Mathematical modelling of a mushy region formation during sulphation of calcium carbonate

  • Received: 01 March 2014 Revised: 01 September 2014
  • Primary: 35Q92, 35R37; Secondary: 35K57, 74G10, 74S05.

  • The subject of the present paper is the derivation and asymptotic analysis of a mathematical model for the formation of a mushy region during sulphation of calcium carbonate. The model is derived by averaging, with the use of the multiple scales method, applied on microscopic moving - boundary problems. The latter problems describe the transformation of calcium carbonate into gypsum on the microscopic scale. The derived macroscopic model is solved numerically with the use of a finite element method. The results of some simulations and a relevant discussion are also presented.

    Citation: Christos V. Nikolopoulos. Mathematical modelling of a mushy region formation during sulphation of calcium carbonate[J]. Networks and Heterogeneous Media, 2014, 9(4): 635-654. doi: 10.3934/nhm.2014.9.635

    Related Papers:

    [1] Christos V. Nikolopoulos . Mathematical modelling of a mushy region formation during sulphation of calcium carbonate. Networks and Heterogeneous Media, 2014, 9(4): 635-654. doi: 10.3934/nhm.2014.9.635
    [2] Steinar Evje, Aksel Hiorth . A mathematical model for dynamic wettability alteration controlled by water-rock chemistry. Networks and Heterogeneous Media, 2010, 5(2): 217-256. doi: 10.3934/nhm.2010.5.217
    [3] Iryna Pankratova, Andrey Piatnitski . Homogenization of convection-diffusion equation in infinite cylinder. Networks and Heterogeneous Media, 2011, 6(1): 111-126. doi: 10.3934/nhm.2011.6.111
    [4] Ciro D’Apice, Umberto De Maio, T. A. Mel'nyk . Asymptotic analysis of a perturbed parabolic problem in a thick junction of type 3:2:2. Networks and Heterogeneous Media, 2007, 2(2): 255-277. doi: 10.3934/nhm.2007.2.255
    [5] Naoki Sato, Toyohiko Aiki, Yusuke Murase, Ken Shirakawa . A one dimensional free boundary problem for adsorption phenomena. Networks and Heterogeneous Media, 2014, 9(4): 655-668. doi: 10.3934/nhm.2014.9.655
    [6] Stefan Berres, Ricardo Ruiz-Baier, Hartmut Schwandt, Elmer M. Tory . An adaptive finite-volume method for a model of two-phase pedestrian flow. Networks and Heterogeneous Media, 2011, 6(3): 401-423. doi: 10.3934/nhm.2011.6.401
    [7] Thomas Hudson . Gamma-expansion for a 1D confined Lennard-Jones model with point defect. Networks and Heterogeneous Media, 2013, 8(2): 501-527. doi: 10.3934/nhm.2013.8.501
    [8] Shijin Deng . Large time behavior for the IBVP of the 3-D Nishida's model. Networks and Heterogeneous Media, 2010, 5(1): 133-142. doi: 10.3934/nhm.2010.5.133
    [9] Antonio Fasano, Mario Primicerio, Andrea Tesi . A mathematical model for spaghetti cooking with free boundaries. Networks and Heterogeneous Media, 2011, 6(1): 37-60. doi: 10.3934/nhm.2011.6.37
    [10] Al-hassem Nayam . Asymptotics of an optimal compliance-network problem. Networks and Heterogeneous Media, 2013, 8(2): 573-589. doi: 10.3934/nhm.2013.8.573
  • The subject of the present paper is the derivation and asymptotic analysis of a mathematical model for the formation of a mushy region during sulphation of calcium carbonate. The model is derived by averaging, with the use of the multiple scales method, applied on microscopic moving - boundary problems. The latter problems describe the transformation of calcium carbonate into gypsum on the microscopic scale. The derived macroscopic model is solved numerically with the use of a finite element method. The results of some simulations and a relevant discussion are also presented.


