{3})\mathcal{J}_{3}(V_{3})}\mathcal{J}_{1}(L_{3}). \end{align*}

    Then, we obtain

    \begin{align*} \frac{d\Phi_{3}}{dt} & = \left( \yen (S)-\yen (S_{3})\right) \left( 1-\frac{\aleph_{1}(S_{3}, V_{3})}{\aleph_{1}(S, V_{3})}\right) +\left( \aleph_{1}(S_{3}, V_{3})+\aleph_{2}(S_{3}, L_{3})+\aleph_{3}(S_{3}, I_{3})\right) \\ & \times \left( 1-\frac{\aleph_{1}(S_{3}, V_{3})}{\aleph_{1}(S, V_{3})}\right) +\aleph_{1}(S_{3}, V_{3})\frac{\aleph_{1}(S, V)}{\aleph_{1}(S, V_{3})}+\aleph _{2}(S_{3}, L_{3})\frac{\aleph_{2}(S, L)\aleph_{1}(S_{3}, V_{3})}{\aleph _{2}(S_{3}, L_{3})\aleph_{1}(S, V_{3})}\\ & +\aleph_{3}(S_{3}, I_{3})\frac{\aleph_{3}(S, I)\aleph_{1}(S_{3}, V_{3} )}{\aleph_{3}(S_{3}, I_{3})\aleph_{1}(S, V_{3})}-\aleph_{2}(S_{3}, L_{3} )\frac{\mathcal{J}_{1}(L)}{\mathcal{J}_{1}(L_{3})}-\frac{\aleph_{1} (S_{3}, V_{3})}{\mathcal{H}_{1}}\int \limits_{0}^{\kappa_{1}}\mathcal{\bar{H} }_{1}(\theta)\\ & \times \frac{\aleph_{1}(S(t-\theta), V(t-\theta))\mathcal{J}_{1}(L_{3} )}{\aleph_{1}(S_{3}, V_{3})\mathcal{J}_{1}(L)}d\theta-\frac{\aleph_{2} (S_{3}, L_{3})}{\mathcal{H}_{1}}\int \limits_{0}^{\kappa_{1}}\mathcal{\bar{H} }_{1}(\theta)\\ & \times \frac{\aleph_{2}(S(t-\theta), L(t-\theta))\mathcal{J}_{1}(L_{3} )}{\aleph_{2}(S_{3}, L_{3})\mathcal{J}_{1}(L)}d\theta-\frac{\aleph_{3} (S_{3}, I_{3})}{\mathcal{H}_{1}}\int \limits_{0}^{\kappa_{1}}\mathcal{\bar{H} }_{1}(\theta)\frac{\aleph_{3}(S(t-\theta), I(t-\theta))\mathcal{J}_{1}(L_{3} )}{\aleph_{3}(S_{3}, I_{3})\mathcal{J}_{1}(L)}d\theta \\ & +\aleph_{1}(S_{3}, V_{3})+\aleph_{2}(S_{3}, L_{3})+\aleph_{3}(S_{3} , I_{3})-\aleph_{3}(S_{3}, I_{3})\frac{\mathcal{J}_{2}(I)}{\mathcal{J}_{2} (I_{3})}-\frac{\aleph_{1}(S_{3}, V_{3})+\aleph_{3}(S_{3}, I_{3})}{\mathcal{H} _{2}}\\ & \times \int \limits_{0}^{\kappa_{2}}\mathcal{\bar{H}}_{2}(\theta )\frac{\mathcal{J}_{1}(L(t-\theta))\mathcal{J}_{2}(I_{3})}{\mathcal{J} _{1}(L_{3})\mathcal{J}_{2}(I)}d\theta+\aleph_{1}(S_{3}, V_{3})+\aleph_{3} (S_{3}, I_{3})-\aleph_{1}(S_{3}, V_{3})\frac{\mathcal{J}_{3}(V)}{\mathcal{J} _{3}(V_{3})}\\ & -\frac{\aleph_{1}(S_{3}, V_{3})}{\mathcal{H}_{3}}\int \limits_{0}^{\kappa _{3}}\mathcal{\bar{H}}_{3}(\theta)\frac{\mathcal{J}_{2}(I(t-\theta ))\mathcal{J}_{3}(V_{3})}{\mathcal{J}_{2}(I_{3})\mathcal{J}_{3}(V)} d\theta+\aleph_{1}(S_{3}, V_{3})+\frac{\aleph_{1}(S_{3}, V_{3})}{\mathcal{H} _{1}}\int \limits_{0}^{\kappa_{1}}\mathcal{\bar{H}}_{1}(\theta)\\ & \times \ln \left( \frac{\aleph_{1}(S(t-\theta), V(t-\theta))}{\aleph _{1}(S, V)}\right) d\theta+\frac{\aleph_{2}(S_{3}, L_{3})}{\mathcal{H}_{1}} \int \limits_{0}^{\kappa_{1}}\mathcal{\bar{H}}_{1}(\theta)\ln \left( \frac{\aleph_{2}(S(t-\theta), L(t-\theta))}{\aleph_{2}(S, L)}\right) d\theta \\ & +\frac{\aleph_{3}(S_{3}, I_{3})}{\mathcal{H}_{1}}\int \limits_{0}^{\kappa _{1}}\mathcal{\bar{H}}_{1}(\theta)\ln \left( \frac{\aleph_{3}(S(t-\theta ), I(t-\theta))}{\aleph_{3}(S, I)}\right) d\theta+\frac{\aleph_{1}(S_{3} , V_{3})+\aleph_{3}(S_{3}, I_{3})}{\mathcal{H}_{2}}\\ & \times \int \limits_{0}^{\kappa_{2}}\mathcal{\bar{H}}_{2}(\theta)\ln \left( \frac{\mathcal{J}_{1}(L(t-\theta))}{\mathcal{J}_{1}(L)}\right) d\theta +\frac{\aleph_{1}(S_{3}, V_{3})}{\mathcal{H}_{3}}\int \limits_{0}^{\kappa_{3} }\mathcal{\bar{H}}_{3}(\theta)\ln \left( \frac{\mathcal{J}_{2}(I(t-\theta ))}{\mathcal{J}_{2}(I)}\right) d\theta \\ & +\frac{\mu \left[ b\mathcal{H}_{3}\mathcal{J}_{2}(I_{3})\aleph_{1} (S_{3}, V_{3})+\left( \varepsilon+\varpi \mathcal{J}_{5}(A_{3})\right) \mathcal{J}_{3}(V_{3})\aleph_{3}(S_{3}, I_{3})\right] }{a\left( \varepsilon+\varpi \mathcal{J}_{5}(A_{3})\right) \mathcal{J}_{2} (I_{3})\mathcal{J}_{3}(V_{3})}\left( \mathcal{J}_{2}(I_{3})-\frac{\pi} {\sigma}\right) \mathcal{J}_{4}(C). \end{align*}

    Considering the equalities given by (5.6) in case of n = 3 and after some calculations we get

    \begin{align*} \frac{d\Phi_{3}}{dt} & = \left( \yen (S)-\yen (S_{3})\right) \left( 1-\frac{\aleph_{1}(S_{3}, V_{3})}{\aleph_{1}(S, V_{3})}\right) -\left( \aleph_{1}(S_{3}, V_{3})+\aleph_{2}(S_{3}, L_{3})+\aleph_{3}(S_{3}, I_{3})\right) \\ & \times \left[ \frac{\aleph_{1}(S_{3}, V_{3})}{\aleph_{1}(S, V_{3})} -1-\ln \left( \frac{\aleph_{1}(S_{3}, V_{3})}{\aleph_{1}(S, V_{3})}\right) \right] -\frac{\aleph_{1}(S_{3}, V_{3})}{\mathcal{H}_{1}}\int \limits_{0} ^{\kappa_{1}}\mathcal{\bar{H}}_{1}(\theta)\\ & \times \left[ \frac{\aleph_{1}(S(t-\theta), V(t-\theta))\mathcal{J} _{1}(L_{3})}{\aleph_{1}(S_{3}, V_{3})\mathcal{J}_{1}(L)}-1-\ln \left( \frac{\aleph_{1}(S(t-\theta), V(t-\theta))\mathcal{J}_{1}(L_{3})}{\aleph _{1}(S_{3}, V_{3})\mathcal{J}_{1}(L)}\right) \right] d\theta \\ & -\frac{\aleph_{2}(S_{3}, L_{3})}{\mathcal{H}_{1}}\int \limits_{0}^{\kappa _{1}}\mathcal{\bar{H}}_{1}(\theta)\left[ \frac{\aleph_{2}(S(t-\theta ), L(t-\theta))\mathcal{J}_{1}(L_{3})}{\aleph_{2}(S_{3}, L_{3})\mathcal{J} _{1}(L)}-1\right. \\ & \left. -\ln \left( \frac{\aleph_{2}(S(t-\theta), L(t-\theta))\mathcal{J} _{1}(L_{3})}{\aleph_{2}(S_{3}, L_{3})\mathcal{J}_{1}(L)}\right) \right] d\theta-\frac{\aleph_{3}(S_{3}, I_{3})}{\mathcal{H}_{1}}\int \limits_{0} ^{\kappa_{1}}\mathcal{\bar{H}}_{1}(\theta)\\ & \times \left[ \frac{\aleph_{3}(S(t-\theta), I(t-\theta))\mathcal{J} _{1}(L_{3})}{\aleph_{3}(S_{3}, I_{3})\mathcal{J}_{1}(L)}-1-\ln \left( \frac{\aleph_{3}(S(t-\theta), I(t-\theta))\mathcal{J}_{1}(L_{3})}{\aleph _{3}(S_{3}, I_{3})\mathcal{J}_{1}(L)}\right) \right] d\theta \\ & -\frac{\aleph_{1}(S_{3}, V_{3})+\aleph_{3}(S_{3}, I_{3})}{\mathcal{H}_{2} }\int \limits_{0}^{\kappa_{2}}\mathcal{\bar{H}}_{2}(\theta)\left[ \frac{\mathcal{J}_{1}(L(t-\theta))\mathcal{J}_{2}(I_{3})}{\mathcal{J} _{1}(L_{3})\mathcal{J}_{2}(I)}-1\right. \\ & \left. -\ln \left( \frac{\mathcal{J}_{1}(L(t-\theta))\mathcal{J}_{2} (I_{3})}{\mathcal{J}_{1}(L_{3})\mathcal{J}_{2}(I)}\right) \right] d\theta-\frac{\aleph_{1}(S_{3}, V_{3})}{\mathcal{H}_{3}}\int \limits_{0} ^{\kappa_{3}}\mathcal{\bar{H}}_{3}(\theta)\\ & \times \left[ \frac{\mathcal{J}_{2}(I(t-\theta))\mathcal{J}_{3}(V_{3} )}{\mathcal{J}_{2}(I_{3})\mathcal{J}_{3}(V)}-1-\ln \left( \frac{\mathcal{J} _{2}(I(t-\theta))\mathcal{J}_{3}(V_{3})}{\mathcal{J}_{2}(I_{3})\mathcal{J} _{3}(V)}\right) \right] d\theta \\ & -\aleph_{1}(S_{3}, V_{3})\left[ \frac{\aleph_{1}(S, V_{3})\mathcal{J} _{3}(V)}{\aleph_{1}(S, V)\mathcal{J}_{3}(V_{3})}-1-\ln \left( \frac{\aleph _{1}(S, V_{3})\mathcal{J}_{3}(V)}{\aleph_{1}(S, V)\mathcal{J}_{3}(V_{3} )}\right) \right] \\ & -\aleph_{2}(S_{3}, L_{3})\left[ \frac{\aleph_{1}(S, V_{3})\aleph_{2} (S_{3}, L_{3})\mathcal{J}_{1}(L)}{\aleph_{1}(S_{3}, V_{3})\aleph_{2} (S, L)\mathcal{J}_{1}(L_{3})}-1-\ln \left( \frac{\aleph_{1}(S, V_{3})\aleph _{2}(S_{3}, L_{3})\mathcal{J}_{1}(L)}{\aleph_{1}(S_{3}, V_{3})\aleph _{2}(S, L)\mathcal{J}_{1}(L_{3})}\right) \right] \\ & -\aleph_{3}(S_{3}, I_{3})\left[ \frac{\aleph_{1}(S, V_{3})\aleph_{3} (S_{3}, I_{3})\mathcal{J}_{2}(I)}{\aleph_{1}(S_{3}, V_{3})\aleph_{3} (S, I)\mathcal{J}_{2}(I_{3})}-1-\ln \left( \frac{\aleph_{1}(S, V_{3})\aleph _{3}(S_{3}, I_{3})\mathcal{J}_{2}(I)}{\aleph_{1}(S_{3}, V_{3})\aleph _{3}(S, I)\mathcal{J}_{2}(I_{3})}\right) \right] \\ & +\aleph_{1}(S_{3}, V_{3})\left[ \frac{\aleph_{1}(S, V)}{\aleph_{1}(S, V_{3} )}-\frac{\mathcal{J}_{3}(V)}{\mathcal{J}_{3}(V_{3})}-1+\frac{\aleph _{1}(S, V_{3})\mathcal{J}_{3}(V)}{\aleph_{1}(S, V)\mathcal{J}_{3}(V_{3})}\right] \\ & +\aleph_{2}(S_{3}, L_{3})\left[ \frac{\aleph_{2}(S, L)\aleph_{1}(S_{3} , V_{3})}{\aleph_{2}(S_{3}, L_{3})\aleph_{1}(S, V_{3})}-\frac{\mathcal{J}_{1} (L)}{\mathcal{J}_{1}(L_{3})}-1+\frac{\aleph_{1}(S, V_{3})\aleph_{2}(S_{3} , L_{3})\mathcal{J}_{1}(L)}{\aleph_{1}(S_{3}, V_{3})\aleph_{2}(S, L)\mathcal{J} _{1}(L_{3})}\right] \\ & +\aleph_{3}(S_{3}, I_{3})\left[ \frac{\aleph_{3}(S, I)\aleph_{1}(S_{3} , V_{3})}{\aleph_{3}(S_{3}, I_{3})\aleph_{1}(S, V_{3})}-\frac{\mathcal{J}_{2} (I)}{\mathcal{J}_{2}(I_{3})}-1+\frac{\aleph_{1}(S, V_{3})\aleph_{3}(S_{3} , I_{3})\mathcal{J}_{2}(I)}{\aleph_{1}(S_{3}, V_{3})\aleph_{3}(S, I)\mathcal{J} _{2}(I_{3})}\right] \\ & +\frac{\mu \left[ b\mathcal{H}_{3}\mathcal{J}_{2}(I_{3})\aleph_{1} (S_{3}, V_{3})+\left( \varepsilon+\varpi \mathcal{J}_{5}(A_{3})\right) \mathcal{J}_{3}(V_{3})\aleph_{3}(S_{3}, I_{3})\right] }{a\left( \varepsilon+\varpi \mathcal{J}_{5}(A_{3})\right) \mathcal{J}_{2} (I_{3})\mathcal{J}_{3}(V_{3})}\left( \mathcal{J}_{2}(I_{3})-\mathcal{J} _{2}(I_{4})\right) \mathcal{J}_{4}(C). \end{align*}

    Using the definition of \mathcal{G}_{3}^{U}(S, U) given in (5.4), we obtain

    \begin{align*} & \frac{\aleph_{2}(S, L)\aleph_{1}(S_{3}, V_{3})}{\aleph_{2}(S_{3}, L_{3} )\aleph_{1}(S, V_{3})}-\frac{\mathcal{J}_{1}(L)}{\mathcal{J}_{1}(L_{3} )}-1+\frac{\aleph_{1}(S, V_{3})\aleph_{2}(S_{3}, L_{3})\mathcal{J}_{1} (L)}{\aleph_{1}(S_{3}, V_{3})\aleph_{2}(S, L)\mathcal{J}_{1}(L_{3})}\\ & = \frac{\mathcal{G}_{3}^{L}(S, L)}{\mathcal{G}_{3}^{L}(S_{3}, L_{3})} -\frac{\mathcal{J}_{1}(L)}{\mathcal{J}_{1}(L_{3})}-1+\frac{\mathcal{J} _{1}(L)\mathcal{G}_{3}^{L}(S_{3}, L_{3})}{\mathcal{J}_{1}(L_{3})\mathcal{G} _{3}^{L}(S, L)}, \end{align*}

    and

    \begin{align*} & \frac{\aleph_{3}(S, I)\aleph_{1}(S_{3}, V_{3})}{\aleph_{3}(S_{3}, I_{3} )\aleph_{1}(S, V_{3})}-\frac{\mathcal{J}_{2}(I)}{\mathcal{J}_{2}(I_{3} )}-1+\frac{\aleph_{1}(S, V_{3})\aleph_{3}(S_{3}, I_{3})\mathcal{J}_{2} (I)}{\aleph_{1}(S_{3}, V_{3})\aleph_{3}(S, I)\mathcal{J}_{2}(I_{3})}\\ & = \frac{\mathcal{G}_{3}^{I}(S, I)}{\mathcal{G}_{3}^{I}(S_{3}, I_{3})} -\frac{\mathcal{J}_{2}(I)}{\mathcal{J}_{2}(I_{3})}-1+\frac{\mathcal{J} _{2}(I)\mathcal{G}_{3}^{I}(S_{3}, I_{3})}{\mathcal{J}_{2}(I_{3})\mathcal{G} _{3}^{I}(S, I)}. \end{align*}

    Then,

    \begin{align*} \frac{d\Phi_{3}}{dt} & = \left( \yen (S)-\yen (S_{3})\right) \left( 1-\frac{\aleph_{1}(S_{3}, V_{3})}{\aleph_{1}(S, V_{3})}\right) -\frac {\aleph_{1}(S_{3}, V_{3})}{\mathcal{H}_{1}}\int \limits_{0}^{\kappa_{1} }\mathcal{\bar{H}}_{1}(\theta)\left[ \mathcal{K}\left( \frac{\aleph _{1}(S_{3}, V_{3})}{\aleph_{1}(S, V_{3})}\right) \right. \\ & \left. +\mathcal{K}\left( \frac{\aleph_{1}(S(t-\theta), V(t-\theta ))\mathcal{J}_{1}(L_{3})}{\aleph_{1}(S_{3}, V_{3})\mathcal{J}_{1}(L)}\right) +\mathcal{K}\left( \frac{\aleph_{1}(S, V_{3})\mathcal{J}_{3}(V)}{\aleph _{1}(S, V)\mathcal{J}_{3}(V_{3})}\right) \right] d\theta \\ & -\frac{\aleph_{2}(S_{3}, L_{3})}{\mathcal{H}_{1}}\int \limits_{0}^{\kappa _{1}}\mathcal{\bar{H}}_{1}(\theta)\left[ \mathcal{K}\left( \frac{\aleph _{1}(S_{3}, V_{3})}{\aleph_{1}(S, V_{3})}\right) +\mathcal{K}\left( \frac{\aleph_{2}(S(t-\theta), L(t-\theta))\mathcal{J}_{1}(L_{3})}{\aleph _{2}(S_{3}, L_{3})\mathcal{J}_{1}(L)}\right) \right. \\ & \left. +\mathcal{K}\left( \frac{\aleph_{1}(S, V_{3})\aleph_{2}(S_{3} , L_{3})\mathcal{J}_{1}(L)}{\aleph_{1}(S_{3}, V_{3})\aleph_{2}(S, L)\mathcal{J} _{1}(L_{3})}\right) \right] d\theta-\frac{\aleph_{3}(S_{3}, I_{3} )}{\mathcal{H}_{1}}\int \limits_{0}^{\kappa_{1}}\mathcal{\bar{H}}_{1} (\theta)\left[ \mathcal{K}\left( \frac{\aleph_{1}(S_{3}, V_{3})}{\aleph _{1}(S, V_{3})}\right) \right. \\ & \left. +\mathcal{K}\left( \frac{\aleph_{3}(S(t-\theta), I(t-\theta ))\mathcal{J}_{1}(L_{3})}{\aleph_{3}(S_{3}, I_{3})\mathcal{J}_{1}(L)}\right) +\mathcal{K}\left( \frac{\aleph_{1}(S, V_{3})\aleph_{3}(S_{3}, I_{3} )\mathcal{J}_{2}(I)}{\aleph_{1}(S_{3}, V_{3})\aleph_{3}(S, I)\mathcal{J} _{2}(I_{3})}\right) \right] d\theta \\ & -\frac{\aleph_{1}(S_{3}, V_{3})+\aleph_{3}(S_{3}, I_{3})}{\mathcal{H}_{2} }\int \limits_{0}^{\kappa_{2}}\mathcal{\bar{H}}_{2}(\theta)\mathcal{K}\left( \frac{\mathcal{J}_{1}(L(t-\theta))\mathcal{J}_{2}(I_{3})}{\mathcal{J} _{1}(L_{3})\mathcal{J}_{2}(I)}\right) d\theta \\ & -\frac{\aleph_{1}(S_{3}, V_{3})}{\mathcal{H}_{3}}\int \limits_{0}^{\kappa _{3}}\mathcal{\bar{H}}_{3}(\theta)\mathcal{K}\left( \frac{\mathcal{J} _{2}(I(t-\theta))\mathcal{J}_{3}(V_{3})}{\mathcal{J}_{2}(I_{3})\mathcal{J} _{3}(V)}\right) d\theta \\ & +\aleph_{1}(S_{3}, V_{3})\left( 1-\frac{\aleph_{1}(S, V_{3})}{\aleph _{1}(S, V)}\right) \left( \frac{\aleph_{1}(S, V)}{\aleph_{1}(S, V_{3})} -\frac{\mathcal{J}_{3}(V)}{\mathcal{J}_{3}(V_{3})}\right) \\ & +\aleph_{2}(S_{3}, L_{3})\left( 1-\frac{\mathcal{G}_{3}^{L}(S_{3}, L_{3} )}{\mathcal{G}_{3}^{L}(S, L)}\right) \left( \frac{\mathcal{G}_{3}^{L} (S, L)}{\mathcal{G}_{3}^{L}(S_{3}, L_{3})}-\frac{\mathcal{J}_{1}(L)} {\mathcal{J}_{1}(L_{3})}\right) \\ & +\aleph_{3}(S_{3}, I_{3})\left( 1-\frac{\mathcal{G}_{3}^{I}(S_{3}, I_{3} )}{\mathcal{G}_{3}^{I}(S, I)}\right) \left( \frac{\mathcal{G}_{3}^{I} (S, I)}{\mathcal{G}_{3}^{I}(S_{3}, I_{3})}-\frac{\mathcal{J}_{2}(I)} {\mathcal{J}_{2}(I_{3})}\right) \\ & +\frac{\mu \left[ b\mathcal{H}_{3}\mathcal{J}_{2}(I_{3})\aleph_{1} (S_{3}, V_{3})+\left( \varepsilon+\varpi \mathcal{J}_{5}(A_{3})\right) \mathcal{J}_{3}(V_{3})\aleph_{3}(S_{3}, I_{3})\right] }{a\left( \varepsilon+\varpi \mathcal{J}_{5}(A_{3})\right) \mathcal{J}_{2} (I_{3})\mathcal{J}_{3}(V_{3})}\left( \mathcal{J}_{2}(I_{3})-\mathcal{J} _{2}(I_{4})\right) \mathcal{J}_{4}(C). \end{align*}

    We have C_{4} = \mathcal{J}_{4}^{-1}\left(\frac{a}{\mu}\left(\Re _{3}-1\right) \right) \leq0 when \Re_{3}\leq1 . It follows that \dot {C}(t) = \sigma \left(\mathcal{J}_{2}(I(t))-\frac{\pi}{\sigma}\right) \mathcal{J}_{4}(C(t)) = \sigma \left(\mathcal{J}_{2}(I(t))-\mathcal{J} _{2}(I_{4})\right) \mathcal{J}_{4}(C(t))\leq0 for all C > 0 , which implies that \mathcal{J}_{2}(I_{3})\leq \mathcal{J}_{2}(I_{4}) . Hence, \frac {d\Phi_{3}}{dt}\leq0 for all S, L, I, V, C, A > 0 and \frac{d\Phi_{3}}{dt} = 0 when S = S_{3}, L = L_{3}, I = I_{3}, V = V_{3} and C = 0 . Let \Upsilon _{3}^{\prime} be the largest invariant subset of \Upsilon_{3} = \left \{ (S, L, I, V, C, A):\frac{d\Phi_{3}}{dt} = 0\right \} . The solutions of system (2.1) converge to \Upsilon_{3}^{^{\prime}} which contains elements with I(t) = I_{3} and V(t) = V_{3} . Then \dot{V}(t) = 0 and from the fourth equation of system (2.1) we have 0 = \dot{V}(t) = b\mathcal{H} _{3}\mathcal{J}_{2}(I_{3})-\varepsilon \mathcal{J}_{3}(V_{3})-\varpi \mathcal{J}_{5}(A(t))\mathcal{J}_{3}(V_{3}) , which gives A(t) = A_{3} for all t. Then, \Upsilon_{3}^{\prime} = \left \{ \text{ Ð_{3} }\right \} and utilizing LaSalle's invariance principle we can say that Ð _{3} $ is G.A.S.

    Proof of Theorem 5. Define \Phi_{4}(S, L, I, V, C, A) as:

    \begin{align*} \Phi_{4} & = S-S_{4}-\int_{S_{4}}^{S}\frac{\aleph_{1}(S_{4}, V_{4})} {\aleph_{1}(\varkappa, V_{4})}d\varkappa+\frac{1}{\mathcal{H}_{1}}\left( L-L_{4}-\int_{L_{4}}^{L}\frac{\mathcal{J}_{1}(L_{4})}{\mathcal{J} _{1}(\varkappa)}d\varkappa \right) \\ & +\frac{b\mathcal{H}_{3}\mathcal{J}_{2}(I_{4})\aleph_{1}(S_{4} , V_{4})+\left( \varepsilon+\varpi \mathcal{J}_{5}(A_{4})\right) \mathcal{J}_{3}(V_{4})\aleph_{3}(S_{4}, I_{4})}{\left( a+\mu \mathcal{J} _{4}(C_{4})\right) \left( \varepsilon+\varpi \mathcal{J}_{5}(A_{4})\right) \mathcal{J}_{2}(I_{4})\mathcal{J}_{3}(V_{4})}\left( I-I_{4}-\int_{I_{4}} ^{I}\frac{\mathcal{J}_{2}(I_{4})}{\mathcal{J}_{2}(\varkappa)}d\varkappa \right) \\ & +\frac{\aleph_{1}(S_{4}, V_{4})}{\left( \varepsilon+\varpi \mathcal{J} _{5}(A_{4})\right) \mathcal{J}_{3}(V_{4})}\left( V-V_{4}-\int_{V_{4}} ^{V}\frac{\mathcal{J}_{3}(V_{4})}{\mathcal{J}_{3}(\varkappa)}d\varkappa \right) \\ & +\frac{\mu \left[ b\mathcal{H}_{3}\mathcal{J}_{2}(I_{4})\aleph_{1} (S_{4}, V_{4})+\left( \varepsilon+\varpi \mathcal{J}_{5}(A_{4})\right) \mathcal{J}_{3}(V_{4})\aleph_{3}(S_{4}, I_{4})\right] }{\sigma \left( a+\mu \mathcal{J}_{4}(C_{4})\right) \left( \varepsilon+\varpi \mathcal{J} _{5}(A_{4})\right) \mathcal{J}_{2}(I_{4})\mathcal{J}_{3}(V_{4})}\\ & \times \left( C-C_{4}-\int_{C_{4}}^{C}\frac{\mathcal{J}_{4}(C_{4} )}{\mathcal{J}_{4}(\varkappa)}d\varkappa \right) +\frac{\varpi \aleph_{1} (S_{4}, V_{4})}{\tau \left( \varepsilon+\varpi \mathcal{J}_{5}(A_{4})\right) \mathcal{J}_{3}(V_{4})}\left( A-A_{4}-\int_{A_{4}}^{A}\frac{\mathcal{J} _{5}(A_{4})}{\mathcal{J}_{5}(\varkappa)}d\varkappa \right) \\ & +\frac{\aleph_{1}(S_{4}, V_{4})}{\mathcal{H}_{1}}\int \limits_{0}^{\kappa _{1}}\mathcal{\bar{H}}_{1}(\theta)\int \limits_{t-\theta}^{t}\mathcal{K}\left( \frac{\aleph_{1}(S(\varkappa), V(\varkappa))}{\aleph_{1}(S_{4}, V_{4})}\right) d\varkappa d\theta+\frac{\aleph_{2}(S_{4}, L_{4})}{\mathcal{H}_{1}} \int \limits_{0}^{\kappa_{1}}\mathcal{\bar{H}}_{1}(\theta)\\ & \times \int \limits_{t-\theta}^{t}\mathcal{K}\left( \frac{\aleph _{2}(S(\varkappa), L(\varkappa))}{\aleph_{2}(S_{4}, L_{4})}\right) d\varkappa d\theta+\frac{\aleph_{3}(S_{4}, I_{4})}{\mathcal{H}_{1}}\int \limits_{0} ^{\kappa_{1}}\mathcal{\bar{H}}_{1}(\theta)\int \limits_{t-\theta} ^{t}\mathcal{K}\left( \frac{\aleph_{3}(S(\varkappa), I(\varkappa))}{\aleph _{3}(S_{4}, I_{4})}\right) d\varkappa d\theta \\ & +\frac{\lambda \left[ b\mathcal{H}_{3}\mathcal{J}_{2}(I_{4})\aleph _{1}(S_{4}, V_{4})+\left( \varepsilon+\varpi \mathcal{J}_{5}(A_{4})\right) \mathcal{J}_{3}(V_{4})\aleph_{3}(S_{4}, I_{4})\right] \mathcal{J}_{1}(L_{4} )}{\left( a+\mu \mathcal{J}_{4}(C_{4})\right) \left( \varepsilon +\varpi \mathcal{J}_{5}(A_{4})\right) \mathcal{J}_{2}(I_{4})\mathcal{J} _{3}(V_{4})}\int \limits_{0}^{\kappa_{2}}\mathcal{\bar{H}}_{2}(\theta)\\ & \times \int \limits_{t-\theta}^{t}\mathcal{K}\left( \frac{\mathcal{J} _{1}(L(\varkappa))}{\mathcal{J}_{1}(L_{4})}\right) d\varkappa d\theta +\frac{b\aleph_{1}(S_{4}, V_{4})\mathcal{J}_{2}(I_{4})}{\left( \varepsilon +\varpi \mathcal{J}_{5}(A_{4})\right) \mathcal{J}_{3}(V_{4})}\int \limits_{0}^{\kappa_{3}}\mathcal{\bar{H}}_{3}(\theta)\int \limits_{t-\theta }^{t}\mathcal{K}\left( \frac{\mathcal{J}_{2}(I(\varkappa))}{\mathcal{J} _{2}(I_{4})}\right) d\varkappa d\theta. \end{align*}

    We calculate \frac{d\Phi_{4}}{dt} as:

    \begin{align} \frac{d\Phi_{4}}{dt} & = \left( 1-\frac{\aleph_{1}(S_{4}, V_{4})}{\aleph _{1}(S, V_{4})}\right) \left( \yen (S)-\aleph_{1}(S, V)-\aleph_{2} (S, L)-\aleph_{3}(S, I)\right) +\frac{1}{\mathcal{H}_{1}}\left( 1-\frac {\mathcal{J}_{1}(L_{4})}{\mathcal{J}_{1}(L)}\right) \\ & \times \left[ \int \limits_{0}^{\kappa_{1}}\mathcal{\bar{H}}_{1} (\theta)\left \{ \aleph_{1}(S(t-\theta), V(t-\theta))+\aleph_{2}(S(t-\theta ), L(t-\theta))+\aleph_{3}(S(t-\theta), I(t-\theta))\right \} d\theta \right. \\ & \left. -\left( \lambda+\gamma \right) \mathcal{J}_{1}(L)\right] +\frac{b\mathcal{H}_{3}\mathcal{J}_{2}(I_{4})\aleph_{1}(S_{4}, V_{4})+\left( \varepsilon+\varpi \mathcal{J}_{5}(A_{4})\right) \mathcal{J}_{3}(V_{4} )\aleph_{3}(S_{4}, I_{4})}{\left( a+\mu \mathcal{J}_{4}(C_{4})\right) \left( \varepsilon+\varpi \mathcal{J}_{5}(A_{4})\right) \mathcal{J}_{2} (I_{4})\mathcal{J}_{3}(V_{4})} \\ & \left( 1-\frac{\mathcal{J}_{2}(I_{4})}{\mathcal{J}_{2}(I)}\right) \left[ \lambda \int \limits_{0}^{\kappa_{2}}\mathcal{\bar{H}}_{2}(\theta)\mathcal{J} _{1}(L(t-\theta))d\theta-a\mathcal{J}_{2}(I)-\mu \mathcal{J}_{4}(C)\mathcal{J} _{2}(I)\right] \\ & +\frac{\aleph_{1}(S_{4}, V_{4})}{\left( \varepsilon+\varpi \mathcal{J} _{5}(A_{4})\right) \mathcal{J}_{3}(V_{4})}\left( 1-\frac{\mathcal{J} _{3}(V_{4})}{\mathcal{J}_{3}(V)}\right) \left[ b\int \limits_{0}^{\kappa_{3} }\mathcal{\bar{H}}_{3}(\theta)\mathcal{J}_{2}(I(t-\theta))d\theta -\varepsilon \mathcal{J}_{3}(V)\right. \\ & \left. -\varpi \mathcal{J}_{5}(A)\mathcal{J}_{3}(V)\right] +\frac {\mu \left[ b\mathcal{H}_{3}\mathcal{J}_{2}(I_{4})\aleph_{1}(S_{4} , V_{4})+\left( \varepsilon+\varpi \mathcal{J}_{5}(A_{4})\right) \mathcal{J}_{3}(V_{4})\aleph_{3}(S_{4}, I_{4})\right] }{\sigma \left( a+\mu \mathcal{J}_{4}(C_{4})\right) \left( \varepsilon+\varpi \mathcal{J} _{5}(A_{4})\right) \mathcal{J}_{2}(I_{4})\mathcal{J}_{3}(V_{4})} \\ & \times \left( 1-\frac{\mathcal{J}_{4}(C_{4})}{\mathcal{J}_{4}(C)}\right) \left( \sigma \mathcal{J}_{4}(C)\mathcal{J}_{2}(I)-\pi \mathcal{J} _{4}(C)\right) +\frac{\varpi \aleph_{1}(S_{4}, V_{4})}{\tau \left( \varepsilon+\varpi \mathcal{J}_{5}(A_{4})\right) \mathcal{J}_{3}(V_{4} )}\left( 1-\frac{\mathcal{J}_{5}(A_{4})}{\mathcal{J}_{5}(A)}\right) \\ & \times \left( \tau \mathcal{J}_{5}(A)\mathcal{J}_{3}(V)-\zeta \mathcal{J} _{5}(A)\right) +\frac{\aleph_{1}(S_{4}, V_{4})}{\mathcal{H}_{1}} \int \limits_{0}^{\kappa_{1}}\mathcal{\bar{H}}_{1}(\theta)\left[ \frac {\aleph_{1}(S, V)}{\aleph_{1}(S_{4}, V_{4})}\right. \\ & \left. -\frac{\aleph_{1}(S(t-\theta), V(t-\theta))}{\aleph_{1}(S_{4} , V_{4})}+\ln \left( \frac{\aleph_{1}(S(t-\theta), V(t-\theta))}{\aleph _{1}(S, V)}\right) \right] d\theta+\frac{\aleph_{2}(S_{4}, L_{4})} {\mathcal{H}_{1}}\int \limits_{0}^{\kappa_{1}}\mathcal{\bar{H}}_{1} (\theta) \\ & \times \left[ \frac{\aleph_{2}(S, L)}{\aleph_{2}(S_{4}, L_{4})}-\frac {\aleph_{2}(S(t-\theta), L(t-\theta))}{\aleph_{2}(S_{4}, L_{4})}+\ln \left( \frac{\aleph_{2}(S(t-\theta), L(t-\theta))}{\aleph_{2}(S, L)}\right) \right] d\theta+\frac{\aleph_{3}(S_{4}, I_{4})}{\mathcal{H}_{1}} \\ & \times \int \limits_{0}^{\kappa_{1}}\mathcal{\bar{H}}_{1}(\theta)\left[ \frac{\aleph_{3}(S, I)}{\aleph_{3}(S_{4}, I_{4})}-\frac{\aleph_{3} (S(t-\theta), I(t-\theta))}{\aleph_{3}(S_{4}, I_{4})}+\ln \left( \frac {\aleph_{3}(S(t-\theta), I(t-\theta))}{\aleph_{3}(S, I)}\right) \right] d\theta \\ & +\frac{\lambda \left[ b\mathcal{H}_{3}\mathcal{J}_{2}(I_{4})\aleph _{1}(S_{4}, V_{4})+\left( \varepsilon+\varpi \mathcal{J}_{5}(A_{4})\right) \mathcal{J}_{3}(V_{4})\aleph_{3}(S_{4}, I_{4})\right] \mathcal{J}_{1}(L_{4} )}{\left( a+\mu \mathcal{J}_{4}(C_{4})\right) \left( \varepsilon +\varpi \mathcal{J}_{5}(A_{4})\right) \mathcal{J}_{2}(I_{4})\mathcal{J} _{3}(V_{4})} \\ & \times \int \limits_{0}^{\kappa_{2}}\mathcal{\bar{H}}_{2}(\theta)\left[ \frac{\mathcal{J}_{1}(L)}{\mathcal{J}_{1}(L_{4})}-\frac{\mathcal{J} _{1}(L(t-\theta))}{\mathcal{J}_{1}(L_{4})}+\ln \left( \frac{\mathcal{J} _{1}(L(t-\theta))}{\mathcal{J}_{1}(L)}\right) \right] d\theta \\ & +\frac{b\aleph_{1}(S_{4}, V_{4})\mathcal{J}_{2}(I_{4})}{\left( \varepsilon+\varpi \mathcal{J}_{5}(A_{4})\right) \mathcal{J}_{3}(V_{4})} \int \limits_{0}^{\kappa_{3}}\mathcal{\bar{H}}_{3}(\theta)\left[ \frac{\mathcal{J}_{2}(I)}{\mathcal{J}_{2}(I_{4})}-\frac{\mathcal{J} _{2}(I(t-\theta))}{\mathcal{J}_{2}(I_{4})}+\ln \left( \frac{\mathcal{J} _{2}(I(t-\theta))}{\mathcal{J}_{2}(I)}\right) \right] d\theta. \end{align} (8.12)

    Collecting terms of Eq. (8.12), we derive

    \frac{d\Phi_{4}}{dt} =\yen (S)\left( 1-\frac{\aleph_{1}(S_{4},V_{4} )}{\aleph_{1}(S,V_{4})}\right) +\aleph_{1}(S,V)\frac{\aleph_{1}(S_{4},V_{4} )}{\aleph_{1}(S,V_{4})}+\aleph_{2}(S,L)\frac{\aleph_{1}(S_{4},V_{4})} {\aleph_{1}(S,V_{4})}\\ +\aleph_{3}(S,I)\frac{\aleph_{1}(S_{4},V_{4})}{\aleph_{1}(S,V_{4})} -\frac{\lambda+\gamma}{\mathcal{H}_{1}}\mathcal{J}_{1}(L)-\frac{1} {\mathcal{H}_{1}}\int \limits_{0}^{\kappa_{1}}\mathcal{\bar{H}}_{1} (\theta)\frac{\aleph_{1}(S(t-\theta),V(t-\theta))\mathcal{J}_{1}(L_{4} )}{\mathcal{J}_{1}(L)}d\theta \\
    -\frac{1}{\mathcal{H}_{1}}\int \limits_{0}^{\kappa_{1}}\mathcal{\bar{H}} _{1}(\theta)\frac{\aleph_{2}(S(t-\theta),L(t-\theta))\mathcal{J}_{1}(L_{4} )}{\mathcal{J}_{1}(L)}d\theta-\frac{1}{\mathcal{H}_{1}}\int \limits_{0} ^{\kappa_{1}}\mathcal{\bar{H}}_{1}(\theta)\frac{\aleph_{3}(S(t-\theta ),I(t-\theta))\mathcal{J}_{1}(L_{4})}{\mathcal{J}_{1}(L)}d\theta \\ +\frac{\lambda+\gamma}{\mathcal{H}_{1}}\mathcal{J}_{1}(L_{4})-\frac {a\left[ b\mathcal{H}_{3}\mathcal{J}_{2}(I_{4})\aleph_{1}(S_{4} ,V_{4})+\left( \varepsilon+\varpi \mathcal{J}_{5}(A_{4})\right) \mathcal{J}_{3}(V_{4})\aleph_{3}(S_{4},I_{4})\right] }{\left( a+\mu \mathcal{J}_{4}(C_{4})\right) \left( \varepsilon+\varpi \mathcal{J}_{5} (A_{4})\right) \mathcal{J}_{2}(I_{4})\mathcal{J}_{3}(V_{4})}\mathcal{J} _{2}(I)\\
    -\frac{\lambda \left[ b\mathcal{H}_{3}\mathcal{J}_{2}(I_{4})\aleph _{1}(S_{4},V_{4})+\left( \varepsilon+\varpi \mathcal{J}_{5}(A_{4})\right) \mathcal{J}_{3}(V_{4})\aleph_{3}(S_{4},I_{4})\right] }{\left( a+\mu \mathcal{J}_{4}(C_{4})\right) \left( \varepsilon+\varpi \mathcal{J}_{5} (A_{4})\right) \mathcal{J}_{2}(I_{4})\mathcal{J}_{4}(V_{4})}\int \limits_{0}^{\kappa_{2}}\mathcal{\bar{H}}_{2}(\theta)\frac{\mathcal{J} _{1}(L(t-\theta))\mathcal{J}_{2}(I_{4})}{\mathcal{J}_{2}(I)}d\theta \\ +\frac{a\left[ b\mathcal{H}_{3}\mathcal{J}_{2}(I_{4})\aleph_{1} (S_{4},V_{4})+\left( \varepsilon+\varpi \mathcal{J}_{5}(A_{4})\right) \mathcal{J}_{3}(V_{4})\aleph_{3}(S_{4},I_{4})\right] }{\left( a+\mu \mathcal{J}_{4}(C_{4})\right) \left( \varepsilon+\varpi \mathcal{J}_{5} (A_{4})\right) \mathcal{J}_{2}(I_{4})\mathcal{J}_{3}(V_{4})}\mathcal{J} _{2}(I_{4})\\ +\frac{\mu \left[ b\mathcal{H}_{3}\mathcal{J}_{2}(I_{4})\aleph_{1} (S_{4},V_{4})+\left( \varepsilon+\varpi \mathcal{J}_{5}(A_{4})\right) \mathcal{J}_{3}(V_{4})\aleph_{3}(S_{4},I_{4})\right] }{\left( a+\mu \mathcal{J}_{4}(C_{4})\right) \left( \varepsilon+\varpi \mathcal{J}_{5} (A_{4})\right) \mathcal{J}_{2}(I_{4})\mathcal{J}_{3}(V_{4})}\mathcal{J} _{4}(C)\mathcal{J}_{2}(I_{4})\\ -\frac{\varepsilon \aleph_{1}(S_{4},V_{4})}{\left( \varepsilon +\varpi \mathcal{J}_{5}(A_{4})\right) \mathcal{J}_{3}(V_{4})}\mathcal{J} _{3}(V)-\frac{b\aleph_{1}(S_{4},V_{4})}{\left( \varepsilon+\varpi \mathcal{J}_{5}(A_{4})\right) \mathcal{J}_{3}(V_{4})}\int \limits_{0} ^{\kappa_{3}}\mathcal{\bar{H}}_{3}(\theta)\frac{\mathcal{J}_{2}(I(t-\theta ))\mathcal{J}_{3}(V_{4})}{\mathcal{J}_{3}(V)}d\theta \\ +\frac{\varepsilon \aleph_{1}(S_{4},V_{4})}{\left( \varepsilon +\varpi \mathcal{J}_{5}(A_{4})\right) \mathcal{J}_{3}(V_{4})}\mathcal{J} _{3}(V_{4})+\frac{\varpi \aleph_{1}(S_{4},V_{4})}{\left( \varepsilon +\varpi \mathcal{J}_{5}(A_{4})\right) \mathcal{J}_{3}(V_{4})}\mathcal{J} _{5}(A)\mathcal{J}_{3}(V_{4})\\ -\frac{\mu \pi \left[ b\mathcal{H}_{3}\mathcal{J}_{2}(I_{4})\aleph_{1} (S_{4},V_{4})+\left( \varepsilon+\varpi \mathcal{J}_{5}(A_{4})\right) \mathcal{J}_{3}(V_{4})\aleph_{3}(S_{4},I_{4})\right] }{\sigma \left( a+\mu \mathcal{J}_{4}(C_{4})\right) \left( \varepsilon+\varpi \mathcal{J} _{5}(A_{4})\right) \mathcal{J}_{2}(I_{4})\mathcal{J}_{3}(V_{4})} \mathcal{J}_{4}(C)\\ -\frac{\mu \left[ b\mathcal{H}_{3}\mathcal{J}_{2}(I_{4})\aleph_{1} (S_{4},V_{4})+\left( \varepsilon+\varpi \mathcal{J}_{5}(A_{4})\right) \mathcal{J}_{3}(V_{4})\aleph_{3}(S_{4},I_{4})\right] }{\left( a+\mu \mathcal{J}_{4}(C_{4})\right) \left( \varepsilon+\varpi \mathcal{J}_{5} (A_{4})\right) \mathcal{J}_{2}(I_{4})\mathcal{J}_{3}(V_{4})}\mathcal{J} _{2}(I)\mathcal{J}_{4}(C_{4})\\
    +\frac{\mu \pi \left[ b\mathcal{H}_{3}\mathcal{J}_{2}(I_{4})\aleph_{1} (S_{4},V_{4})+\left( \varepsilon+\varpi \mathcal{J}_{5}(A_{4})\right) \mathcal{J}_{3}(V_{4})\aleph_{3}(S_{4},I_{4})\right] }{\sigma \left( a+\mu \mathcal{J}_{4}(C_{4})\right) \left( \varepsilon+\varpi \mathcal{J} _{5}(A_{4})\right) \mathcal{J}_{2}(I_{4})\mathcal{J}_{3}(V_{4})} \mathcal{J}_{4}(C_{4})\\ -\frac{\varpi \zeta \aleph_{1}(S_{4},V_{4})}{\tau \left( \varepsilon +\varpi \mathcal{J}_{5}(A_{4})\right) \mathcal{J}_{3}(V_{4})}\mathcal{J} _{5}(A)-\frac{\varpi \aleph_{1}(S_{4},V_{4})}{\left( \varepsilon +\varpi \mathcal{J}_{5}(A_{4})\right) \mathcal{J}_{3}(V_{4})}\mathcal{J} _{5}(A_{4})\mathcal{J}_{3}(V)\\
    +\frac{\varpi \zeta \aleph_{1}(S_{4},V_{4})}{\tau \left( \varepsilon +\varpi \mathcal{J}_{5}(A_{4})\right) \mathcal{J}_{3}(V_{4})}\mathcal{J} _{5}(A_{4})+\frac{\aleph_{1}(S_{4},V_{4})}{\mathcal{H}_{1}}\int \limits_{0} ^{\kappa_{1}}\mathcal{\bar{H}}_{1}(\theta)\ln \left( \frac{\aleph _{1}(S(t-\theta),V(t-\theta))}{\aleph_{1}(S,V)}\right) d\theta \\ +\frac{\aleph_{2}(S_{4},L_{4})}{\mathcal{H}_{1}}\int \limits_{0}^{\kappa _{1}}\mathcal{\bar{H}}_{1}(\theta)\ln \left( \frac{\aleph_{2}(S(t-\theta ),L(t-\theta))}{\aleph_{2}(S,L)}\right) d\theta+\frac{\aleph_{3}(S_{4} ,I_{4})}{\mathcal{H}_{1}}\int \limits_{0}^{\kappa_{1}}\mathcal{\bar{H}} _{1}(\theta)\\ \times \ln \left( \frac{\aleph_{3}(S(t-\theta),I(t-\theta))}{\aleph _{3}(S,I)}\right) d\theta+\frac{\lambda \mathcal{H}_{2}\left[ b\mathcal{H} _{3}\mathcal{J}_{2}(I_{4})\aleph_{1}(S_{4},V_{4})+\left( \varepsilon +\varpi \mathcal{J}_{5}(A_{4})\right) \mathcal{J}_{3}(V_{4})\aleph_{3} (S_{4},I_{4})\right] }{\left( a+\mu \mathcal{J}_{4}(C_{4})\right) \left( \varepsilon+\varpi \mathcal{J}_{5}(A_{4})\right) \mathcal{J}_{2} (I_{4})\mathcal{J}_{3}(V_{4})}\\ \times \mathcal{J}_{1}(L)+\frac{\lambda \left[ b\mathcal{H}_{3} \mathcal{J}_{2}(I_{4})\aleph_{1}(S_{4},V_{4})+\left( \varepsilon +\varpi \mathcal{J}_{5}(A_{4})\right) \mathcal{J}_{3}(V_{4})\aleph_{3} (S_{4},I_{4})\right] \mathcal{J}_{1}(L_{4})}{\left( a+\mu \mathcal{J} _{4}(C_{4})\right) \left( \varepsilon+\varpi \mathcal{J}_{5}(A_{4})\right) \mathcal{J}_{2}(I_{4})\mathcal{J}_{3}(V_{4})}\\ \times \int \limits_{0}^{\kappa_{2}}\mathcal{\bar{H}}_{2}(\theta)\ln \left( \frac{\mathcal{J}_{1}(L(t-\theta))}{\mathcal{J}_{1}(L)}\right) d\theta +\frac{b\mathcal{H}_{3}\aleph_{1}(S_{4},V_{4})}{\left( \varepsilon +\varpi \mathcal{J}_{5}(A_{4})\right) \mathcal{J}_{3}(V_{4})}\mathcal{J} _{2}(I)\\ +\frac{b\aleph_{1}(S_{4},V_{4})\mathcal{J}_{2}(I_{4})}{\left( \varepsilon+\varpi \mathcal{J}_{5}(A_{4})\right) \mathcal{J}_{3}(V_{4})} \int \limits_{0}^{\kappa_{3}}\mathcal{\bar{H}}_{3}(\theta)\ln \left( \frac{\mathcal{J}_{2}(I(t-\theta))}{\mathcal{J}_{2}(I)}\right) d\theta.

    Using the equilibrium conditions for Ð _{4} , we get

    \begin{align*} & \left. \yen (S_{4}) = \aleph_{1}(S_{4}, V_{4})+\aleph_{2}(S_{4}, L_{4} )+\aleph_{3}(S_{4}, I_{4}) = \frac{\lambda+\gamma}{\mathcal{H}_{1}} \mathcal{J}_{1}(L_{4}), \right. \\ & \left. \lambda \mathcal{H}_{2}\mathcal{J}_{1}(L_{4}) = \left( a+\mu \mathcal{J}_{4}(C_{4})\right) \mathcal{J}_{2}(I_{4}), \ \ \ \ \ \ \ b\mathcal{H}_{3}\mathcal{J}_{2}(I_{4}) = \left( \varepsilon+\varpi \mathcal{J}_{5}(A_{4})\right) \mathcal{J}_{3}(V_{4})\right. \\ & \left. \mathcal{J}_{2}(I_{4}) = \frac{\pi}{\sigma}, \ \ \ \ \ \ \ \mathcal{J}_{3}(V_{4}) = \frac{\zeta}{\tau}.\right. \end{align*}

    In addition,

    \begin{align*} \aleph_{1}(S_{4}, V_{4})+\aleph_{3}(S_{4}, I_{4}) & = \frac{b\mathcal{H} _{3}\mathcal{J}_{2}(I_{4})\aleph_{1}(S_{4}, V_{4})+\left( \varepsilon +\varpi \mathcal{J}_{5}(A_{4})\right) \mathcal{J}_{3}(V_{4})\aleph_{3} (S_{4}, I_{4})}{\left( \varepsilon+\varpi \mathcal{J}_{5}(A_{4})\right) \mathcal{J}_{2}(I_{4})\mathcal{J}_{3}(V_{4})}\mathcal{J}_{2}(I_{4})\\ & = \frac{\lambda \mathcal{H}_{2}\left[ b\mathcal{H}_{3}\mathcal{J}_{2} (I_{4})\aleph_{1}(S_{4}, V_{4})+\left( \varepsilon+\varpi \mathcal{J}_{5} (A_{4})\right) \mathcal{J}_{3}(V_{4})\aleph_{3}(S_{4}, I_{4})\right] }{\left( a+\mu \mathcal{J}_{4}(C_{4})\right) \left( \varepsilon +\varpi \mathcal{J}_{5}(A_{4})\right) \mathcal{J}_{2}(I_{4})\mathcal{J} _{3}(V_{4})}\mathcal{J}_{1}(L_{4}). \end{align*}

    Then, we obtain

    \begin{align*} \frac{d\Phi_{4}}{dt} & = \left( \yen (S)-\yen (S_{4})\right) \left( 1-\frac{\aleph_{1}(S_{4}, V_{4})}{\aleph_{1}(S, V_{4})}\right) +\left( \aleph_{1}(S_{4}, V_{4})+\aleph_{2}(S_{4}, L_{4})+\aleph_{3}(S_{4}, I_{4})\right) \\ & \times \left( 1-\frac{\aleph_{1}(S_{4}, V_{4})}{\aleph_{1}(S, V_{4})}\right) +\aleph_{1}(S_{4}, V_{4})\frac{\aleph_{1}(S, V)}{\aleph_{1}(S, V_{4})}+\aleph _{2}(S_{4}, L_{4})\frac{\aleph_{2}(S, L)\aleph_{1}(S_{4}, V_{4})}{\aleph _{2}(S_{4}, L_{4})\aleph_{1}(S, V_{4})}\\ & +\aleph_{3}(S_{4}, I_{4})\frac{\aleph_{3}(S, I)\aleph_{1}(S_{4}, V_{4} )}{\aleph_{3}(S_{4}, I_{4})\aleph_{1}(S, V_{4})}-\aleph_{2}(S_{4}, L_{4} )\frac{\mathcal{J}_{1}(L)}{\mathcal{J}_{1}(L_{4})}-\frac{\aleph_{1} (S_{4}, V_{4})}{\mathcal{H}_{1}}\int \limits_{0}^{\kappa_{1}}\mathcal{\bar{H} }_{1}(\theta)\\ & \times \frac{\aleph_{1}(S(t-\theta), V(t-\theta))\mathcal{J}_{1}(L_{4} )}{\aleph_{1}(S_{4}, V_{4})\mathcal{J}_{1}(L)}d\theta-\frac{\aleph_{2} (S_{4}, L_{4})}{\mathcal{H}_{1}}\int \limits_{0}^{\kappa_{1}}\mathcal{\bar{H} }_{1}(\theta)\\ & \times \frac{\aleph_{2}(S(t-\theta), L(t-\theta))\mathcal{J}_{1}(L_{4} )}{\aleph_{2}(S_{4}, L_{4})\mathcal{J}_{1}(L)}d\theta-\frac{\aleph_{3} (S_{4}, I_{4})}{\mathcal{H}_{1}}\int \limits_{0}^{\kappa_{1}}\mathcal{\bar{H} }_{1}(\theta)\frac{\aleph_{3}(S(t-\theta), I(t-\theta))\mathcal{J}_{1}(L_{4} )}{\aleph_{3}(S_{4}, I_{4})\mathcal{J}_{1}(L)}d\theta \\ & +\aleph_{1}(S_{4}, V_{4})+\aleph_{2}(S_{4}, L_{4})+\aleph_{3}(S_{4} , I_{4})-\aleph_{3}(S_{4}, I_{4})\frac{\mathcal{J}_{2}(I)}{\mathcal{J}_{2} (I_{4})}-\frac{\aleph_{1}(S_{4}, V_{4})+\aleph_{3}(S_{4}, I_{4})}{\mathcal{H} _{2}}\\ & \times \int \limits_{0}^{\kappa_{2}}\mathcal{\bar{H}}_{2}(\theta )\frac{\mathcal{J}_{1}(L(t-\theta))\mathcal{J}_{2}(I_{4})}{\mathcal{J} _{1}(L_{4})\mathcal{J}_{2}(I)}d\theta+\aleph_{1}(S_{4}, V_{4})+\aleph_{3} (S_{4}, I_{4})-\aleph_{1}(S_{4}, V_{4})\frac{\mathcal{J}_{3}(V)}{\mathcal{J} _{3}(V_{4})}\\ & -\frac{\aleph_{1}(S_{4}, V_{4})}{\mathcal{H}_{3}}\int \limits_{0}^{\kappa _{3}}\mathcal{\bar{H}}_{3}(\theta)\frac{\mathcal{J}_{2}(I(t-\theta ))\mathcal{J}_{3}(V_{4})}{\mathcal{J}_{2}(I_{4})\mathcal{J}_{3}(V)} d\theta+\aleph_{1}(S_{4}, V_{4})+\frac{\aleph_{1}(S_{4}, V_{4})}{\mathcal{H} _{1}}\int \limits_{0}^{\kappa_{1}}\mathcal{\bar{H}}_{1}(\theta)\\ & \times \ln \left( \frac{\aleph_{1}(S(t-\theta), V(t-\theta))}{\aleph _{1}(S, V)}\right) d\theta+\frac{\aleph_{2}(S_{4}, L_{4})}{\mathcal{H}_{1}} \int \limits_{0}^{\kappa_{1}}\mathcal{\bar{H}}_{1}(\theta)\ln \left( \frac{\aleph_{2}(S(t-\theta), L(t-\theta))}{\aleph_{2}(S, L)}\right) d\theta \\ & +\frac{\aleph_{3}(S_{4}, I_{4})}{\mathcal{H}_{1}}\int \limits_{0}^{\kappa _{1}}\mathcal{\bar{H}}_{1}(\theta)\ln \left( \frac{\aleph_{3}(S(t-\theta ), I(t-\theta))}{\aleph_{3}(S, I)}\right) d\theta+\frac{\aleph_{1}(S_{4} , V_{4})+\aleph_{3}(S_{4}, I_{4})}{\mathcal{H}_{2}}\\ & \times \int \limits_{0}^{\kappa_{2}}\mathcal{\bar{H}}_{2}(\theta)\ln \left( \frac{\mathcal{J}_{1}(L(t-\theta))}{\mathcal{J}_{1}(L)}\right) d\theta +\frac{\aleph_{1}(S_{4}, V_{4})}{\mathcal{H}_{3}}\int \limits_{0}^{\kappa_{3} }\mathcal{\bar{H}}_{3}(\theta)\ln \left( \frac{\mathcal{J}_{2}(I(t-\theta ))}{\mathcal{J}_{2}(I)}\right) d\theta. \end{align*}

    Considering the equalities given by (5.6) in case of n = 4 and after some calculations we get

    \begin{align*} \frac{d\Phi_{4}}{dt} & = \left( \yen (S)-\yen (S_{4})\right) \left( 1-\frac{\aleph_{1}(S_{4}, V_{4})}{\aleph_{1}(S, V_{4})}\right) -\left( \aleph_{1}(S_{4}, V_{4})+\aleph_{2}(S_{4}, L_{4})+\aleph_{3}(S_{4}, I_{4})\right) \\ & \times \left[ \frac{\aleph_{1}(S_{4}, V_{4})}{\aleph_{1}(S, V_{4})} -1-\ln \left( \frac{\aleph_{1}(S_{4}, V_{4})}{\aleph_{1}(S, V_{4})}\right) \right] -\frac{\aleph_{1}(S_{4}, V_{4})}{\mathcal{H}_{1}}\int \limits_{0} ^{\kappa_{1}}\mathcal{\bar{H}}_{1}(\theta)\\ & \times \left[ \frac{\aleph_{1}(S(t-\theta), V(t-\theta))\mathcal{J} _{1}(L_{4})}{\aleph_{1}(S_{4}, V_{4})\mathcal{J}_{1}(L)}-1-\ln \left( \frac{\aleph_{1}(S(t-\theta), V(t-\theta))\mathcal{J}_{1}(L_{4})}{\aleph _{1}(S_{4}, V_{4})\mathcal{J}_{1}(L)}\right) \right] d\theta \\ & -\frac{\aleph_{2}(S_{4}, L_{4})}{\mathcal{H}_{1}}\int \limits_{0}^{\kappa _{1}}\mathcal{\bar{H}}_{1}(\theta)\left[ \frac{\aleph_{2}(S(t-\theta ), L(t-\theta))\mathcal{J}_{1}(L_{4})}{\aleph_{2}(S_{4}, L_{4})\mathcal{J} _{1}(L)}-1\right. \\ & \left. -\ln \left( \frac{\aleph_{2}(S(t-\theta), L(t-\theta))\mathcal{J} _{1}(L_{4})}{\aleph_{2}(S_{4}, L_{4})\mathcal{J}_{1}(L)}\right) \right] d\theta-\frac{\aleph_{3}(S_{4}, I_{4})}{\mathcal{H}_{1}}\int \limits_{0} ^{\kappa_{1}}\mathcal{\bar{H}}_{1}(\theta)\\ & \times \left[ \frac{\aleph_{3}(S(t-\theta), I(t-\theta))\mathcal{J} _{1}(L_{4})}{\aleph_{3}(S_{4}, I_{4})\mathcal{J}_{1}(L)}-1-\ln \left( \frac{\aleph_{3}(S(t-\theta), I(t-\theta))\mathcal{J}_{1}(L_{4})}{\aleph _{3}(S_{4}, I_{4})\mathcal{J}_{1}(L)}\right) \right] d\theta \\ & -\frac{\aleph_{1}(S_{4}, V_{4})+\aleph_{3}(S_{4}, I_{4})}{\mathcal{H}_{2} }\int \limits_{0}^{\kappa_{2}}\mathcal{\bar{H}}_{2}(\theta)\left[ \frac{\mathcal{J}_{1}(L(t-\theta))\mathcal{J}_{2}(I_{4})}{\mathcal{J} _{1}(L_{4})\mathcal{J}_{2}(I)}-1\right. \\ & \left. -\ln \left( \frac{\mathcal{J}_{1}(L(t-\theta))\mathcal{J}_{2} (I_{4})}{\mathcal{J}_{1}(L_{4})\mathcal{J}_{2}(I)}\right) \right] d\theta-\frac{\aleph_{1}(S_{4}, V_{4})}{\mathcal{H}_{3}}\int \limits_{0} ^{\kappa_{3}}\mathcal{\bar{H}}_{3}(\theta)\\ & \times \left[ \frac{\mathcal{J}_{2}(I(t-\theta))\mathcal{J}_{3}(V_{4} )}{\mathcal{J}_{2}(I_{4})\mathcal{J}_{3}(V)}-1-\ln \left( \frac{\mathcal{J} _{2}(I(t-\theta))\mathcal{J}_{3}(V_{4})}{\mathcal{J}_{2}(I_{4})\mathcal{J} _{3}(V)}\right) \right] d\theta \\ & -\aleph_{1}(S_{4}, V_{4})\left[ \frac{\aleph_{1}(S, V_{4})\mathcal{J} _{3}(V)}{\aleph_{1}(S, V)\mathcal{J}_{3}(V_{4})}-1-\ln \left( \frac{\aleph _{1}(S, V_{4})\mathcal{J}_{3}(V)}{\aleph_{1}(S, V)\mathcal{J}_{3}(V_{4} )}\right) \right] \\ & -\aleph_{2}(S_{4}, L_{4})\left[ \frac{\aleph_{1}(S, V_{4})\aleph_{2} (S_{4}, L_{4})\mathcal{J}_{1}(L)}{\aleph_{1}(S_{4}, V_{4})\aleph_{2} (S, L)\mathcal{J}_{1}(L_{4})}-1-\ln \left( \frac{\aleph_{1}(S, V_{4})\aleph _{2}(S_{4}, L_{4})\mathcal{J}_{1}(L)}{\aleph_{1}(S_{4}, V_{4})\aleph _{2}(S, L)\mathcal{J}_{1}(L_{4})}\right) \right] \\ & -\aleph_{3}(S_{4}, I_{4})\left[ \frac{\aleph_{1}(S, V_{4})\aleph_{3} (S_{4}, I_{4})\mathcal{J}_{2}(I)}{\aleph_{1}(S_{4}, V_{4})\aleph_{3} (S, I)\mathcal{J}_{2}(I_{4})}-1-\ln \left( \frac{\aleph_{1}(S, V_{4})\aleph _{3}(S_{4}, I_{4})\mathcal{J}_{2}(I)}{\aleph_{1}(S_{4}, V_{4})\aleph _{3}(S, I)\mathcal{J}_{2}(I_{4})}\right) \right] \\ & +\aleph_{1}(S_{4}, V_{4})\left[ \frac{\aleph_{1}(S, V)}{\aleph_{1}(S, V_{4} )}-\frac{\mathcal{J}_{3}(V)}{\mathcal{J}_{3}(V_{4})}-1+\frac{\aleph _{1}(S, V_{4})\mathcal{J}_{3}(V)}{\aleph_{1}(S, V)\mathcal{J}_{3}(V_{4})}\right] \\ & +\aleph_{2}(S_{4}, L_{4})\left[ \frac{\aleph_{2}(S, L)\aleph_{1}(S_{4} , V_{4})}{\aleph_{2}(S_{4}, L_{4})\aleph_{1}(S, V_{4})}-\frac{\mathcal{J}_{1} (L)}{\mathcal{J}_{1}(L_{4})}-1+\frac{\aleph_{1}(S, V_{4})\aleph_{2}(S_{4} , L_{4})\mathcal{J}_{1}(L)}{\aleph_{1}(S_{4}, V_{4})\aleph_{2}(S, L)\mathcal{J} _{1}(L_{4})}\right] \\ & +\aleph_{3}(S_{4}, I_{4})\left[ \frac{\aleph_{3}(S, I)\aleph_{1}(S_{4} , V_{4})}{\aleph_{3}(S_{4}, I_{4})\aleph_{1}(S, V_{4})}-\frac{\mathcal{J}_{2} (I)}{\mathcal{J}_{2}(I_{4})}-1+\frac{\aleph_{1}(S, V_{4})\aleph_{3}(S_{4} , I_{4})\mathcal{J}_{2}(I)}{\aleph_{1}(S_{4}, V_{4})\aleph_{3}(S, I)\mathcal{J} _{2}(I_{4})}\right] . \end{align*}

    Using the definition of \mathcal{G}_{4}^{U}(S, U) given in (5.4), we obtain

    \begin{align*} & \frac{\aleph_{2}(S, L)\aleph_{1}(S_{4}, V_{4})}{\aleph_{2}(S_{4}, L_{4} )\aleph_{1}(S, V_{4})}-\frac{\mathcal{J}_{1}(L)}{\mathcal{J}_{1}(L_{4} )}-1+\frac{\aleph_{1}(S, V_{4})\aleph_{2}(S_{4}, L_{4})\mathcal{J}_{1} (L)}{\aleph_{1}(S_{4}, V_{4})\aleph_{2}(S, L)\mathcal{J}_{1}(L_{4})}\\ & = \frac{\mathcal{G}_{4}^{L}(S, L)}{\mathcal{G}_{4}^{L}(S_{4}, L_{4})} -\frac{\mathcal{J}_{1}(L)}{\mathcal{J}_{1}(L_{4})}-1+\frac{\mathcal{J} _{1}(L)\mathcal{G}_{4}^{L}(S_{4}, L_{4})}{\mathcal{J}_{1}(L_{4})\mathcal{G} _{4}^{L}(S, L)}, \end{align*}

    and

    \begin{align*} & \frac{\aleph_{3}(S, I)\aleph_{1}(S_{4}, V_{4})}{\aleph_{3}(S_{4}, I_{4} )\aleph_{1}(S, V_{4})}-\frac{\mathcal{J}_{2}(I)}{\mathcal{J}_{2}(I_{4} )}-1+\frac{\aleph_{1}(S, V_{4})\aleph_{3}(S_{4}, I_{4})\mathcal{J}_{2} (I)}{\aleph_{1}(S_{4}, V_{4})\aleph_{3}(S, I)\mathcal{J}_{2}(I_{4})}\\ & = \frac{\mathcal{G}_{4}^{I}(S, I)}{\mathcal{G}_{4}^{I}(S_{4}, I_{4})} -\frac{\mathcal{J}_{2}(I)}{\mathcal{J}_{2}(I_{4})}-1+\frac{\mathcal{J} _{2}(I)\mathcal{G}_{4}^{I}(S_{4}, I_{4})}{\mathcal{J}_{2}(I_{4})\mathcal{G} _{4}^{I}(S, I)}. \end{align*}

    Then,

    \begin{align*} \frac{d\Phi_{4}}{dt} & = \left( \yen (S)-\yen (S_{4})\right) \left( 1-\frac{\aleph_{1}(S_{4}, V_{4})}{\aleph_{1}(S, V_{4})}\right) -\frac {\aleph_{1}(S_{4}, V_{4})}{\mathcal{H}_{1}}\int \limits_{0}^{\kappa_{1} }\mathcal{\bar{H}}_{1}(\theta)\left[ \mathcal{K}\left( \frac{\aleph _{1}(S_{4}, V_{4})}{\aleph_{1}(S, V_{4})}\right) \right. \\ & \left. +\mathcal{K}\left( \frac{\aleph_{1}(S(t-\theta), V(t-\theta ))\mathcal{J}_{1}(L_{4})}{\aleph_{1}(S_{4}, V_{4})\mathcal{J}_{1}(L)}\right) +\mathcal{K}\left( \frac{\aleph_{1}(S, V_{4})\mathcal{J}_{3}(V)}{\aleph _{1}(S, V)\mathcal{J}_{3}(V_{4})}\right) \right] d\theta \\ & -\frac{\aleph_{2}(S_{4}, L_{4})}{\mathcal{H}_{1}}\int \limits_{0}^{\kappa _{1}}\mathcal{\bar{H}}_{1}(\theta)\left[ \mathcal{K}\left( \frac{\aleph _{1}(S_{4}, V_{4})}{\aleph_{1}(S, V_{4})}\right) +\mathcal{K}\left( \frac{\aleph_{2}(S(t-\theta), L(t-\theta))\mathcal{J}_{1}(L_{4})}{\aleph _{2}(S_{4}, L_{4})\mathcal{J}_{1}(L)}\right) \right. \\ & \left. +\mathcal{K}\left( \frac{\aleph_{1}(S, V_{4})\aleph_{2}(S_{4} , L_{4})\mathcal{J}_{1}(L)}{\aleph_{1}(S_{4}, V_{4})\aleph_{2}(S, L)\mathcal{J} _{1}(L_{4})}\right) \right] d\theta-\frac{\aleph_{3}(S_{4}, I_{4} )}{\mathcal{H}_{1}}\int \limits_{0}^{\kappa_{1}}\mathcal{\bar{H}}_{1} (\theta)\left[ \mathcal{K}\left( \frac{\aleph_{1}(S_{4}, V_{4})}{\aleph _{1}(S, V_{4})}\right) \right. \\ & \left. +\mathcal{K}\left( \frac{\aleph_{3}(S(t-\theta), I(t-\theta ))\mathcal{J}_{1}(L_{4})}{\aleph_{3}(S_{4}, I_{4})\mathcal{J}_{1}(L)}\right) +\mathcal{K}\left( \frac{\aleph_{1}(S, V_{4})\aleph_{3}(S_{4}, I_{4} )\mathcal{J}_{2}(I)}{\aleph_{1}(S_{4}, V_{4})\aleph_{3}(S, I)\mathcal{J} _{2}(I_{4})}\right) \right] d\theta \\ & -\frac{\aleph_{1}(S_{4}, V_{4})+\aleph_{3}(S_{4}, I_{4})}{\mathcal{H}_{2} }\int \limits_{0}^{\kappa_{2}}\mathcal{\bar{H}}_{2}(\theta)\mathcal{K}\left( \frac{\mathcal{J}_{1}(L(t-\theta))\mathcal{J}_{2}(I_{4})}{\mathcal{J} _{1}(L_{4})\mathcal{J}_{2}(I)}\right) d\theta \\ & -\frac{\aleph_{1}(S_{4}, V_{4})}{\mathcal{H}_{3}}\int \limits_{0}^{\kappa _{3}}\mathcal{\bar{H}}_{3}(\theta)\mathcal{K}\left( \frac{\mathcal{J} _{2}(I(t-\theta))\mathcal{J}_{3}(V_{4})}{\mathcal{J}_{2}(I_{4})\mathcal{J} _{3}(V)}\right) d\theta+\aleph_{1}(S_{4}, V_{4})\left( 1-\frac{\aleph _{1}(S, V_{4})}{\aleph_{1}(S, V)}\right) \\ & \times \left( \frac{\aleph_{1}(S, V)}{\aleph_{1}(S, V_{4})}-\frac {\mathcal{J}_{3}(V)}{\mathcal{J}_{3}(V_{4})}\right) +\aleph_{2}(S_{4} , L_{4})\left( 1-\frac{\mathcal{G}_{4}^{L}(S_{4}, L_{4})}{\mathcal{G}_{4} ^{L}(S, L)}\right) \left( \frac{\mathcal{G}_{4}^{L}(S, L)}{\mathcal{G}_{4} ^{L}(S_{4}, L_{4})}-\frac{\mathcal{J}_{1}(L)}{\mathcal{J}_{1}(L_{4})}\right) \\ & +\aleph_{3}(S_{4}, I_{4})\left( 1-\frac{\mathcal{G}_{4}^{I}(S_{4}, I_{4} )}{\mathcal{G}_{4}^{I}(S, I)}\right) \left( \frac{\mathcal{G}_{4}^{I} (S, I)}{\mathcal{G}_{4}^{I}(S_{4}, I_{4})}-\frac{\mathcal{J}_{2}(I)} {\mathcal{J}_{2}(I_{4})}\right) . \end{align*}

    Hence, if \Re_{3} > 1 and \Re_{4} > 1 , then \frac{d\Phi_{4}}{dt}\leq0 for all S, L, I, V, C, A > 0 . Moreover, \frac{d\Phi_{4}}{dt} = 0 when S = S_{4} , L = L_{4}, I = I_{4} and V = V_{4}. Let \Upsilon_{4}^{\prime} be the largest invariant subset of \Upsilon_{4} = \left \{ (S, L, I, V, C, A):\frac{d\Phi_{4}} {dt} = 0\right \} . The solutions of system (2.1) converge to \Upsilon_{4}^{^{\prime}} which contains elements with L(t) = L_{4}, I(t) = I_{4} , V(t) = V_{4} , then \dot{I}(t) = \dot{V}(t) = 0 and from the third and fourth equations of system (2.1) we have 0 = \dot{I}(t) = \lambda \mathcal{H}_{2}\mathcal{J}_{1}(L_{4})-a\mathcal{J}_{2}(I_{4})-\mu \mathcal{J}_{4}(C(t))\mathcal{J}_{2}(I_{4}) and 0 = \dot{V}(t) = b\mathcal{H} _{3}\mathcal{J}_{2}(I_{4})-\varepsilon \mathcal{J}_{3}(V_{4})-\varpi \mathcal{J}_{5}(A(t))\mathcal{J}_{3}(V_{4}) . This implies that C(t) = C_{4} , A(t) = A_{4} for all t. Then, \Upsilon_{4}^{\prime} = \left \{ \text{ $Ð_{4}$ }\right \} and utilizing LaSalle's invariance principle ensures that Ð _{4} is G.A.S.



    [1] M. A. Nowak, C. R. M. Bangham, Population dynamics of immune responses to persistent viruses, Science, 272 (1996), 74-79. doi: 10.1126/science.272.5258.74
    [2] A. M. Elaiw, R. M. Abukwaik, E. O. Alzahrani, Global properties of a cell mediated immunity in HIV infection model with two classes of target cells and distributed delays, Int. J. Biomath., 7 (2014), Article ID 1450055.
    [3] W. Chen, N. Tuerxun, Z. Teng, The global dynamics in a wild-type and drug-resistant HIV infection model with saturated incidence, Adv. Differ. Equ., 2020 (2020), Article Number: 25.
    [4] A. M. Elaiw, S. A. Azoz, Global properties of a class of HIV infection models with BeddingtonDeAngelis functional response, Math. Methods Appl. Sci., 36 (2013), 383-394. doi: 10.1002/mma.2596
    [5] X. Zhou, L. Zhang, T. Zheng, H. Li, Z. Teng, Global stability for a class of HIV virus-to-cell dynamical model with Beddington-DeAngelis functional response and distributed time delay, Math. Biosci. Eng., 17 (2020), 4527-4543. doi: 10.3934/mbe.2020250
    [6] G. Huang, Y. Takeuchi, W. Ma, Lyapunov functionals for delay differential equations model of viral infections, SIAM J. Appl. Math., 70 (2010), 2693-2708. doi: 10.1137/090780821
    [7] A. M. Elaiw, S. F. Alshehaiween, Global stability of delay-distributed viral infection model with two modes of viral transmission and B-cell impairment, Math. Methods Appl. Sci., 43 (2020), 6677-6701. doi: 10.1002/mma.6408
    [8] A. M. Elaiw, A. A. Raezah, Stability of general virus dynamics models with both cellular and viral infections and delays, Math. Methods Appl. Sci., 40 (2017), 5863-5880. doi: 10.1002/mma.4436
    [9] A. M. Elaiw, M. A. Alshaikh, Stability analysis of a general discrete-time pathogen infection model with humoral immunity, J. Differ. Equ. Appl., 25 (2019), 1149-1172. doi: 10.1080/10236198.2019.1662411
    [10] D. Li, W. Ma, Asymptotic properties of a HIV-1 infection model with time delay, J. Math. Anal. Appl., 335 (2007), 683-691. doi: 10.1016/j.jmaa.2007.02.006
    [11] R. V. Culshaw, S. Ruan, A delay-differential equation model of HIV infection of CD4+ T-cells, Math. Biosci., 165 (2000), 27-39. doi: 10.1016/S0025-5564(00)00006-7
    [12] A. M. Elaiw, M. A. Alshaikh, Stability of a discrete-time general delayed viral model with antibody and cell-mediated immune responses, Adv. Differ. Equ., 2020 (2020), Article Number: 54.
    [13] H. Kong, G. Zhang, K. Wang, Stability and Hopf bifurcation in a virus model with selfproliferation and delayed activation of immune cells, Math. Biosci., 17 (2020), 4384-4405. doi: 10.3934/mbe.2020242
    [14] H. Shu, L. Wang, J. Watmough, Global stability of a nonlinear viral infection model with infinitely distributed intracellular delays and CTL imune responses, SIAM J. Appl. Math., 73 (2013), 1280-1302. doi: 10.1137/120896463
    [15] J. Wang, C. Qin, Y. Chen, X. Wang, Hopf bifurcation in a CTL-inclusive HIV-1 infection model with two time delays, Math. Biosci. Eng., 16 (2019), 2587-2612. doi: 10.3934/mbe.2019130
    [16] T. Kajiwara, T. Sasaki, A note on the stability analysis of pathogen-immune interaction dynamics, Discrete Contin. Dyn. Syst. Ser. B, 4 (2004), 615-622.
    [17] K. Hattaf, Global stability and Hopf bifurcation of a generalized viral infection model with multidelays and humoral immunity, Phys. A, 545 (2020), Article ID 123689.
    [18] A. Murase, T. Sasaki, T. Kajiwara, Stability analysis of pathogen-immune interaction dynamics, J. Math. Biol., 51 (2005), 247-267. doi: 10.1007/s00285-005-0321-y
    [19] D. Wodarz, Hepatitis C virus dynamics and pathology: The role of CTL and antibody responses, J. Gen. Virol., 84 (2003), 1743-1750. doi: 10.1099/vir.0.19118-0
    [20] P. Dubey, U. S. Dubey, B. Dubey, Modeling the role of acquired immune response and antiretroviral therapy in the dynamics of HIV infection, Math. Comput. Simul., 144 (2018), 120-137. doi: 10.1016/j.matcom.2017.07.006
    [21] Y. Su, D. Sun, L. Zhao, Global analysis of a humoral and cellular immunity virus dynamics model with the Beddington-DeAngelis incidence rate, Math. Methods Appl. Sci., 38 (2015), 2984-2993. doi: 10.1002/mma.3274
    [22] N. Yousfi, K. Hattaf, A. Tridane, Modeling the adaptive immune response in HBV infection, J. Math. Biol., 63 (2011), 933-957. doi: 10.1007/s00285-010-0397-x
    [23] A. Perelson, A. Neumann, M. Markowitz, J. Leonard, D. Ho, HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time, Science, 271 (1996), 1582-1586.
    [24] Y. Yan, W. Wang, Global stability of a five-dimensional model with immune responses and delay, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), 401-416.
    [25] X. Wang, S. Liu, A class of delayed viral models with saturation infection rate and immune response, Math. Methods Appl. Sci., 36 (2013), 125-142. doi: 10.1002/mma.2576
    [26] J. Wang, J. Pang, T. Kuniya, Y. Enatsu, Global threshold dynamics in a five-dimensional virus model with cell-mediated, humoral immune responses and distributed delays, Appl. Math. Comput., 241 (2014), 298-316.
    [27] A. M. Elaiw, N. H. AlShamrani, Stability of a general delay-distributed virus dynamics model with multi-staged infected progression and immune response, Math. Methods Appl. Sci., 40 (2017), 699-719. doi: 10.1002/mma.4002
    [28] C. Jolly, Q. Sattentau, Retroviral spread by induction of virological synapses, Traffic, 5 (2004), 643-650. doi: 10.1111/j.1600-0854.2004.00209.x
    [29] S. Iwami, J. S. Takeuchi, S. Nakaoka, F. Mammano, F. Clavel, H. Inaba, et al., Cell-to-cell infection by HIV contributes over half of virus infection, Elife, 4 (2015), e08150.
    [30] N. L. Komarova, D. Wodarz, Virus dynamics in the presence of synaptic transmission, Math. Biosci., 242 (2013), 161-171. doi: 10.1016/j.mbs.2013.01.003
    [31] A. Sigal, J. T. Kim, A. B. Balazs, E. Dekel, A. Mayo, R. Milo, et al., Cell-to-cell spread of HIV permits ongoing replication despite antiretroviral therapy, Nature, 477 (2011), 95-98.
    [32] T. Guo, Z. Qiu, L. Rong, Analysis of an HIV model with immune responses and cell-to-cell transmission, Bull. Malays. Math. Sci. Soc., 43 (2018), 581-607.
    [33] J. Lin, R. Xu, X. Tian, Threshold dynamics of an HIV-1 model with both viral and cellular infections, cell-mediated and humoral immune responses, Math. Biosci. Eng., 16 (2018), 292-319.
    [34] K. Hattaf, N. Yousfi, Modeling the adaptive immunity and both modes of transmission in HIV infection, Computation, 6 (2018), Article ID 37.
    [35] T.-W. Chun, L. Stuyver, S. B. Mizell, L. A. Ehler, J. A. M. Mican, M. Baseler, et al., Presence of an inducible HIV-1 latent reservoir during highly active antiretroviral therapy, Proc. Natl. Acad. Sci. USA, 94 (1997), 13193-13197.
    [36] A. M. Elaiw, A. A. Raezah, S. A. Azoz, Stability of delayed HIV dynamics models with two latent reservoirs and immune impairment, Adv. Differ. Equ., 2018 (2018), Article Number: 414.
    [37] L. Huijuan, Z. Jia-Fang, Dynamics of two time delays differential equation model to HIV latent infection, Phys. A, 514 (2019), 384-395.
    [38] A. M. Elaiw, E. K. Elnahary, A. A. Raezah, Effect of cellular reservoirs and delays on the global dynamics of HIV, Adv. Differ. Equ., 2018 (2018), Article Number: 85.
    [39] B. Buonomo, C. Vargas-De-Leon, Global stability for an HIV-1 infection model including an eclipse stage of infected cells, J. Math. Anal. Appl., 385 (2012), 709-720.
    [40] A. M. Elaiw, M. A. Alshaikh, Stability of discrete-time HIV dynamics models with three categories of infected CD4+ T-cells, Adv. Differ. Equ., 2019 (2019), Article Number: 407.
    [41] L. Agosto, M. Herring, W. Mothes, A. Henderson, HIV-1-infected CD4+ T cells facilitate latent infection of resting CD4+ T cells through cell-cell contact, Cell, 24 (2018), 2088-2100.
    [42] A. M. Elaiw, N. H. AlShamrani, Stability of a general adaptive immunity virus dynamics model with multi-stages of infected cells and two routes of infection, Math. Methods Appl. Sci., 43 (2020), 1145-1175. doi: 10.1002/mma.5923
    [43] X. Wang, S. Tang, X. Song, L. Rong, Mathematical analysis of an HIV latent infection model including both virus-to-cell infection and cell-to-cell transmission, J. Biol. Dyn., 11 (2017), 455-483. doi: 10.1080/17513758.2016.1242784
    [44] A. D. Hobiny, A. M. Elaiw, A. Almatrafi, Stability of delayed pathogen dynamics models with latency and two routes of infection, Adv. Differ. Equ., 2018 (2018), Article Number: 276.
    [45] A. M. Elaiw, N. H. AlShamrani, Global stability of a delayed adaptive immunity viral infection with two routes of infection and multi-stages of infected cells, Commun. Nonlin. Sci. Numer. Simul., 86 (2020), Article ID 105259.
    [46] W. Wang, X. Wang, K. Guo, W. Ma, Global analysis of a diffusive viral model with cell-to-cell infection and incubation period, Math. Methods Appl. Sci., 43 (2020), 5963-5978. doi: 10.1002/mma.6339
    [47] K. Hattaf, H. Dutta, Modeling the dynamics of viral infections in presence of latently infected cells, Chaos Solitons Fractals, 136 (2020), Article ID 109916.
    [48] A. M. Elaiw, N. H. AlShamrani, Stability of a general CTL-mediated immunity HIV infection model with silent infected cell-to-cell spread, Adv. Differ. Equ., 2020 (2020), Article Number: 355.
    [49] J. K. Hale, S. V. Lunel, Introduction to functional differential equations, Springer-Verlag, New York, (1993).
    [50] Y. Kuang, Delay Differential Equations with Applications in Population Dynamics, San Diego: Academic Press, (1993).
    [51] A. Korobeinikov, Global properties of infectious disease models with nonlinear incidence, Bull. Math. Biol., 69 (2007), 1871-1886. doi: 10.1007/s11538-007-9196-y
    [52] A. Korobeinikov, Global asymptotic properties of virus dynamics models with dose-dependent parasite reproduction and virulence and non-linear incidence rate, Math. Med. Biol., 26 (2009), 225-239. doi: 10.1093/imammb/dqp006
    [53] X. Zhou, X. Shi, Z. Zhang, X. Song, Dynamical behavior of a virus dynamics model with CTL immune response, Appl. Math. Comput., 213(2009), 329-347.
    [54] X. Yang, L. S. Chen, J. F. Chen, Permanence and positive periodic solution for the single-species nonautonomous delay diffusive models, Comput. Math. Appl., 32 (1996), 109-116.
    [55] P. van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29-48. doi: 10.1016/S0025-5564(02)00108-6
    [56] A. Korobeinikov, Global properties of basic virus dynamics models, Bull. Math. Biol., 66 (2004), 879-883. doi: 10.1016/j.bulm.2004.02.001
    [57] A. M. Elaiw, S. F. Alshehaiween, A. D. Hobiny, Global properties of a delay-distributed HIV dynamics model including impairment of B-cell functions, Mathematics, 7 (2019) Article Number: 837.
    [58] A. M. Elaiw, I. A. Hassanien, S. A. Azoz, Global stability of HIV infection models with intracellular delays, J. Korean Math. Soc., 49 (2012), 779-794. doi: 10.4134/JKMS.2012.49.4.779
    [59] A. M. Elaiw, E. K. Elnahary, Analysis of general humoral immunity HIV dynamics model with HAART and distributed delays, Mathematics, 7 (2019), Article Number: 157.
    [60] H. Shu, Y. Chen, L.Wang, Impacts of the cell-free and cell-to-cell infection modes on viral dynamics, J. Dyn. Differ. Equ., 30 (2018), 1817-1836. doi: 10.1007/s10884-017-9622-2
    [61] A. S. Perelson, P. W. Nelson, Mathematical analysis of HIV-1 dynamics in vivo, SIAM Rev., 41 (1999), 3-44. doi: 10.1137/S0036144598335107
    [62] P. D. Leenheer, H. L. Smith, Virus dynamics: A global analysis, SIAM J. Appl. Math., 63 (2003), 1313-1327. doi: 10.1137/S0036139902406905
    [63] N. Bellomo, Y. Tao, Stabilization in a chemotaxis model for virus infection, Discrete Contin. Dyn. Syst. Ser. S, 13 (2020), 105-117.
    [64] N. Bellomo, K. J. Painter, Y. Tao, M. Winkler, Occurrence vs. Absence of taxis-driven instabilities in a May-Nowak model for virus infection, SIAM J. Appl. Math., 79 (2019), 1990-2010. doi: 10.1137/19M1250261
    [65] C. Qin, Y. Chen, X. Wang, Global dynamics of a delayed diffusive virus infection model with cell-mediated immunity and cell-to-cell transmission, Math. Biosci. Eng., 17 (2020), 4678-4705. doi: 10.3934/mbe.2020257
    [66] A. M. Elaiw, A. D. AlAgha, Global dynamics of reaction-diffusion oncolytic M1 virotherapy with immune response, Appl. Math. Comput., 367 (2020), Article 124758.
    [67] A. M. Elaiw, A. D. AlAgha, Global analysis of a reaction-diffusion within-host malaria infection model with adaptive immune response, Mathematics, 8 (2020), Article Number: 563.
    [68] A. M. Elaiw, A. D. AlAgha, Analysis of a delayed and diffusive oncolytic M1 virotherapy model with immune response, Nonlinear Anal. Real World Appl., 55 (2020), Article 103116.
    [69] L. Gibelli, A. Elaiw, M. A. Alghamdi, A. M. Althiabi, Heterogeneous population dynamics of active particles: Progression, mutations, and selection dynamics, Math. Models Methods Appl. Sci., 27 (2017), 617-640.
  • This article has been cited by:

    1. A. M. Elaiw, N. H. Alshamrani, E. Dahy, A. A. Abdellatif, Stability of within host HTLV-I/HIV-1 co-infection in the presence of macrophages, 2023, 16, 1793-5245, 10.1142/S1793524522500668
    2. Jinhu Xu, Guokun Huang, Zahir Shah, Threshold Dynamics for a Time-Periodic Viral Infection Model with Cell-to-Cell Transmission and Drug Treatments, 2022, 2022, 1563-5147, 1, 10.1155/2022/2289138
    3. Elsayed Dahy, Ahmed M. Elaiw, Aeshah A. Raezah, Hamdy Z. Zidan, Abd Elsattar A. Abdellatif, Global Properties of Cytokine-Enhanced HIV-1 Dynamics Model with Adaptive Immunity and Distributed Delays, 2023, 11, 2079-3197, 217, 10.3390/computation11110217
    4. Noura H. AlShamrani, Reham H. Halawani, Wafa Shammakh, Ahmed M. Elaiw, Global Properties of HIV-1 Dynamics Models with CTL Immune Impairment and Latent Cell-to-Cell Spread, 2023, 11, 2227-7390, 3743, 10.3390/math11173743
    5. Mouhcine Naim, Zakaria Yaagoub, Anwar Zeb, Marya Sadki, Karam Allali, Global analysis of a fractional-order viral model with lytic and non-lytic adaptive immunity, 2024, 10, 2363-6203, 1749, 10.1007/s40808-023-01866-4
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4329) PDF downloads(142) Cited by(5)

Figures and Tables

Figures(7)  /  Tables(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog