[1]
|
G. Ali, V. Furuholt, R. Natalini and I. Torcicollo, A mathematical model of sulphite chemical aggression of limestones with high permeability. Part I. Modeling and qualitative analysis, Transport in Porous Media, 69 (2007), 109-122. doi: 10.1007/s11242-006-9067-2
|
[2]
|
G. Ali, V. Furuholt, R. Natalini and I. Torcicollo, A mathematical model of sulphite chemical aggression of limestones with high permeability. Part II: Numerical approximation, Transport in Porous Media, 69 (2007), 175-188. doi: 10.1007/s11242-006-9068-1
|
[3]
|
D. Aregba-Driollet, F. Diele and R. Natalini, A Mathematical Model for the SO2 Aggression to Calcium Carbonate Stones: Numerical Approximation and Asymptotic Analysis, SIAM J. APPL. MATH. , 64 (2004), 1636-1667. doi: 10.1137/S003613990342829X
|
[4]
|
F. Clareli, A. Fasano and R. Natalini, Mathematics and monument conservation: Free boundary models of marble sulfation, SIAM Journal on Applied Mathematics, 69 (2008), 149-168. doi: 10.1137/070695125
|
[5]
|
A. Fasano and R. Natalini, Lost Beauties of the Acropolis: What Mathematics Can Say, SIAM news, 2006.
|
[6]
|
T. Fatima, Multiscale Reaction Diffusion Systems Describing Concrete Corrosion: Modelling and Analysis, Ph.D thesis, Technical University of Eindhoven, 2013.
|
[7]
|
T. Fatima, N. Arab, E. P. Zemskov and A. Muntean, Homogenization of a reaction - diffusion system modeling sulfate corrosion of concrete in locally periodic perforated domains, Journal of Engineering Mathematics, 69 (2011), 261-276. doi: 10.1007/s10665-010-9396-6
|
[8]
|
T. Fatima and A. Muntean, Sulfate attack in sewer pipes: Derivation of a concrete corrosion model via two-scale convergence, Nonlinear Analysis: Real World Applications, 15 (2014), 326-344. doi: 10.1016/j.nonrwa.2012.01.019
|
[9]
|
T. Fatima, A. Muntean and T. Aiki, Distributed space scales in a semilinear reaction-diffusion system including a parabolic variational inequality: A well-posedness study, Adv. Math. Sci. Appl., 22 (2012), 295-318.
|
[10]
|
T. Fatima, A. Muntean and M. Ptashnyk, Unfolding-based corrector estimates for a reaction - diffusion system predicting concrete corrosion, Applicable Analysis, 91 (2012), 1129-1154. doi: 10.1080/00036811.2011.625016
|
[11]
|
F. R. Guarguaglini and R. Natalini, Fast reaction limit and large time behavior of solutions to a nonlinear model of sulphation phenomena, Commun. Partial Differ. Equations, 32 (2007), 163-189. doi: 10.1080/03605300500361438
|
[12]
|
F. R. Guarguaglini and R. Natalini, Global existence of solutions to a nonlinear model of sulphation phenomena in calcium carbonate stones, Nonlinear Analysis: Real World Applications, 6 (2005), 477-494. doi: 10.1016/j.nonrwa.2004.09.007
|
[13]
|
E. J. Hinch, Perturbation Methods, Cambridge University Press, 1991. doi: 10.1017/CBO9781139172189
|
[14]
|
A. A. Lacey and L. A. Herraiz, Macroscopic models for melting derived from averaging microscopic Stefan problems I: Simple geometries with kinetic undercooling or surface tension, Euro. Jnl. of Applied Mathematics, 11 (2002), 153-169. doi: 10.1017/S0956792599004027
|
[15]
|
A. A. Lacey and L. A. Herraiz, Macroscopic models for melting derived from averaging microscopic Stefan problems II: Effect of varying geometry and composition, Euro. Jnl. of Applied Mathematics, 13 (2002), 261-282. doi: 10.1017/S0956792501004818
|
[16]
|
R. J. Leveque, Finite Volume Methods for Hyperbolic Problems, Caimbridge University Press, 2002. doi: 10.1017/CBO9780511791253
|
[17]
|
C. V. Nikolopoulos, A mushy region in concrete corrosion, Applied Mathematical Modelling, 34 (2010), 4012-4030. doi: 10.1016/j.apm.2010.04.005
|
[18]
|
C. V. Nikolopoulos, Macroscopic models for a mushy region in concrete corrosion, Journal of Engineering Mathematics, 2014, DOI 10.1007/s10665-014-9743-0.
|
[19]
|
J. L. Schnoor, Enviromental Modeling, Fate and transport of pollutants in water, air, and soil, John Willey and Sons, Inc., 1996.
|