    [1] G. Ali, V. Furuholt, R. Natalini and I. Torcicollo, A mathematical model of sulphite chemical aggression of limestones with high permeability. Part I. Modeling and qualitative analysis, Transport in Porous Media, 69 (2007), 109-122. doi: 10.1007/s11242-006-9067-2
    [2] G. Ali, V. Furuholt, R. Natalini and I. Torcicollo, A mathematical model of sulphite chemical aggression of limestones with high permeability. Part II: Numerical approximation, Transport in Porous Media, 69 (2007), 175-188. doi: 10.1007/s11242-006-9068-1
    [3] D. Aregba-Driollet, F. Diele and R. Natalini, A Mathematical Model for the SO2 Aggression to Calcium Carbonate Stones: Numerical Approximation and Asymptotic Analysis, SIAM J. APPL. MATH. , 64 (2004), 1636-1667. doi: 10.1137/S003613990342829X
    [4] F. Clareli, A. Fasano and R. Natalini, Mathematics and monument conservation: Free boundary models of marble sulfation, SIAM Journal on Applied Mathematics, 69 (2008), 149-168. doi: 10.1137/070695125
    [5] A. Fasano and R. Natalini, Lost Beauties of the Acropolis: What Mathematics Can Say, SIAM news, 2006.
    [6] T. Fatima, Multiscale Reaction Diffusion Systems Describing Concrete Corrosion: Modelling and Analysis, Ph.D thesis, Technical University of Eindhoven, 2013.
    [7] T. Fatima, N. Arab, E. P. Zemskov and A. Muntean, Homogenization of a reaction - diffusion system modeling sulfate corrosion of concrete in locally periodic perforated domains, Journal of Engineering Mathematics, 69 (2011), 261-276. doi: 10.1007/s10665-010-9396-6
    [8] T. Fatima and A. Muntean, Sulfate attack in sewer pipes: Derivation of a concrete corrosion model via two-scale convergence, Nonlinear Analysis: Real World Applications, 15 (2014), 326-344. doi: 10.1016/j.nonrwa.2012.01.019
    [9] T. Fatima, A. Muntean and T. Aiki, Distributed space scales in a semilinear reaction-diffusion system including a parabolic variational inequality: A well-posedness study, Adv. Math. Sci. Appl., 22 (2012), 295-318.
    [10] T. Fatima, A. Muntean and M. Ptashnyk, Unfolding-based corrector estimates for a reaction - diffusion system predicting concrete corrosion, Applicable Analysis, 91 (2012), 1129-1154. doi: 10.1080/00036811.2011.625016
    [11] F. R. Guarguaglini and R. Natalini, Fast reaction limit and large time behavior of solutions to a nonlinear model of sulphation phenomena, Commun. Partial Differ. Equations, 32 (2007), 163-189. doi: 10.1080/03605300500361438
    [12] F. R. Guarguaglini and R. Natalini, Global existence of solutions to a nonlinear model of sulphation phenomena in calcium carbonate stones, Nonlinear Analysis: Real World Applications, 6 (2005), 477-494. doi: 10.1016/j.nonrwa.2004.09.007
    [13] E. J. Hinch, Perturbation Methods, Cambridge University Press, 1991. doi: 10.1017/CBO9781139172189
    [14] A. A. Lacey and L. A. Herraiz, Macroscopic models for melting derived from averaging microscopic Stefan problems I: Simple geometries with kinetic undercooling or surface tension, Euro. Jnl. of Applied Mathematics, 11 (2002), 153-169. doi: 10.1017/S0956792599004027
    [15] A. A. Lacey and L. A. Herraiz, Macroscopic models for melting derived from averaging microscopic Stefan problems II: Effect of varying geometry and composition, Euro. Jnl. of Applied Mathematics, 13 (2002), 261-282. doi: 10.1017/S0956792501004818
    [16] R. J. Leveque, Finite Volume Methods for Hyperbolic Problems, Caimbridge University Press, 2002. doi: 10.1017/CBO9780511791253
    [17] C. V. Nikolopoulos, A mushy region in concrete corrosion, Applied Mathematical Modelling, 34 (2010), 4012-4030. doi: 10.1016/j.apm.2010.04.005
    [18] C. V. Nikolopoulos, Macroscopic models for a mushy region in concrete corrosion, Journal of Engineering Mathematics, 2014, DOI 10.1007/s10665-014-9743-0.
    [19] J. L. Schnoor, Enviromental Modeling, Fate and transport of pollutants in water, air, and soil, John Willey and Sons, Inc., 1996.
  • This article has been cited by:

    1. CHRISTOS V. NIKOLOPOULOS, Macroscopic models for calcium carbonate corrosion due to sulfation. Variation of diffusion and volume expansion, 2019, 30, 0956-7925, 529, 10.1017/S095679251800027X
    2. Armando Coco, Marco Donatelli, Matteo Semplice, Stefano Serra Capizzano, 2021, Chapter 7, 978-3-030-58076-6, 107, 10.1007/978-3-030-58077-3_7
    3. Arthur J. Vromans, Adrian Muntean, Fons van de Ven, A mixture theory-based concrete corrosion model coupling chemical reactions, diffusion and mechanics, 2018, 10, 2198-4115, 10.1186/s40736-018-0039-6
    4. A. Coco, M. Semplice, S. Serra Capizzano, A level-set multigrid technique for nonlinear diffusion in the numerical simulation of marble degradation under chemical pollutants, 2020, 386, 00963003, 125503, 10.1016/j.amc.2020.125503
  • Reader Comments
  • © 2014 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3772) PDF downloads(64) Cited by(4)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog